

DELI: A New Run-Time Control Point

Giuseppe Desoli, Nikolay Mateev, Evelyn Duesterwald,
Paolo Faraboschi and Joseph A. Fisher

Hewlett-Packard Laboratories, 1 Main St., Cambridge, MA 02142, USA

giuseppe.desoli@st.com, nikolay.mateev@hp.com, duester@us.ibm.com,
paolo.faraboschi@hp.com, josh.fisher@hp.com

Abstract

The Dynamic Execution Layer Interface (DELI) offers

the following unique capability: it provides fine-grain con-
trol over the execution of programs, by allowing its clients
to observe and optionally manipulate every single instruc-
tion—at run time—just before it runs. DELI accomplishes
this by opening up an interface to the layer between the
execution of software and hardware. To avoid the slow-
down, DELI caches a private copy of the executed code
and always runs out of its own private cache.

In addition to giving powerful control to clients, DELI
opens up caching and linking to ordinary emulators and
just-in-time compilers, which then get the reuse benefits of
the same mechanism. For example, emulators themselves
can also use other clients, to mix emulation with already
existing services, native code, and other emulators.

This paper describes the basic aspects of DELI, includ-
ing the underlying caching and linking mechanism, the
Hardware Abstraction Mechanism (HAM), the Binary-
Level Translation (BLT) infrastructure, and the Applica-
tion Programming Interface (API) exposed to the clients.
We also cover some of the services that clients could offer
through the DELI, such as ISA emulation, software patch-
ing, and sandboxing. Finally, we consider a case study of
emulation in detail: the emulation of a PocketPC system
on the Lx/ST210 embedded VLIW processor. In this case,
DELI enables us to achieve near-native performance, and
to mix-and-match native and emulated code.

1. Introduction

This paper is about a new capability in computing sys-
tems, one that is subtle, and one that we believe can have a
large effect on computing. We are all familiar with the
method of loading and executing programs, where most of
the traditional program transformations terminate before
the program binary runs. What has changed in the last
decade is the steady growth of techniques that continue
manipulating code while the program is running, from
dynamic loaders to Just-In-Time compilers. Some of these

techniques share a fundamental property: they observe—
and potentially transform—instructions of the target pro-
gram immediately before they run.

System utilities that operate on programs as their target
datasets have many different motivations. Sometimes, the
semantics of the target program are not meant to directly
address the hardware on which it runs, and we use compil-
ers, interpreters and emulators to translate the target pro-
gram and perhaps initiate its execution. Linkers and load-
ers process the target program in order for it to run cor-
rectly. Some tools check a target program for viruses or
other properties, while others, such as profilers, measure
performance-related properties of the target.
Compile time vs. run time. Some programs process a
target binary before execution, and then get out of the
way, so that the target program can run. We often say that
these transformations happen at compile time (or load
time). Other approaches operate on a binary while it is
running, and we sometimes say they operate at run time.
Compilers, unsurprisingly, are examples of the first type,
as are most virus checkers. Classical emulators, which
fetch each instruction of the target, translate it, and then
initiate execution, are examples of the second. Superscalar
control units are another example of run-time transforma-
tion, as they schedule instructions just before they run.
Persistent vs. transient changes1. A similar consideration
has to do with whether changes to the same part of the
program have a long lifetime, or whether their effect only
lasts briefly. For example, compile time techniques oper-
ate in advance, we think of them as making a single
change to the program, and we call them persistent. Most
run time techniques, however, change the same parts of
the program repeatedly, and we thus refer to these as being
transient. Classical emulators and superscalar hardware
both touch every single instruction repeatedly, immedi-
ately before its execution, and the result of their transfor-
mation is transient in this sense.
Persistent changes at run time. It might be fair to refer to

1 Many would refer to this distinction as static vs. dynamic. Un-
fortunately, dynamic is also a synonym for run-time. To avoid
confusion, we adopt persistent and transient.

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

the actions of a dynamic loader as persistent, since the
effect of the changes is repeatedly used. Much more im-
portant is a technique that emulators widely apply: cach-
ing of translated code. To avoid repeating the translation
of the same piece of code, emulators relocate chunks of
translated code into a private cache. As long as execution
stays in the cache, this avoids both the cost of the transla-
tion and the cost of invoking the emulator. When done
well, in our experience it yields savings up to 100x. We
normally would think of this technique as being persistent,
but the work is being done at run time2. In some sense, this
type of mechanism combines the advantages of compile
time and run time. We can amortize work over a long
time, yet we take advantage of the near-perfect knowledge
available at run time. With today’s late-binding coding
style, this advantage is becoming ever more important.

Table 1 - Although we usually identify run time execution
with dynamic (transient) changes, it is useful to separate the
concepts of what is done at run time vs. compile time and
what is used once or used repeatedly.

 Compile Time Run Time
Persistent Changes

made once,
used many times

Compilers
Dynamic
loaders

(and DELI)
Transient Changes
 made many times,

used once

[Doesn’t make
sense]

Superscalar
hardware

1.1. Effect of a new control point

Efficient emulation already implies a lot of power: even
though code was produced for a stipulated instruction-set
architecture, code still runs correctly despite ISA changes.
Now imagine a much more flexible capability as follows.
 A system tool that gives clients ultimate fine-grain con-

trol over programs running on the system by allowing
the client to observe and optionally manipulate every
single instruction in the target—at run time.

 This system is guaranteed to be the last piece of soft-
ware to touch an instruction (code runs out of a cache,
and the system observes and potentially manipulates
the code before it is placed there).

 The system accomplishes this by opening up an inter-
face to the workings of a native-to-native binary emula-
tor, which uses caching and linking to stay close to na-
tive performance.
With a capability like this, it is possible to have a view

of object-code compatibility and many other issues which,
together, can dramatically change some of our assump-
tions about computing. Just as superscalar hardware makes
transient rearrangements of code at run time to match it to
ILP hardware, software can make persistent code changes
at run time to match the object code to the hardware that is

2 This has been referred to elsewhere as Walk Time Techniques
[16]: you’re moving, but you’re not in a frenzy.

actually present when the code runs. This facility could
free up the microarchitect in many ways, raise the level of
processor compatibility above the hardware level, facili-
tate software migration, and allow us to design hardware
that does not have to pay a price for compatibility every
single execution cycle. While many emulation systems
offer the same freedom, DELI does so in a way that is
flexible, easy to use with multiple versions of the hard-
ware, and not requiring large re-implementation efforts. It
also enables us to examine and manipulate code in many
other ways, in the perfect light of run time, but with the
cost of the necessary analysis and transformations amor-
tized over the full period of the persistent use of the result.

1.2. Related work

The DELI provides a uniform infrastructure for build-
ing client applications that manipulate or observe running
programs. An important example of this type of applica-
tion is emulation. Advanced emulation systems use vary-
ing degrees of code caching and optimization ranging
from caching unoptimized individual translated code
blocks [7] to sophisticated dynamic binary translation sys-
tems [9][11][24][26][28]. Examples include the Daisy
binary translation system [11], Transmeta’s Code Morph-
ing software for the Crusoe processor [9] and Transitive’s
Dynamite Software [24]. These systems provide a com-
plete software layer for dynamic binary translation be-
tween different ISAs, where the mechanisms for code
caching, linking and optimization are an integral part of
the overall system. In contrast, the DELI explicitly isolates
the code cache functionality in a separate software layer.

The DELI is not an emulation system itself: it encapsu-
lates the common code caching and linking functionality,
which can then be leveraged across a number of different
emulation systems. The DELI shares the capabilities for
dynamic code optimization with binary translation sys-
tems. However, while in binary translation systems, opti-
mization is tightly integrated, the DELI offers it as a ser-
vice. Thus, it frees the emulation system developers form
designing and implementing target-specific optimizations.

 We view dynamic optimizers [1][6][8][25] as native-
to-native binary translation systems, where performance
improvement is the sole desired effect of translation.
Mechanisms for dynamic hot spot detection [22] and dy-
namic optimization [17] have also been implemented in
hardware. As in dynamic optimizers, the DELI may em-
ploy code optimization transparently to accelerate native
binaries. However, the DELI goes beyond that by specifi-
cally opening up the dynamic optimization functionality as
a service to client applications. Under specific instructions
from the client, the DELI enables dynamic code optimiza-
tions that are beyond the reach of a purely transparent dy-
namic optimizer, whose code knowledge is limited to the
binary text.

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

The Trace Cache [17][25] is a hardware approach to
optimize the memory bandwidth of running programs.
Unlike the DELI, hardware mechanisms are not easily
extensible and are completely hidden from application and
system software.

Java Virtual Machines (JVM) with Just-In-Time (JIT)
Compilation [21] or the Common Language Runtime in
the Microsoft’s .NET environment [23] are advanced run-
time systems for executing portable intermediate code
(i.e., Java Bytecode or Microsoft Intermediate Language).
These higher-level emulation systems use dynamic cach-
ing of translations (a.k.a. JIT compilation) for perform-
ance. A JVM (or Common Language Runtime) provides a
similar level of control over the execution of the interme-
diate code as the DELI achieves for the execution of bi-
nary code. In contrast, the DELI is language independent,
does not require a special code format and can therefore
even handle legacy code.

Runtime interfaces have been developed for specific
runtime code modification tasks. The DynInst API [4] and
the Vulcan system [27] can be used to insert instrumenta-
tion code into a running program. DynamoRIO [10] (based
on Dynamo [1], which is also a DELI ancestor) is a dy-
namic optimization system that exports an interface to
implement arbitrary code transformations while the pro-
gram executes. Like the DELI, these systems export an
API to higher-level application clients. However, unlike
DELI, these systems are designed for and limited to a spe-
cific kind of native-to-native dynamic code modification

Finally, Debugger APIs, though their goals are very
different, are similar to the DELI in that they open up a
well-defined interface to the operation of programs at this
same low level. As with the DELI, programs (debuggers)
use this interface to supply services that probe the running
program. Unlike the DELI, Debugger APIs are written
with one narrow purpose in mind, and don’t offer access
to the low-level operation of programs for varied use. For
example, a debugger is normally a separate process, not
concerned with the performance of the debugged program.

2. Overview of the DELI System

The DELI is a software layer that operates between ap-
plication software and the hardware platform as depicted
in Figure 1. Depending on the desired functionality, the
DELI layer can be inserted underneath or above the oper-
ating system. For example, if system code should execute
under DELI control, the DELI would be inserted under-
neath the operating system.

Despite its novelty, the DELI is an industrial-quality
tool. It is robust enough to support complex operating sys-
tems (like WindowsCE), and can deal with all the nui-
sances of real-world systems, such as system calls and
self-modifying code.

To understand the role of the DELI with respect to its

clients, it is helpful to consider an analogy with operating
systems. The DELI is to its client application what virtual
memory is to an ordinary application. Strictly speaking,
building an application does not require virtual memory or
other operating systems support, and in some deeply em-
bedded domains applications often embody significant
portions of the operating system functionality. However,
the presence of an underlying operating system greatly
simplifies application development. Similarly, the pres-
ence of the DELI can greatly facilitates the construction of
dynamic code transformation functionalities in client ap-
plications.

The
DELI

Code Caches

Configuration & Control Layer

Transparent Injector

Caching & Linking Module

Application Programming Interface (API)

Application/System Software

Export
Intermediate

Representation

Hardware Abstraction Module (HAM)

…

Transformation
Infrastructure

Binary Level Translation (BLT)

Hardware Platform

Figure 1 - An overview of the DELI system

As shown in Figure 1, the DELI layer includes three
main components: the Binary Level Translation (BLT)
layer, the Hardware Abstraction Module (HAM), and the
Application Programming Interface (DELI API). The
BLT layer provides the core code caching and linking
functionality, and it includes several code caches and basic
infrastructure elements for binary code transformation,
such as optimization and instrumentation. HAM provides
virtualization of the underlying hardware. The DELI API
makes the functionality accessible to client applications.
We will discuss the role and functionality of each compo-
nent in detail in the following sections.

2.1. The DELI API

Through its API, the DELI provides basic code caching
and linking service, as well as the necessary infrastructure
to support dynamic code transformation to the running
client applications. To illustrate the DELI API, consider
the following scenario: a client emulation system that is
taking advantage of the DELI to cache and link transla-
tions of the emulated code. To avoid repeated emulation of
the same code sequence, the emulation system produces a
code fragment that contains a translation of the code se-
quence. The emulation system uses the DELI to emit the
fragment for caching and linking via the API function:

deli_emit_fragment (tag, start, end,
 flags, user_data)

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

The next time the emulation system is about to emulate the
code just translated, it can instruct the DELI to execute the
fragment with:

deli_exec_fragment(tag, context)
Internally, the DELI directly interconnects all emitted
fragment code whenever possible. Thus, invoking
deli_exec_fragment() may actually result in the exe-
cution of a sequence of fragments until we encounter a
fragment exit that is not connected, in which case an exit
tag will be returned to the client. Table 2 shows a descrip-
tion of the most important functions of the DELI API.

Besides implementing the API, the DELI is also capa-
ble of acting in a transparent mode with respect to the cli-
ent application. In this mode, the DELI transparently takes
control over the running client application, such that it
operates like a native-to-native caching emulator similar to
the HP Labs Dynamo dynamic optimizer [1]. The DELI
intercepts the running applications and copies every piece
of code that is about to execute into its code cache, so that
execution only takes place out of the code cache. When
placing code into the code cache, the DELI has the oppor-
tunity to optimize it, as in the Dynamo system. However,

unlike Dynamo, the DELI can be instructed through the
API to perform other code transformation or observation
tasks beyond optimization (such as instrumentation or
insertion of safety checks). An application client can ex-
plicitly turn on and off the transparent mode by invoking
deli_start() and deli_stop(). In addition, the DELI
is equipped with a transparent injector module; if config-
ured correspondingly, the DELI automatically injects itself
and takes control over the application. Automatic injection
is useful for implementing code-caching services for ap-
plications that are not DELI-aware.

2.2. Binary Level Translation (BLT)

The BLT layer is the core component of the DELI, re-
sponsible for implementing the DELI API. As shown in
Figure 1, the BLT layer contains and manages a set of
code caches. It also provides the basic infrastructure for
code transformations. DELI obviously introduces over-
head, and the key to amortizing it is to ensure that the ap-
plication code runs efficiently inside the code caches. The
DELI’s primary means for delivering code cache perform-

 Table 2 - The DELI core API
DELI API Function Description

void deli_init(); Initialize the DELI

void deli_emit_fragment(tag,
start, end, flags, user_data);

Emit a code fragment in the DELI code cache. Arguments include a client-level tag identifier,
the location of the translation (start and end address), flags and user_data. The flags specify
attributes of the emitted fragment, such as the optimization level to apply, or whether the frag-
ment is instrumented for profiling.

void deli_exec_fragment(tag,
context);

Start executing client code from the location identified by tag with the given machine context.
Arguments include the fragment’s tag identifier and a machine context that the client must load
before executing the fragment

deli_handle
deli_lookup_fragment(tag);

Return a DELI internal handle for the fragment identified with tag, if it currently resides in the
cache

void deli_invalidate_fragment(
handle); Invalidate the fragments identified with the DELI internal handle.

void deli_install_callback(
deli_event, callback);

Register a client-level callback function to be invoked upon a specific DELI event, such as
fragment emission, cache exit, profile counter overflow, or out-of-space code cache condition.
We can use the callback mechanism to implement a variety of tasks, such as enforcing client-
level code assertion, controlling code cache flushes, or triggering optimization and reformation
of fragment code once it becomes hot (when the profile count exceeds a threshold).

void deli_enum_fragment(
callback);

Apply a client-level callback function to each fragment currently residing in the cache. Frag-
ment enumeration is useful, for example, to enforce specific checks or instrumentation code on
all fragments.

cache_object_id
deli_setup_cache(cache_obj_desc,
 flags, user_data);

Create a code cache object within DELI with given attributes (size, priority, policies) and prop-
erly links it in the DELI code cache stack.

void deli_code_cache_flush(
cache_obj_id, flags, timeout); Initiate a DELI code cache flush on the given code cache, with a given timeout.

int deli_gc(cache_object_id,
flags, timeout); Initiate on-demand garbage collection on a given code cache, with a given timeout

void deli_start(); Start DELI “transparent” mode, where DELI takes control of the running program
void deli_stop(); Stop DELI “transparent” mode

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

ance are fragment linking and dynamic optimization.

Linking Fragments
Linking avoids unnecessary code cache exits by directly
interconnecting the fragments of code, and it requires
matching the fragments’ exit and entry tags. Recall that
fragment tags are created by the client when emitting code
through the API: DELI assigns each fragment a unique
entry tag and marks each fragment exit with a correspond-
ing exit tag. Upon fragment emission, the DELI inspects
each fragment’s exit tag to directly interconnect it to a
corresponding fragment entry. If no such entry can be
found, DELI temporarily redirects the fragment exit to a
special trampoline code. The trampoline causes execution
to exit the code cache and to eventually return to the client
with the missing exit tag.

The above strategy takes care of creating a fragment’s
outgoing links. To establish incoming links, the DELI uses
a deferred strategy. Initially, a fragment is entered into the
code cache without creating direct incoming connections.
At each code cache exit a test is made to determine
whether a fragment for the exiting target tag has been ma-
terialized in the meanwhile. If so, a direct link is estab-
lished, and execution continues in the code cache instead
of returning to the client.

The Transformation Infrastructure
An important feature of DELI’s BLT layer is the capabil-
ity to dynamically optimize the emitted code. The BLT
layer provides a complete dynamic optimization infra-
structure to activate runtime code optimization, either ex-
plicitly through the API, or autonomously by setting the
appropriate optimization policy.

The core of DELI’s transformation infrastructure is the
DELI Intermediate Representation (DELIR). DELIR is a
low-level intermediate representation that maintains a
close mapping to the underlying machine representation
while providing sufficient abstraction for permitting code
motion and code relocation. DELIR serves two purposes:
to internally enable the transformation of fragment code,
and to facilitate the construction of code fragments in the
client. For the latter, DELIR is exported to the client
through an extension of the DELI API. In addition to emit-
ting a fragment in machine code representation, the client
can construct a DELIR fragment and pass it to DELI for
code emission. Table 3 shows a sample of the DELIR
functionalities.

By instructing the DELI through the API, we can apply
optimizations to a fragment either the first time the frag-
ment is emitted, or when it has become “hot” in the code
cache. DELI considers a fragment “hot” when it exceeds
an execution threshold that clients can set through the
DELI API (default is 500 executions). When a fragment
exceeds the threshold in the cache, the DELI decodes the
fragment code to produce a DELIR fragment. DELI then
passes the DELIR fragment to the internal lightweight

runtime optimizer and scheduler. Depending on the chosen
optimization level, the runtime optimizer performs up to
two passes over the code: a forward and a backward pass.
During each pass, it collects data flow information on the
fly as the pass continues either forward or backward. The
particular kind of optimizations and the particular schedul-
ing algorithm used depend upon the underlying machine
characteristics. Our current prototype, detailed in Section
4.1, targets an embedded VLIW architecture, so the corre-
sponding set of optimizations that we currently employ in
DELI is targeted towards increasing ILP: copy propaga-
tion, constant propagation, dead code elimination and
strength reduction. The complexity of the optimizations is
tunable by a peephole window. The performance benefits
of these optimizations are primarily in improved schedul-
ing quality.

Table 3 - The DELIR API
DELIR API

Function
Description

fragment*
delir_create_frag(
int id, unsigned
flags);

Create a DELIR fragment, where id
serves as a fragment identifier and the
flags are used to specify various frag-
ment properties. The function returns
a handle to the created fragment.

void
delir_append_inst(
fragment
*frag_handle, inst
*inst_handle);

Append an instruction (specified by
the handle inst_hande) to the DELIR
fragment specified by the handle
frag_handle.

inst*
delir_make_opcode(
int opcode,
unsigned *arglist,
unsigned flags);

Create a specific DELIR instruction
with the specified opcode, the argu-
ments that are passed in the arglist
and the specified flags. The function
returns a handle to the created in-
struction.

A large number of static scheduling algorithms targets

VLIW scheduling (such as Trace Scheduling [15]). Unlike
static schedulers, dynamic scheduling algorithms give
highest priority to speed and a simple design in order to be
competitively applied at runtime [11][26][28]. DELI em-
ploys two lightweight scheduling algorithms: an instruc-
tion scheduler and an operation scheduler. The schedulers
do not require building a data dependence graph, and can
be tuned by changing the size of the look-ahead window.
The instruction scheduler is a cycle-by-cycle scheduler,
and computes the required dependencies on the fly within
a fixed size look-ahead window, similarly to the way in
which superscalar hardware operates.
The operation scheduler traverses the code one operation
at a time in an attempt to schedule each instruction in the
earliest cycle. This is similar to the scheduling algorithm
in the Daisy system [11].

Section 4 provides detailed information on the per-
formance of DELI’s optimizations and scheduling.

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

2.3. Hardware Abstraction Module (HAM)

DELI clients may require low-level control of hardware
events (such as exceptions) to do their job efficiently. In
addition, we can make DELI itself more portable and resil-
ient to changes in the underlying hardware platform if we
adopt some form of abstraction from a specific platform.
Modern OSs use a similar functionality, where a low level
layer deals with all the platform dependent ways of coping
with hardware related features, such as enabling/ dis-
abling/dispatching interrupts, flushing the caches, and
managing the TLBs. In the context of DELI (especially
when it is below the OS), we need a similar piece of func-
tionality, which needs to be separated from the equivalent
OS layer. If we can extend or change the OS, then both the
DELI and the OS could share the same layer.

From the point of view of DELI clients, it is useful to
open up parts of this interface. For example, an emulator
needs to efficiently emulate the virtual memory (VM) sys-
tem of the original CPU, by mapping it onto the VM of the
target system. To do this, the client needs access to the
details of the hardware TLBs, needs to maintain a data
structure (similar to a page table) for the emulated system,
and needs to match it with the page table information of
the native system. Only then can it service the various
TLB-related events. This method has many disadvantages.
The hardware TLB may change from one implementation
to another, even within the same CPU family. Accessing
the TLB though the OS interface that maps pages may not
be expressive enough, for example for security reasons.
Even when we can do this, it requires control over the OS
to make the two VM systems properly overlap.

An alternative is to provide a ‘virtualized view’ of the
hardware for both the OS and the DELI clients so that they
can share the same representation. The HAM layer thus is
built around a configuration infrastructure that has both
static and dynamic components. The static configuration
includes:
 A description of the ‘fixed’ memory mappings between

address ranges. This could be used by a virtual machine
implementation to describe the relationship between the
original address in the emulated system and the ad-
dresses used to host that memory in the native world
(see Table 4 for an example).

 A description of globally defined hooks for various
events, such as exceptions and interrupts, that clients
might require, along with the requested action that
HAM has to take upon return from those hooks. Ac-
tions include skipping the excepting instruction, nulli-
fying the memory operation, and so on.
The last three fields in the static configuration entry for

a region (see Table 4) can be used to describe a region that
needs a ‘special’ treatment, meaning that HAM can be set
up to invoke a user defined hook whenever a memory ac-
cess hits that region. This simplifies the task of virtualiz-

ing a piece of memory-mapped hardware, or can also pro-
vide an equivalent functionality with a different piece of
hardware (e.g. a similar, but not completely compatible,
peripheral). In this way, an emulator can describe a mem-
ory-mapped peripheral or device as a collection of func-
tions to be invoked through those hooks. Internally, HAM
maps this into the relevant protection attributes for transla-
tion entries that are eventually loaded onto the hardware
TLB. Then, certain types of accesses can raise an excep-
tion that HAM intercepts to invoke the proper hook. In a
binary translator, this relieves the translated code from the
burden of guarding each memory access to determine
whether we have to treat it specially.

Table 4 - Example of HAM configuration entry. For example,
the entry {1, 0xA0000000, 0x4000000,
PREF_MMU_PAGE_SIZE, ACCESS_RIGHTS, NULL, NULL,

0, 0x20000000} defines a region of (normal) memory for
which HAM automatically and transparently handles all TLB
misses starting at virtual address space 0x4000000 and
mapped onto address 0xA0000000 with a size of 64MB in
virtual address space 1 (the emulated virtual space).

Entry Description

space_id

Identify this entry to be in a given virtual address
space. We can use this to make multiple virtual
address spaces coexist. HAM maps this into what
the actual hardware supports (e.g., ASIDs or
address space descriptors). It can be used to
make an OS share the underlying VM with an
emulator client, since they would be using differ-
ent virtual space identifiers, when the emulator
impersonates the emulated program.

start_addr Start logical address of this region

offset

Start physical (or logical in certain cases) address
of this region on the native system encoded as an
offset from the previous.

size Size of this region

page_size

Log2 of the page size to be used to map the re-
gion’s pages, used by HAM to guarantee the
correct behavior, as if the pages were of this size.
For efficiency HAM can eventually map pages
onto different sizes.

attributes Access rights and properties for this region

load_hook Client-defined hook to be invoked on reads from
this region (for ‘special’ regions)

write_hook Pointer to a client-defined hook to be invoked on
writes from this region (for ‘special’ regions)

inv_state

Determine what machine state needs to be in-
stalled before invoking the hooks. A client can use
this to guarantee that a hook doesn’t run in a
higher privilege than the code issuing the
load/store (for ‘special’ regions)

The rest of the HAM configuration is dynamic and it
mainly manages the HAM page translation tables (hash
tables augmented with information coming from the static
mappings for regions). HAM usually deals with low-level

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

events (like TLB misses) transparently, but it sometimes
has to invoke client-installed hooks.

The HAM interface is quite extensive and a complete
description is beyond the scope of this paper. The DELI’s
BLT uses part of HAM to manage hardware related needs,
and, at the same time, HAM relies on the DELI API for
some of his advanced functionality. For example, HAM
uses the API for the emission of temporary fragments to
materialize and execute transient trampolines, when cli-
ents require a specific exception behavior.

3. Using DELI as a client

The DELI provides two types of services to client pro-
grams. First, DELI’s caching and linking allows very easy
development of efficient emulators of completely different
ISAs and OSs. Second, DELI opens a new and very pow-
erful control point to client programs. Clients can observe
and potentially manipulate every single instruction of the
target program immediately before that instruction runs.
We find it useful to break down the many applications that
benefit from DELI into three basic classes.
Code manipulation: clients that want to adjust and mod-
ify natively compiled programs at run-time. Examples
include optimized software patching, code decompression
and code decryption.
Observation and control: clients that want to observe the
behavior of natively compiled programs at run-time and
possibly enforce policies. Examples include sandboxing,
dynamic virus detection, reporting program behavior, pro-
filing, and statistics gathering.
Emulation: clients that want to run an application that
was compiled for a different virtual machine, a different
ISA, or a different hardware configuration. Examples in-
clude ISA interpretation or emulation of virtual machine
environments, such as Java or .NET.

In the case of the first two classes, the manipulation and
observation are done by the client program as the code is
placed in DELI’s cache. Since code is always run out of
the cache, and nowhere else, these clients are guaranteed
to be the last to see the code. DELI is a new concept, so
not many applications have been written for it. In the rest
of this section, we only cover a few examples of each
category, to demonstrate the DELI’s capabilities that allow
for easy development of client programs.

3.1. Code Manipulation

Since DELI is the last piece of software that observes
an instruction right before it is executed, it can replace the
observed instruction with another sequence. All manipula-
tion clients rely on DELI being a control point in the exe-
cution; DELI caches and optimizes the adjusted code, so it
manages to keep the overhead to a minimum. Figure 2
shows the common scheme for code transformations: cli-

ents provide a manipulation routine through the
deli_install_callback() API call that DELI dy-
namically applies during fragment formation. The routine
transforms the code that is then emitted to the DELI code
cache for efficient execution or re-optimization.

In the following, we present two manipulation exam-
ples: dynamically patching code and dynamic code de-
compression (or decryption).

Original code image

Code Cache

Select Fragment

yes

no

 Miss

(Contains TransformedApplication)

DELI Control Layer

Manipulation Routine

Code Transformation

Installed
Manipulation

Routine

APIAPI

DELI’s transformation infrastructure

Cache
Lookup?

Figure 2 - Using DELI to dynamically manipulate code (e.g.,
for patching or decompression). The diagram expands the
“DELI transformation infrastructure” component of Figure 1
and shows how a client can install a manipulation routine
through the DELI API for code transformations.

Dynamically patching code
Suppose you have faulty or missing hardware in your

system—for example, your processor’s floating-point unit
is faulty, or your x86 processor has no MMX functional-
ity. Traditionally, solving such problems implied either
replacing the faulty (or missing) hardware, or rewriting
software so that it does not require the faulty or missing
functionality. Neither of these solutions is particularly
attractive. Replacing hardware is expensive and inconven-
ient. Traditional software solutions require rewriting, re-
compiling, or applying static code patches, involve per-
manent changes to the software, and can’t easily deal with
third party components.

DELI gives us the opportunity to patch software dy-
namically and temporarily, while the original software
remains untouched. DELI observes each instruction right
before it is executed, so it can detect which instructions
are affected by the missing hardware functionality, and
dynamically replace them with new code that does not
require it. The manipulation routine of Figure 2 for this
transformation involves maintaining a patch table, with a
patch descriptor for each different type of patch request.
Patch descriptors include an identifier of the missing
hardware and a code sequence that works around the issue.

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

Code decompression or decryption
Firmware memory amounts to a significant fraction of

the cost of an embedded system, so code compression [30]
is a commonly used technique to improve the efficiency of
program storage. In most schemes, a post-link software
utility compresses the code at compile time. In systems
with hardware decompression, a dedicated unit expands
the code during instruction cache refill, on a cache line-by-
line basis. Traditional software-based decompression
schemes handle large chunks of code at a granularity that
matches the operating system structures (usually at the
level of file systems or pages). Hardware schemes are in-
flexible and expensive, and traditional software schemes
carry a large performance overhead when we only need a
small fraction of the decompressed code.

DELI can help to avoid both problems, as we can use it
to decompress code fragments as they get executed, and
still achieve good performance by caching the most fre-
quently used code. Referring to Figure 2, in this case the
manipulation routine implements the decompression algo-
rithm: the transformed code is really the original program
code before compression. In this way, the DELI only de-
compresses and caches smaller portions of the application,
thereby reducing overhead and amount of dynamic de-
compression, and requiring less system memory.

Note that this solution also extends to other forms of
coarse-grain program transformation. For example, in se-
curity-aware domains, it is common to sign and encrypt
applications so that accesses to the application can be
trusted and controlled. Here, we can use exactly the same
scheme that we described for decompression, where we
substitute a decryption routine for the decompression rou-
tine, achieving exactly the same benefits: using the DELI
is cheaper and more flexible than a hardware solution, and
more efficient than a traditional software approach.

3.2. Program Observation

The fine-grain control that DELI provides is also useful
when we need to report program behavior, or enforce cer-
tain policies. Using a scheme similar to what we described
in section 3.1, a client can install an observation routine
through the API, cause DELI to examine the code at run
time, and only emit it to the cache if it respects the policy
to be enforced. This does not require transformations (be-
yond instrumentation), and the overhead is minimal.

Sandboxing
In a multiprogrammed environment, multiple applica-

tions share a given computer system. Execution “sand-
boxes” [5] are environments that support differentiated
services for the different applications and impose restric-
tions on resource usage. Resource restrictions can be
qualitative (e.g., permitting the application to access only
certain memory addresses, or certain portions of the file

system), and quantitative (e.g., limiting the CPU usage of
an application to 25%). Existing sandboxing approaches
include hardware solutions, such as virtual memory for
memory protection, OS kernel modifications, and inter-
ception of system calls.

With DELI, we can install an observation routine that
examines each code fragment before it is emitted into the
code cache. That routine verifies the legality of the in-
structions (e.g., checks that direct memory references ac-
cess only the memory range assigned to the application),
and instruments the code fragment to self-check other in-
structions that cannot be statically verified. Once the code
is modified and cached, it self-checks its legality during
execution without the need to interrupt the application.
Moreover, with profiling instrumentation [2] of the code
fragments before they are emitted into the code cache,
clients can also monitor and enforce quantitative resource
usage policies.

In hardware platforms with security support, DELI it-
self has to run in trusted mode (at a privilege level above
supervisor) to ensure the overall security of the system.

3.3. Emulation

With DELI in place, we can imagine building the soft-
ware infrastructure (and possibly efficient hardware) to
implement a “universal core” for embedded applications.
This system could pair emulation of an existing ISA with
natively compiled high performance kernels. For example,
we could build a VLIW engine and add an ARM software
emulation layer on top of that. This would enable users to
preserve their investment on existing ARM code and tools,
and gradually migrate to native VLIW code only the parts
that are more relevant for performance. The existence of
DELI (and possibly a set of DELI-aware hardware fea-
tures) ensures that the emulation overhead is kept to a
minimum. For developers, this means a gradual migration
path, performance scalability at a reduced engineering
cost, and vendor independence. In other words, it dimin-
ishes the impact of legacy code.

By using the DELI infrastructure, we are developing a
technology that includes emulation modules for legacy
operating systems, an interface to mix native and emulated
code, and a set of techniques for “system emulation” (i.e.,
to emulate differences in areas such as interrupt control
and virtual memory).

Code streaming
An interesting application of the DELI native-to-native

emulation capabilities (when emulated and target ISAs
coincide) deals with the situation in which parts of the
original code live in a remote location with respect to the
target machine. The DELI opens up an alternative model
for remote execution, that we call code streaming, where
the remote application is loaded on-demand, one fragment

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

at a time, based on its execution paths.
The code-streaming client simply instructs the DELI to

emit fragments in the code cache, and regains control
when execution encounters remote program locations. If
we again refer to Figure 2, the client manipulation routine
is here responsible for accessing the remote application,
and for keeping the correspondence between local and
remote program locations. The DELI caches the applica-
tion locally, so, unlike more traditional remote execution
models, it can tolerate an intermittent connection with the
server. What is special about code streaming is that appli-
cations do not need to be aware of its existence. DELI’s
transparent mode does not rely on the use of a specific
API and it fits well with legacy applications. It is also OS-
independent, does not require proprietary file systems, and
does not rely on a specific language (unlike Java or .NET).

4. Case Study: Emulating PocketPC

This section presents an application of the DELI to the
world of mobile multimedia devices. Mobile communica-
tion devices have grown to a level of maturity that allows
deployment of rich web and media-enabled applications,
thus demanding a significant increase in system complex-
ity and performance requirements. However, embedded
operating systems have consolidated to only a few com-
petitors, which are only going to support a restricted num-
ber of different ISAs. In this context, we can see emulation
as a potential solution to some of these barriers to innova-
tion, opening the way to new architectural features. We
can identify three main scenarios where efficient emula-
tion of an embedded ISA would be beneficial.
Emulated platform with native media engines. Emula-
tion enables developer to leverage legacy applications and
GUIs (such as PocketPC), while combining them with
high-performance media engines natively compiled to a
more powerful processor. This model requires an emu-
lated-to-native interface like the one DELI provides.
Native platform with emulated plug-ins. Even for en-
tirely new platforms (e.g., embedded Linux devices), there
is still a strong need to support legacy applications, in the
form of plug-ins (e.g., a media viewer). Similar considera-
tions apply Java or .NET environments for efficiency.
Incremental migration. For families of binary incom-
patible processors (e.g., many VLIW embedded offerings),
the problem of legacy code compatibility across different
members of the same family could be efficiently tackled
by the use of a lightweight dynamic translator. The DELI
provides the building blocks that can be used to build such
hybrid systems, so that we can guarantee a smooth migra-
tion between successive generations of processors.

All these scenarios require mixing emulated and native
code at different levels; DELI efficiently tackles all of
them, by exposing the desired level of granularity that best
meets application needs at the programmer’s level. For

example, Original Equipment Manufacturers (OEMs)
could use a coarse level of granularity to provide native
multimedia libraries integrated in the context of a standard
component of the emulated system (e.g., DirectX drivers
in PocketPC). Alternatively, application developers could
leverage the underlying capability of the native core by
providing their own native implementation of the media
kernels, still within an existing OS and development envi-
ronment. Finally, if we see the DELI as a way of provid-
ing an efficient virtual machine environment, this can
open up new opportunities to extend system functionality
with no changes to the OS.

4.1. The DELIverX prototype

DELIverX is the prototype system that we built to dem-
onstrate the feasibility of this approach and at the same
time to help us better understand the details of the DELI
programming interface. The DELIverX emulation system
is defined around a Hitachi SH3 interpreted emulator,
coupled with a just-in-time translator for an embedded
VLIW core, which we use as a native target. DELIverX
implements a platform emulator (i.e., ISA + system) that
can be used as a target for a Microsoft PocketPC operating
system compiled for the SH processor. The SH-3 [2] is a
simple load-store RISC processor with a 5-stage pipeline
that executes most basic instructions in one clock cycle.
The SH3 implements a 16-bit ISA but fetches two instruc-
tions in a single access. The target processor is the
Lx/ST210 4-wide VLIW embedded core jointly developed
by Hewlett-Packard and STMicroelectronics [13][14].

The system (Figure 3) comprises a ‘traditional’ inter-
preted emulator for an SH3 ISA, complemented by
enough system components (timers, serial ports, display,
etc.) to be able to support a (simple) configuration of the
WinCE kernel, after we wrote a hardware abstraction layer
for it. The other main component of the emulation system
is the SH to ST210 Just-In-Time compiler, which trans-
lates SH instructions into native ST210 instructions.

We designed the JIT to be transparent to the SH3 emu-
lator, so that we can turn it on or off. The emulator in-
vokes the JIT at every instruction fetch so that it can start,
grow or stop translations for a new region of code, or re-
lease control to an already existing translation in the DELI
code cache. At system bootstrap, the execution of emu-
lated SH instructions takes place in the interpreted emula-
tor. At the same time, the JIT produces new code frag-
ments of translations and hands them to the DELI, occa-
sionally releasing control to the few already translated
fragments. After the initial warm-up phase, the DELI code
cache is primed with the working set and most of the emu-
lation time of the SH instructions is spent in the cache.

Coupling the JIT with an interpreted emulator is not
mandatory (we could build a system based on the JIT
alone); however, it allows the JIT to make better decisions

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

when producing the translations. For example, the JIT can
grow code regions past branches if it knows the branch
outcomes at JIT time; conversely, it would be hard to ex-
ploit this information with a translate-and-execute ap-
proach. The presence of the interpreted emulator also en-
ables the JIT to ‘bail out’, so that it can make aggressive
assumptions when generating the translation and then fall
through to emulation for the few cases that fail.

SH Emulator

SH JIT

VM Run Time

DELI

SHx
machgen

JIT
machine

desc

VLIW
machgen

VLIW
machine

desc

DELI
optimizer

API

API

VLIW
TLB

manager

SH
Machine

desc

JIT
runtime

Exception
Interrupt
Manager

Hw &
Memory
Manager

VLIW
execution
manager

HAM

SH Virtual Machine

Figure 3 - Structure of DELIverX. It adds three components
to the DELI: interpreted emulator, JIT compiler and Virtual
Machine (VM) run time. The VM run-time, the interpreted
emulator and the JIT depend on the target being emulated.
The VM run-time leverages services from HAM to deliver a
faithfully emulated machine context on exceptions/interrupts,
at the same time providing a compatible VM system. The in-
terpreted emulator and the JIT base their operations on the
assumptions made by the VM run-time (the dotted arrows).
The JIT also relies on some of the HAM capabilities to sim-
plify the translations emitted through the DELI interface.

The JIT generates code for a run-time environment

around which we built the SH virtual machine. In this
world, the most difficult task is to efficiently handle a
faithful emulation of the Virtual Memory (VM) system
mapped onto the native VM. In general, the larger the dis-
tance between the VM parameters of the two systems, the
greater the difficulties associated with it. In this particular
case, we designed the Memory Management Unit (MMU)
of the VLIW with a large degree of flexibility, exactly
with the goal of simplifying the emulation task.

4.2. Performance Analysis

In this section, we report some experimental results to
assess the performance of the DELIverX system. As we
mentioned in section 4.1, our emulated processor is a Hi-
tachi SH3 [19], and our target is a 4-wide VLIW embed-
ded processor. Table 5 lists the most significant parame-

ters of the two systems.
The ST210 does not currently include MMU support,

so for our experiments we use a cycle-accurate instruction
set simulator (ISS, validated against the hardware) aug-
mented with virtual memory support, assuming a TLB
model as described in Table 5. The ISS models the CPU
core and the memory system, including caches, bus trans-
actions and main memory timing. For the SH3, we use an
HP Jornada 548 palmtop running PocketPC and we
measure wall-clock time average on multiple runs.

Table 5 - Parameters of the emulated and native systems

 Emulated
Processor

Native
Processor

CPU
Hitachi SuperH SH3,
133 MHz

Lx/ST210, 4-issue
VLIW, 250MHz

L1
Cache

Unified 8KB 4-way
I$+D$

32KB direct mapped
I$, 32 KB 4-way D$

MMU
4-entry fully associative
I-TLB; 32-entry, 4-way
unified L2

32-entry, 2-way I-
TLB; 128-entry, 16-
way unified L2

Memory 32MB of DRAM 32MB of DRAM

Note that the ST210 has significantly higher perform-

ance than the SH3. While a comparison of the two might
seem unfair, we have to keep in mind that supporting leg-
acy code is a burden that is likely to slow down the proc-
essor evolution curve. To preserve binary compatibility in
hardware, we have to resort to the adoption of a supersca-
lar microarchitecture, which has severe consequences on
complexity, cost and power efficiency. For example, while
the SH4 (SH3 successor) is indeed a 2-way in-order super-
scalar, the designers of the SH5 (SH4 successor) decided
against widening ILP, in favor of micro-SIMD extensions
(a binary incompatible feature).

8 .98
7.65

12.50
10.49

11.92
6.66

3.22
3.22

10.71
2.12

4.70
4.96

5.68

0 1 2 3 4 5 6 7 8 9 10 11 12 13

b zip2
mcf

a dpcmc
ad pcm

cjp eg
djp eg
lam e
m ad
sha

dh rysto
b itcou nt

crc32
qsort

Figure 4 - Performance of the ST210 vs. the SH3 (SH3 =
1.0). The average is 7.02. The accumulated runtime of all
benchmarks on the SH3 is about 65s (5s average); qsort is the
shortest program (0.71s) and lame the longest (15.6s).

The benchmark suite is a combination of micro-kernels

and real applications taken from the MiBench suite [18],
dhrystone and a few of the SPEC-2000 (bzip2 and mcf).
We include audio (adpcm, lame, mad), and imaging (jpeg)

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

algorithms to approximate a representative workload for a
next generation mobile computing appliance. We compile
each benchmark for WinCE using the Microsoft Embed-
ded Visual C++ compiler (using the “maximize speed”
configuration), and we run it in isolation within the Pock-
etPC environment. DELIverX emulates exactly the same
system, including the PocketPC environment. The stand-
alone SH3 simulator (no JIT or DELI) on a Pentium
III/800 runs 20x—30x times slower than the SH3.

To understand the raw speed difference between the
SH3 and the ST210, Figure 4 shows that—on average—
the ST210 is about 7 times faster than the SH3. Note that
the ST210 runs without OS overhead, so this is an upper
bound of what a real ST210-system could reach.

In Figure 5, we show the results of DELIverX running
on the ST210 emulating the SH3. As we can see, we often
achieve near-native SH3 performance (the average is 99%
of native performance), and in some cases, we even ex-
ceed it (SHA is 83% faster emulated than on the SH3).
The chart also shows the substantial benefits that DELI’s
dynamic code optimizer achieves (on average, a 61% im-
provement over non-optimized code).

1 .25
1. 32

0 .34

1. 83

0.7 0

1.28

0.65

0 .83

0 .74

0.920.880.91

1.33

0.0

0.5

1.0

1.5

2.0

bz
ip2

m
cf

adpc
m

c

adpcm
d

cjpeg

d jp
eg

la
m

e
m

ad
sh

a

dhry
st

one

bi
tc

oun t

cr
c3

2
qs

or
t

DE LI/opt 500

DE LI/no opt

Figure 5 – DELIverX performance. The y-axis shows relative
speedup (>1.0) or slowdown (<1.0) factors vs. the SH3
(y=1.0). The bars represent emulated code on the ST210
VLIW without optimization (DELI/no opt) and with optimi-
zation triggered at 500 executions (DELI/opt 500). The aver-
age is 0.62 without optimization and 0.99 with optimization.

Mixing native and emulated code
The last set of evaluations that we present deals with

mixing native and emulated code. We consider the case
where we introduce a natively compiled function within a
fully emulated platform. In this example, we use DE-
LIverX running PocketPC to invoke a cryptography kernel
that executes the Secure Hashing Algorithm (SHA) to
produce a key to be used for a secure transaction. SHA is a
good example of code that benefits from instruction-level
parallelism, and—as such—is a good target for a VLIW
engine. In Figure 6 we can see the results of the experi-
ment: by mixing native and emulated code we can get to
about 50% of the speed of a native-only VLIW execution,

and still more than five times faster than running the code
on the SH3. While improvements in SH processor design
are likely to close this gap, the advantages of the DELI
approach are obvious in this particular example. In a more
complex application, the gain would obviously depend on
the relative importance of the natively compiled code.

This example illustrates one of the major benefits of us-
ing DELI: in a practical environment it enables developers
to scale performance by selectively porting the compute-
intensive kernels of applications, without giving up the
benefits of a legacy operating system and GUI. In a rich-
media world, performance is likely to be dominated by
kernels (like SHA) that we can easily encapsulate to get
the benefits of a VLIW engine. In this environment, the
effect of a modest slowdown for GUI emulation is likely
to disappear in light of the performance improvements in
the computational kernels.

5.36

1.00

1.83

0.70

10.71

0 1 2 3 4 5 6 7 8 9 10 11

VLIW
Native

Mix Emul
Native

SH3
Native

SH3 Emul
op t 500

SH3 Emul
no opt

Figure 6 - Example of mixing native and emulated code for
SHA cryptography (running for 4.18s). The values on the x-
axis represent speedup factors vs. the base case of a native
SH3 execution (SH3 = 1.0). The “VLIW native” case runs
code in isolation (without OS); all others include the Pock-
etPC overhead. The “Mix” case runs emulated PocketPC,
with the SHA routine itself compiled natively for the ST210.

5. Summary and Conclusions

The DELI is a new run-time control point that lets its
clients manipulate unmodified binaries in novel ways. It
also allows us to build efficient emulators more easily and
greatly enhance their functionality. The DELI unifies
many techniques that make persistent changes at run time,
but is not itself an emulator. Rather, it is a way of giving
clients (including emulators) access to a caching and link-
ing mechanism that operates at the lowest software level.

This paper describes the DELI, how it works, and what
its interface looks like. It also presents some of the clients
that DELI could support, including code manipulation,
observation and emulation. The DELIverX Emulation
prototype demonstrates the feasibility of DELI, and at the
same time it helps us better understand the details of the
DELI programming interface. DELIverX often achieves
native performance, and the dynamic code optimizer adds
substantial benefits (on average, a 61% improvement).
Finally, we show that we can transparently mix native and

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

emulated code, yielding tremendous performance in-
creases, without having to port the entire system, nor deal
with a clumsy accelerator interface. We find these results
impressive enough to report on today, but we believe we
have a lot of headroom, and will achieve much better re-
sults as we continue our development.

The DELI is a new facility. While it would be easy to
misunderstand it to be yet another caching-and-linking
rewriting system, it is not that at all. It is an interface to the
underlying mechanisms of such systems, exported for cli-
ent use. Given the idea of exporting such an interface, one
could do many new things. We have done a significant
amount of development on it, have learned a lot, have
convinced ourselves that it has many practical applica-
tions, and have been able to demonstrate some of its vast
power. That said, we believe we have only scratched the
surface of what can be done with it. At HP Labs Cam-
bridge, we are continuing to build and refine the DELI
infrastructure for different platforms and clients, the DE-
LIverX prototype, and we are continuing to understand
new ways in which we can use this new control layer.

Acknowledgements
Vasanth Bala was a significant participant in the

original formulation of DELI.

References

[1] V. Bala, E. Duesterwald, S. Banerjia. Dynamo: a transpar-
ent dynamic optimization system. In SIGPLAN Conference
on Prog. Lang. Design and Implementation, p. 1-12, 2000.

[2] T. Ball and J.R. Larus. Efficient path profiling. In Proc. of
the 29th Int. Symp. on Microarchitecture, Paris 1996.

[3] T.Baji, N. Kawashimo, I. Kawasaki, and K. Noguchi. Su-
perH and SuperH-DSP Microprocessors for the Mobile
Computing Age. Hitachi Review, Vol. 46 No.1. Feb 1997.

[4] B. Buck, and J.K. Hollingsworth. An API for runtime code
patching. The International Journal of High Performance-
Computing Applications, Vol. 14, no. 4, 2000, pp. 317-329.

[5] F. Chang, A. Itzkovitz, and V. Karamcheti. User-level Re-
source-Constrained Sandboxing. 4th USENIX Windows
Systems Symposium, August 2000.

[6] W. Chen, S. Lerner, R. Chaiken, and D. Gillies. Mojo: A
dynamic optimization system. In Proc. 3rd Workshop on
Feedback-Directed and Dynamic Optimization, Dec. 2000.

[7] R.F. Cmelik and D. Keppel. Shade: a fast instruction set
simulator for execution profiling. TR UWCSE-93-06-06,
Dept. Comp. Science and Eng., Univ. Washington. 1993

[8] D. Deaver, R. Gorton, and N. Rubin. Wiggins/Redstone: An
on-line program specializer. In Hot Chips 11, Palo Alto,
CA, Aug. 1999.

[9] D. Ditzel. Transmeta’s Crusoe: Cool chips for mobile com-
puting. In Hot Chips 12: Stanford University. Aug. 2000.

[10] "DynamoRIO" http://www.cag.lcs.mit.edu/dynamorio/
[11] K. Ebcioglu and E. Altman. DAISY: Dynamic compilation

for 100% architectural compatibility. In Proc. of the 24th
Int. Symp. on Computer Architecture. Pages 26-37, 1997.

[12] K. Ebcioglu, E.R. Altman, E. Hokenek. A JAVA ILP Ma-

chine Based on Fast Dynamic Compilation. IEEE
MASCOTS International Workshop on Security and Effi-
ciency Aspects of Java. Eilat, Israel, January 9-10, 1997.

[13] P. Faraboschi, G. Brown., J. Fisher., G. Desoli, F. Home-
wood. Lx: A Technology Platform for Customizable VLIW
Embedded Processing. Proc. 27th International Symposium
on Computer Architecture (ISCA27). Vancouver, June 2000

[14] P. Faraboschi, F. Homewood, ST200: A VLIW Architecture
for Media-Oriented Applications, Microprocessor Forum
2000, October 9-13 2000, San Jose, CA

[15] J. Fisher. Trace scheduling: a technique for global mi-
crocode compaction. IEEE Trans. on Computers, vol. 30,
no. 9, 1981, pp. 478-490.

[16] J. Fisher. Walk-time techniques: Catalyst for architectural
change. Computer, 30(9):40--42, September 1997.

[17] D.H. Friendly, S.J. Patel, Y.N. Patt. Putting the fill unit to
work: dynamnic optimizations for trace cache microproces-
sors. In Proc. of the 31st Symp. on Microarchitecture, Dal-
las, 1998.

[18] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T.
Mudge and R.B. Brown. MiBench: A Free, Commercially
Representative Embedded Benchmark Suite. 4th Workshop
on Workload Characterization, Dec. 2001, Austin, TX

[19] H. Maejima, M. Kainaga, K. Uchiyama. Design and archi-
tecture for low-power/high-speed RISC microprocessor:
SuperH. IEICE Trans. on Electronics. Vol. E80-C, No.12.
Dec. 1997.

[20] A. Klaiber. The Technology Behind Crusoe Processors. ©
2000 Transmeta Corp. Available as: www.transmeta.com/
pdf/white_papers/paper_aklaiber_19jan00.pdf

[21] T. Lindholm, Frank Yellin. The Java Virtual Machine
Specification, Second Edition.

[22] C.M Merten, A. Trick, C.N. George, J.C. Gyllenhaal, and
W.-M. Hwu. A hardware-driven profiling scheme for identi-
fying program hot spots to support runtime optimization. In
Proc. of the 26th Int. Symp. on Computer Architecture. At-
lanta, Georgia. 1999.

[23] Microsoft Corp. .NET specifications. Available at
http://www.microsoft.com/net/

[24] A. Robinson. Why Dynamic Translation? © 2001 Transitive
Technologies. Available as: http://www.transitives.com/
downloads/Why Dynamic Translation1.pdf

[25] E. Rotenberg, S. Bennett, and J.E. Smith. Trace cache: a
low latency approach to high bandwidth instruction fetch-
ing. In Proc. of the 29th Int. Symp. on Microarchitecture,
Paris, 1996.

[26] K. Scott, J. Davidson. Strata: a software dynamic translation
infrastructure. Proc. Workshop on Binary Translation, 2000.

[27] A. Srivastava H. Edwards, H. Vo. Vulcan: Binary transla-
tion in a distributed environment. Technical Report MSR-
TR-2001-50, Microsoft Research, 2001.

[28] D. Ung, C. Cifuentes. Machine-adaptable dynamic binary
translation. Proc. ACM Workshop on Dynamic Optimiza-
tion, ACM SIGPLAN Notices, vol 35, n.7, 2000, pp. 41-51.

[29] E. Witchel, and M. Rosenblum, "Embra: fast and flexible
machine simulation", Proc. ACM SIGMETRICS Int. Conf.
on Measurement and Modeling of Computer Systems, 1996,
pp. 68-79

[30] A. Wolfe and A. Chanin, Executing Compressed Programs
on an Embedded RISC Architecture, Proc. 25th Int. Symp.
on Microarchitecture, pp. 81-91, Portland, OR, Dec. 1992.

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

