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Abstract 

 
The Dynamic Execution Layer Interface (DELI) offers 

the following unique capability: it provides fine-grain con-
trol over the execution of programs, by allowing its clients 
to observe and optionally manipulate every single instruc-
tion—at run time—just before it runs. DELI accomplishes 
this by opening up an interface to the layer between the 
execution of software and hardware. To avoid the slow-
down, DELI caches a private copy of the executed code 
and always runs out of its own private cache. 

In addition to giving powerful control to clients, DELI 
opens up caching and linking to ordinary emulators and 
just-in-time compilers, which then get the reuse benefits of 
the same mechanism. For example, emulators themselves 
can also use other clients, to mix emulation with already 
existing services, native code, and other emulators. 

This paper describes the basic aspects of DELI, includ-
ing the underlying caching and linking mechanism, the 
Hardware Abstraction Mechanism (HAM), the Binary-
Level Translation (BLT) infrastructure, and the Applica-
tion Programming Interface (API) exposed to the clients. 
We also cover some of the services that clients could offer 
through the DELI, such as ISA emulation, software patch-
ing, and sandboxing. Finally, we consider a case study of 
emulation in detail: the emulation of a PocketPC system 
on the Lx/ST210 embedded VLIW processor. In this case, 
DELI enables us to achieve near-native performance, and 
to mix-and-match native and emulated code. 

1. Introduction 

This paper is about a new capability in computing sys-
tems, one that is subtle, and one that we believe can have a 
large effect on computing. We are all familiar with the 
method of loading and executing programs, where most of 
the traditional program transformations terminate before 
the program binary runs. What has changed in the last 
decade is the steady growth of techniques that continue 
manipulating code while the program is running, from 
dynamic loaders to Just-In-Time compilers. Some of these 

techniques share a fundamental property: they observe—
and potentially transform—instructions of the target pro-
gram immediately before they run.  

System utilities that operate on programs as their target 
datasets have many different motivations. Sometimes, the 
semantics of the target program are not meant to directly 
address the hardware on which it runs, and we use compil-
ers, interpreters and emulators to translate the target pro-
gram and perhaps initiate its execution. Linkers and load-
ers process the target program in order for it to run cor-
rectly. Some tools check a target program for viruses or 
other properties, while others, such as profilers, measure 
performance-related properties of the target. 
Compile time vs. run time. Some programs process a 
target binary before execution, and then get out of the 
way, so that the target program can run. We often say that 
these transformations happen at compile time (or load 
time). Other approaches operate on a binary while it is 
running, and we sometimes say they operate at run time. 
Compilers, unsurprisingly, are examples of the first type, 
as are most virus checkers. Classical emulators, which 
fetch each instruction of the target, translate it, and then 
initiate execution, are examples of the second. Superscalar 
control units are another example of run-time transforma-
tion, as they schedule instructions just before they run. 
Persistent vs. transient changes1. A similar consideration 
has to do with whether changes to the same part of the 
program have a long lifetime, or whether their effect only 
lasts briefly. For example, compile time techniques oper-
ate in advance, we think of them as making a single 
change to the program, and we call them persistent. Most 
run time techniques, however, change the same parts of 
the program repeatedly, and we thus refer to these as being 
transient. Classical emulators and superscalar hardware 
both touch every single instruction repeatedly, immedi-
ately before its execution, and the result of their transfor-
mation is transient in this sense. 
Persistent changes at run time. It might be fair to refer to 

                                                           
1 Many would refer to this distinction as static vs. dynamic. Un-
fortunately, dynamic is also a synonym for run-time. To avoid 
confusion, we adopt persistent and transient. 
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the actions of a dynamic loader as persistent, since the 
effect of the changes is repeatedly used. Much more im-
portant is a technique that emulators widely apply: cach-
ing of translated code. To avoid repeating the translation 
of the same piece of code, emulators relocate chunks of 
translated code into a private cache. As long as execution 
stays in the cache, this avoids both the cost of the transla-
tion and the cost of invoking the emulator. When done 
well, in our experience it yields savings up to 100x. We 
normally would think of this technique as being persistent, 
but the work is being done at run time2. In some sense, this 
type of mechanism combines the advantages of compile 
time and run time. We can amortize work over a long 
time, yet we take advantage of the near-perfect knowledge 
available at run time. With today’s late-binding coding 
style, this advantage is becoming ever more important. 

Table 1 - Although we usually identify run time execution 
with dynamic (transient) changes, it is useful to separate the 
concepts of what is done at run time vs. compile time and 
what is used once or used repeatedly. 

 Compile Time Run Time 
Persistent Changes  

made once,  
used many times 

Compilers 
Dynamic 
loaders  

(and DELI) 
Transient Changes 
 made many times,  

used once 

[Doesn’t make 
sense] 

Superscalar 
hardware 

1.1. Effect of a new control point 

Efficient emulation already implies a lot of power: even 
though code was produced for a stipulated instruction-set 
architecture, code still runs correctly despite ISA changes. 
Now imagine a much more flexible capability as follows. 
 A system tool that gives clients ultimate fine-grain con-

trol over programs running on the system by allowing 
the client to observe and optionally manipulate every 
single instruction in the target—at run time. 

 This system is guaranteed to be the last piece of soft-
ware to touch an instruction (code runs out of a cache, 
and the system observes and potentially manipulates 
the code before it is placed there). 

 The system accomplishes this by opening up an inter-
face to the workings of a native-to-native binary emula-
tor, which uses caching and linking to stay close to na-
tive performance. 
With a capability like this, it is possible to have a view 

of object-code compatibility and many other issues which, 
together, can dramatically change some of our assump-
tions about computing. Just as superscalar hardware makes 
transient rearrangements of code at run time to match it to 
ILP hardware, software can make persistent code changes 
at run time to match the object code to the hardware that is 
                                                           
2 This has been referred to elsewhere as Walk Time Techniques 
[16]: you’re moving, but you’re not in a frenzy. 

actually present when the code runs. This facility could 
free up the microarchitect in many ways, raise the level of 
processor compatibility above the hardware level, facili-
tate software migration, and allow us to design hardware 
that does not have to pay a price for compatibility every 
single execution cycle. While many emulation systems 
offer the same freedom, DELI does so in a way that is 
flexible, easy to use with multiple versions of the hard-
ware, and not requiring large re-implementation efforts. It 
also enables us to examine and manipulate code in many 
other ways, in the perfect light of run time, but with the 
cost of the necessary analysis and transformations amor-
tized over the full period of the persistent use of the result. 

1.2. Related work 

The DELI provides a uniform infrastructure for build-
ing client applications that manipulate or observe running 
programs. An important example of this type of applica-
tion is emulation. Advanced emulation systems use vary-
ing degrees of code caching and optimization ranging 
from caching unoptimized individual translated code 
blocks [7] to sophisticated dynamic binary translation sys-
tems [9][11][24][26][28]. Examples include the Daisy 
binary translation system [11], Transmeta’s Code Morph-
ing software for the Crusoe processor [9] and Transitive’s 
Dynamite Software [24]. These systems provide a com-
plete software layer for dynamic binary translation be-
tween different ISAs, where the mechanisms for code 
caching, linking and optimization are an integral part of 
the overall system. In contrast, the DELI explicitly isolates 
the code cache functionality in a separate software layer.  

The DELI is not an emulation system itself: it encapsu-
lates the common code caching and linking functionality, 
which can then be leveraged across a number of different 
emulation systems. The DELI shares the capabilities for 
dynamic code optimization with binary translation sys-
tems. However, while in binary translation systems, opti-
mization is tightly integrated, the DELI offers it as a ser-
vice. Thus, it frees the emulation system developers form 
designing and implementing target-specific optimizations.  

 We view dynamic optimizers [1][6][8][25] as native-
to-native binary translation systems, where performance 
improvement is the sole desired effect of translation. 
Mechanisms for dynamic hot spot detection [22] and dy-
namic optimization [17] have also been implemented in 
hardware. As in dynamic optimizers, the DELI may em-
ploy code optimization transparently to accelerate native 
binaries. However, the DELI goes beyond that by specifi-
cally opening up the dynamic optimization functionality as 
a service to client applications. Under specific instructions 
from the client, the DELI enables dynamic code optimiza-
tions that are beyond the reach of a purely transparent dy-
namic optimizer, whose code knowledge is limited to the 
binary text. 
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The Trace Cache [17][25] is a hardware approach to 
optimize the memory bandwidth of running programs. 
Unlike the DELI, hardware mechanisms are not easily 
extensible and are completely hidden from application and 
system software. 

Java Virtual Machines (JVM) with Just-In-Time (JIT) 
Compilation [21] or the Common Language Runtime in 
the Microsoft’s .NET environment [23] are advanced run-
time systems for executing portable intermediate code 
(i.e., Java Bytecode or Microsoft Intermediate Language). 
These higher-level emulation systems use dynamic cach-
ing of translations (a.k.a. JIT compilation) for perform-
ance. A JVM (or Common Language Runtime) provides a 
similar level of control over the execution of the interme-
diate code as the DELI achieves for the execution of bi-
nary code. In contrast, the DELI is language independent, 
does not require a special code format and can therefore 
even handle legacy code. 

Runtime interfaces have been developed for specific 
runtime code modification tasks. The DynInst API [4] and 
the Vulcan system [27] can be used to insert instrumenta-
tion code into a running program. DynamoRIO [10] (based 
on Dynamo [1], which is also a DELI ancestor) is a dy-
namic optimization system that exports an interface to 
implement arbitrary code transformations while the pro-
gram executes. Like the DELI, these systems export an 
API to higher-level application clients. However, unlike 
DELI, these systems are designed for and limited to a spe-
cific kind of native-to-native dynamic code modification 

Finally, Debugger APIs, though their goals are very 
different, are similar to the DELI in that they open up a 
well-defined interface to the operation of programs at this 
same low level. As with the DELI, programs (debuggers) 
use this interface to supply services that probe the running 
program. Unlike the DELI, Debugger APIs are written 
with one narrow purpose in mind, and don’t offer access 
to the low-level operation of programs for varied use. For 
example, a debugger is normally a separate process, not 
concerned with the performance of the debugged program. 

2. Overview of the DELI System 

The DELI is a software layer that operates between ap-
plication software and the hardware platform as depicted 
in Figure 1. Depending on the desired functionality, the 
DELI layer can be inserted underneath or above the oper-
ating system. For example, if system code should execute 
under DELI control, the DELI would be inserted under-
neath the operating system. 

Despite its novelty, the DELI is an industrial-quality 
tool. It is robust enough to support complex operating sys-
tems (like WindowsCE), and can deal with all the nui-
sances of real-world systems, such as system calls and 
self-modifying code. 

To understand the role of the DELI with respect to its 

clients, it is helpful to consider an analogy with operating 
systems. The DELI is to its client application what virtual 
memory is to an ordinary application. Strictly speaking, 
building an application does not require virtual memory or 
other operating systems support, and in some deeply em-
bedded domains applications often embody significant 
portions of the operating system functionality. However, 
the presence of an underlying operating system greatly 
simplifies application development. Similarly, the pres-
ence of the DELI can greatly facilitates the construction of 
dynamic code transformation functionalities in client ap-
plications. 

The 
DELI 

  
  

Code Caches 
 

Configuration & Control Layer 

Transparent Injector 
 

Caching & Linking Module 
 

Application Programming Interface (API) 

Application/System Software 

Export 
Intermediate 

Representation 

Hardware Abstraction Module (HAM) 

… 

Transformation 
Infrastructure 
 

Binary Level Translation (BLT) 
 

Hardware Platform 
 

Figure 1 - An overview of the DELI system 
 

As shown in Figure 1, the DELI layer includes three 
main components: the Binary Level Translation (BLT) 
layer, the Hardware Abstraction Module (HAM), and the 
Application Programming Interface (DELI API). The 
BLT layer provides the core code caching and linking 
functionality, and it includes several code caches and basic 
infrastructure elements for binary code transformation, 
such as optimization and instrumentation. HAM provides 
virtualization of the underlying hardware. The DELI API 
makes the functionality accessible to client applications. 
We will discuss the role and functionality of each compo-
nent in detail in the following sections. 

2.1. The DELI API 

Through its API, the DELI provides basic code caching 
and linking service, as well as the necessary infrastructure 
to support dynamic code transformation to the running 
client applications. To illustrate the DELI API, consider 
the following scenario: a client emulation system that is 
taking advantage of the DELI to cache and link transla-
tions of the emulated code. To avoid repeated emulation of 
the same code sequence, the emulation system produces a 
code fragment that contains a translation of the code se-
quence. The emulation system uses the DELI to emit the 
fragment for caching and linking via the API function:   

deli_emit_fragment (tag, start, end, 
                    flags, user_data) 
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The next time the emulation system is about to emulate the 
code just translated, it can instruct the DELI to execute the 
fragment with:  

deli_exec_fragment(tag, context)  
Internally, the DELI directly interconnects all emitted 
fragment code whenever possible. Thus, invoking 
deli_exec_fragment() may actually result in the exe-
cution of a sequence of fragments until we encounter a 
fragment exit that is not connected, in which case an exit 
tag will be returned to the client. Table 2 shows a descrip-
tion of the most important functions of the DELI API. 

Besides implementing the API, the DELI is also capa-
ble of acting in a transparent mode with respect to the cli-
ent application. In this mode, the DELI transparently takes 
control over the running client application, such that it 
operates like a native-to-native caching emulator similar to 
the HP Labs Dynamo dynamic optimizer [1]. The DELI 
intercepts the running applications and copies every piece 
of code that is about to execute into its code cache, so that 
execution only takes place out of the code cache. When 
placing code into the code cache, the DELI has the oppor-
tunity to optimize it, as in the Dynamo system. However, 

unlike Dynamo, the DELI can be instructed through the 
API to perform other code transformation or observation 
tasks beyond optimization (such as instrumentation or 
insertion of safety checks). An application client can ex-
plicitly turn on and off the transparent mode by invoking 
deli_start() and deli_stop(). In addition, the DELI 
is equipped with a transparent injector module; if config-
ured correspondingly, the DELI automatically injects itself 
and takes control over the application. Automatic injection 
is useful for implementing code-caching services for ap-
plications that are not DELI-aware. 

2.2. Binary Level Translation (BLT) 

The BLT layer is the core component of the DELI, re-
sponsible for implementing the DELI API. As shown in 
Figure 1, the BLT layer contains and manages a set of 
code caches. It also provides the basic infrastructure for 
code transformations. DELI obviously introduces over-
head, and the key to amortizing it is to ensure that the ap-
plication code runs efficiently inside the code caches. The 
DELI’s primary means for delivering code cache perform-

 Table 2 - The DELI core API 
DELI API Function Description 

void deli_init(); Initialize the DELI 

void deli_emit_fragment(tag, 
start, end, flags, user_data); 

Emit a code fragment in the DELI code cache. Arguments include a client-level tag identifier, 
the location of the translation (start and end address), flags and user_data. The flags specify 
attributes of the emitted fragment, such as the optimization level to apply, or whether the frag-
ment is instrumented for profiling. 

void deli_exec_fragment(tag, 
context); 

Start executing client code from the location identified by tag with the given machine context. 
Arguments include the fragment’s tag identifier and a machine context that the client must load 
before executing the fragment 

deli_handle 
deli_lookup_fragment(tag); 

Return a DELI internal handle for the fragment identified with tag, if it currently resides in the 
cache 

void deli_invalidate_fragment( 
handle); Invalidate the fragments identified with the DELI internal handle. 

void deli_install_callback( 
deli_event, callback); 

Register a client-level callback function to be invoked upon a specific DELI event, such as 
fragment emission, cache exit, profile counter overflow, or out-of-space code cache condition. 
We can use the callback mechanism to implement a variety of tasks, such as enforcing client-
level code assertion, controlling code cache flushes, or triggering optimization and reformation 
of fragment code once it becomes hot (when the profile count exceeds a threshold).  

void deli_enum_fragment( 
callback); 

Apply a client-level callback function to each fragment currently residing in the cache. Frag-
ment enumeration is useful, for example, to enforce specific checks or instrumentation code on 
all fragments.  

cache_object_id 
deli_setup_cache(cache_obj_desc,  
  flags, user_data); 

Create a code cache object within DELI with given attributes (size, priority, policies) and prop-
erly links it in the DELI code cache stack. 

void deli_code_cache_flush( 
cache_obj_id, flags, timeout); Initiate a DELI code cache flush on the given code cache, with a given timeout. 

int deli_gc(cache_object_id, 
flags, timeout); Initiate on-demand garbage collection on a given code cache, with a given timeout 

void deli_start(); Start DELI “transparent” mode, where DELI takes control of the running program 
void deli_stop(); Stop DELI “transparent” mode 
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ance are fragment linking and dynamic optimization. 

Linking Fragments 
Linking avoids unnecessary code cache exits by directly 
interconnecting the fragments of code, and it requires 
matching the fragments’ exit and entry tags. Recall that 
fragment tags are created by the client when emitting code 
through the API: DELI assigns each fragment a unique 
entry tag and marks each fragment exit with a correspond-
ing exit tag. Upon fragment emission, the DELI inspects 
each fragment’s exit tag to directly interconnect it to a 
corresponding fragment entry. If no such entry can be 
found, DELI temporarily redirects the fragment exit to a 
special trampoline code. The trampoline causes execution 
to exit the code cache and to eventually return to the client 
with the missing exit tag. 

The above strategy takes care of creating a fragment’s 
outgoing links. To establish incoming links, the DELI uses 
a deferred strategy. Initially, a fragment is entered into the 
code cache without creating direct incoming connections. 
At each code cache exit a test is made to determine 
whether a fragment for the exiting target tag has been ma-
terialized in the meanwhile. If so, a direct link is estab-
lished, and execution continues in the code cache instead 
of returning to the client. 

The Transformation Infrastructure 
An important feature of DELI’s BLT layer is the capabil-
ity to dynamically optimize the emitted code. The BLT 
layer provides a complete dynamic optimization infra-
structure to activate runtime code optimization, either ex-
plicitly through the API, or autonomously by setting the 
appropriate optimization policy. 

The core of DELI’s transformation infrastructure is the 
DELI Intermediate Representation (DELIR). DELIR is a 
low-level intermediate representation that maintains a 
close mapping to the underlying machine representation 
while providing sufficient abstraction for permitting code 
motion and code relocation. DELIR serves two purposes: 
to internally enable the transformation of fragment code, 
and to facilitate the construction of code fragments in the 
client. For the latter, DELIR is exported to the client 
through an extension of the DELI API. In addition to emit-
ting a fragment in machine code representation, the client 
can construct a DELIR fragment and pass it to DELI for 
code emission. Table 3 shows a sample of the DELIR 
functionalities. 

By instructing the DELI through the API, we can apply 
optimizations to a fragment either the first time the frag-
ment is emitted, or when it has become “hot” in the code 
cache. DELI considers a fragment “hot” when it exceeds 
an execution threshold that clients can set through the 
DELI API (default is 500 executions). When a fragment 
exceeds the threshold in the cache, the DELI decodes the 
fragment code to produce a DELIR fragment. DELI then 
passes the DELIR fragment to the internal lightweight 

runtime optimizer and scheduler. Depending on the chosen 
optimization level, the runtime optimizer performs up to 
two passes over the code: a forward and a backward pass. 
During each pass, it collects data flow information on the 
fly as the pass continues either forward or backward. The 
particular kind of optimizations and the particular schedul-
ing algorithm used depend upon the underlying machine 
characteristics. Our current prototype, detailed in Section 
4.1, targets an embedded VLIW architecture, so the corre-
sponding set of optimizations that we currently employ in 
DELI is targeted towards increasing ILP: copy propaga-
tion, constant propagation, dead code elimination and 
strength reduction. The complexity of the optimizations is 
tunable by a peephole window. The performance benefits 
of these optimizations are primarily in improved schedul-
ing quality. 

 

Table 3 - The DELIR API 
DELIR API  

Function 
Description 

fragment* 
delir_create_frag( 
int id, unsigned 
flags); 

Create a DELIR fragment, where id 
serves as a fragment identifier and the 
flags are used to specify various frag-
ment properties. The function returns 
a handle to the created fragment. 

void 
delir_append_inst( 
fragment 
*frag_handle, inst 
*inst_handle); 

Append an instruction (specified by 
the handle inst_hande) to the DELIR 
fragment specified by the handle 
frag_handle. 

inst* 
delir_make_opcode( 
int opcode, 
unsigned *arglist, 
unsigned flags); 

Create a specific DELIR instruction 
with the specified opcode, the argu-
ments that are passed in the arglist 
and the specified flags. The function 
returns a handle to the created in-
struction. 

 
A large number of static scheduling algorithms targets 

VLIW scheduling (such as Trace Scheduling [15]). Unlike 
static schedulers, dynamic scheduling algorithms give 
highest priority to speed and a simple design in order to be 
competitively applied at runtime [11][26][28]. DELI em-
ploys two lightweight scheduling algorithms: an instruc-
tion scheduler and an operation scheduler. The schedulers 
do not require building a data dependence graph, and can 
be tuned by changing the size of the look-ahead window. 
The instruction scheduler is a cycle-by-cycle scheduler, 
and computes the required dependencies on the fly within 
a fixed size look-ahead window, similarly to the way in 
which superscalar hardware operates. 
The operation scheduler traverses the code one operation 
at a time in an attempt to schedule each instruction in the 
earliest cycle. This is similar to the scheduling algorithm 
in the Daisy system [11]. 

Section 4 provides detailed information on the per-
formance of DELI’s optimizations and scheduling. 
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2.3. Hardware Abstraction Module (HAM) 

DELI clients may require low-level control of hardware 
events (such as exceptions) to do their job efficiently. In 
addition, we can make DELI itself more portable and resil-
ient to changes in the underlying hardware platform if we 
adopt some form of abstraction from a specific platform. 
Modern OSs use a similar functionality, where a low level 
layer deals with all the platform dependent ways of coping 
with hardware related features, such as enabling/ dis-
abling/dispatching interrupts, flushing the caches, and 
managing the TLBs. In the context of DELI (especially 
when it is below the OS), we need a similar piece of func-
tionality, which needs to be separated from the equivalent 
OS layer. If we can extend or change the OS, then both the 
DELI and the OS could share the same layer. 

From the point of view of DELI clients, it is useful to 
open up parts of this interface. For example, an emulator 
needs to efficiently emulate the virtual memory (VM) sys-
tem of the original CPU, by mapping it onto the VM of the 
target system. To do this, the client needs access to the 
details of the hardware TLBs, needs to maintain a data 
structure (similar to a page table) for the emulated system, 
and needs to match it with the page table information of 
the native system. Only then can it service the various 
TLB-related events. This method has many disadvantages. 
The hardware TLB may change from one implementation 
to another, even within the same CPU family. Accessing 
the TLB though the OS interface that maps pages may not 
be expressive enough, for example for security reasons. 
Even when we can do this, it requires control over the OS 
to make the two VM systems properly overlap. 

An alternative is to provide a ‘virtualized view’ of the 
hardware for both the OS and the DELI clients so that they 
can share the same representation. The HAM layer thus is 
built around a configuration infrastructure that has both 
static and dynamic components. The static configuration 
includes: 
 A description of the ‘fixed’ memory mappings between 

address ranges. This could be used by a virtual machine 
implementation to describe the relationship between the 
original address in the emulated system and the ad-
dresses used to host that memory in the native world 
(see Table 4 for an example). 

 A description of globally defined hooks for various 
events, such as exceptions and interrupts, that clients 
might require, along with the requested action that 
HAM has to take upon return from those hooks. Ac-
tions include skipping the excepting instruction, nulli-
fying the memory operation, and so on. 
The last three fields in the static configuration entry for 

a region (see Table 4) can be used to describe a region that 
needs a ‘special’ treatment, meaning that HAM can be set 
up to invoke a user defined hook whenever a memory ac-
cess hits that region. This simplifies the task of virtualiz-

ing a piece of memory-mapped hardware, or can also pro-
vide an equivalent functionality with a different piece of 
hardware (e.g. a similar, but not completely compatible, 
peripheral). In this way, an emulator can describe a mem-
ory-mapped peripheral or device as a collection of func-
tions to be invoked through those hooks. Internally, HAM 
maps this into the relevant protection attributes for transla-
tion entries that are eventually loaded onto the hardware 
TLB. Then, certain types of accesses can raise an excep-
tion that HAM intercepts to invoke the proper hook. In a 
binary translator, this relieves the translated code from the 
burden of guarding each memory access to determine 
whether we have to treat it specially. 

Table 4 - Example of HAM configuration entry. For example, 
the entry {1, 0xA0000000, 0x4000000, 
PREF_MMU_PAGE_SIZE, ACCESS_RIGHTS, NULL, NULL, 

0, 0x20000000} defines a region of (normal) memory for 
which HAM automatically and transparently handles all TLB 
misses starting at virtual address space 0x4000000 and 
mapped onto address 0xA0000000 with a size of 64MB in 
virtual address space 1 (the emulated virtual space). 

Entry Description 

space_id 

Identify this entry to be in a given virtual address 
space. We can use this to make multiple virtual 
address spaces coexist. HAM maps this into what 
the actual hardware supports (e.g., ASIDs or 
address space descriptors). It can be used to 
make an OS share the underlying VM with an 
emulator client, since they would be using differ-
ent virtual space identifiers, when the emulator 
impersonates the emulated program. 

start_addr Start logical address of this region 

offset 

Start physical (or logical in certain cases) address 
of this region on the native system encoded as an 
offset from the previous. 

size Size of this region 

page_size 

Log2 of the page size to be used to map the re-
gion’s pages, used by HAM to guarantee the 
correct behavior, as if the pages were of this size. 
For efficiency HAM can eventually map pages 
onto different sizes. 

attributes Access rights and properties for this region 

load_hook Client-defined hook to be invoked on reads from 
this region (for ‘special’ regions) 

write_hook Pointer to a client-defined hook to be invoked on 
writes from this region (for ‘special’ regions) 

inv_state 

Determine what machine state needs to be in-
stalled before invoking the hooks. A client can use 
this to guarantee that a hook doesn’t run in a 
higher privilege than the code issuing the 
load/store (for ‘special’ regions) 

The rest of the HAM configuration is dynamic and it 
mainly manages the HAM page translation tables (hash 
tables augmented with information coming from the static 
mappings for regions). HAM usually deals with low-level 
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events (like TLB misses) transparently, but it sometimes 
has to invoke client-installed hooks. 

The HAM interface is quite extensive and a complete 
description is beyond the scope of this paper. The DELI’s 
BLT uses part of HAM to manage hardware related needs, 
and, at the same time, HAM relies on the DELI API for 
some of his advanced functionality. For example, HAM 
uses the API for the emission of temporary fragments to 
materialize and execute transient trampolines, when cli-
ents require a specific exception behavior. 

3. Using DELI as a client 

The DELI provides two types of services to client pro-
grams. First, DELI’s caching and linking allows very easy 
development of efficient emulators of completely different 
ISAs and OSs. Second, DELI opens a new and very pow-
erful control point to client programs. Clients can observe 
and potentially manipulate every single instruction of the 
target program immediately before that instruction runs. 
We find it useful to break down the many applications that 
benefit from DELI into three basic classes. 
Code manipulation: clients that want to adjust and mod-
ify natively compiled programs at run-time. Examples 
include optimized software patching, code decompression 
and code decryption. 
Observation and control: clients that want to observe the 
behavior of natively compiled programs at run-time and 
possibly enforce policies. Examples include sandboxing, 
dynamic virus detection, reporting program behavior, pro-
filing, and statistics gathering. 
Emulation: clients that want to run an application that 
was compiled for a different virtual machine, a different 
ISA, or a different hardware configuration. Examples in-
clude ISA interpretation or emulation of virtual machine 
environments, such as Java or .NET. 

In the case of the first two classes, the manipulation and 
observation are done by the client program as the code is 
placed in DELI’s cache. Since code is always run out of 
the cache, and nowhere else, these clients are guaranteed 
to be the last to see the code. DELI is a new concept, so 
not many applications have been written for it. In the rest 
of this section, we only cover a few examples of each 
category, to demonstrate the DELI’s capabilities that allow 
for easy development of client programs. 

3.1. Code Manipulation 

Since DELI is the last piece of software that observes 
an instruction right before it is executed, it can replace the 
observed instruction with another sequence. All manipula-
tion clients rely on DELI being a control point in the exe-
cution; DELI caches and optimizes the adjusted code, so it 
manages to keep the overhead to a minimum. Figure 2 
shows the common scheme for code transformations: cli-

ents provide a manipulation routine through the 
deli_install_callback() API call that DELI dy-
namically applies during fragment formation. The routine 
transforms the code that is then emitted to the DELI code 
cache for efficient execution or re-optimization. 

In the following, we present two manipulation exam-
ples: dynamically patching code and dynamic code de-
compression (or decryption). 
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Figure 2 - Using DELI to dynamically manipulate code (e.g., 
for patching or decompression). The diagram expands the 
“DELI transformation infrastructure” component of Figure 1 
and shows how a client can install a manipulation routine 
through the DELI API for code transformations. 

Dynamically patching code 
Suppose you have faulty or missing hardware in your 

system—for example, your processor’s floating-point unit 
is faulty, or your x86 processor has no MMX functional-
ity. Traditionally, solving such problems implied either 
replacing the faulty (or missing) hardware, or rewriting 
software so that it does not require the faulty or missing 
functionality. Neither of these solutions is particularly 
attractive. Replacing hardware is expensive and inconven-
ient. Traditional software solutions require rewriting, re-
compiling, or applying static code patches, involve per-
manent changes to the software, and can’t easily deal with 
third party components. 

DELI gives us the opportunity to patch software dy-
namically and temporarily, while the original software 
remains untouched. DELI observes each instruction right 
before it is executed, so it can detect which instructions 
are affected by the missing hardware functionality, and 
dynamically replace them with new code that does not 
require it. The manipulation routine of Figure 2 for this 
transformation involves maintaining a patch table, with a 
patch descriptor for each different type of patch request. 
Patch descriptors include an identifier of the missing 
hardware and a code sequence that works around the issue. 
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Code decompression or decryption  
Firmware memory amounts to a significant fraction of 

the cost of an embedded system, so code compression [30] 
is a commonly used technique to improve the efficiency of 
program storage. In most schemes, a post-link software 
utility compresses the code at compile time. In systems 
with hardware decompression, a dedicated unit expands 
the code during instruction cache refill, on a cache line-by-
line basis. Traditional software-based decompression 
schemes handle large chunks of code at a granularity that 
matches the operating system structures (usually at the 
level of file systems or pages). Hardware schemes are in-
flexible and expensive, and traditional software schemes 
carry a large performance overhead when we only need a 
small fraction of the decompressed code. 

DELI can help to avoid both problems, as we can use it 
to decompress code fragments as they get executed, and 
still achieve good performance by caching the most fre-
quently used code. Referring to Figure 2, in this case the 
manipulation routine implements the decompression algo-
rithm: the transformed code is really the original program 
code before compression. In this way, the DELI only de-
compresses and caches smaller portions of the application, 
thereby reducing overhead and amount of dynamic de-
compression, and requiring less system memory. 

Note that this solution also extends to other forms of 
coarse-grain program transformation. For example, in se-
curity-aware domains, it is common to sign and encrypt 
applications so that accesses to the application can be 
trusted and controlled. Here, we can use exactly the same 
scheme that we described for decompression, where we 
substitute a decryption routine for the decompression rou-
tine, achieving exactly the same benefits: using the DELI 
is cheaper and more flexible than a hardware solution, and 
more efficient than a traditional software approach. 

3.2. Program Observation 

The fine-grain control that DELI provides is also useful 
when we need to report program behavior, or enforce cer-
tain policies. Using a scheme similar to what we described 
in section 3.1, a client can install an observation routine 
through the API, cause DELI to examine the code at run 
time, and only emit it to the cache if it respects the policy 
to be enforced. This does not require transformations (be-
yond instrumentation), and the overhead is minimal. 

Sandboxing 
In a multiprogrammed environment, multiple applica-

tions share a given computer system. Execution “sand-
boxes” [5] are environments that support differentiated 
services for the different applications and impose restric-
tions on resource usage. Resource restrictions can be 
qualitative (e.g., permitting the application to access only 
certain memory addresses, or certain portions of the file 

system), and quantitative (e.g., limiting the CPU usage of 
an application to 25%). Existing sandboxing approaches 
include hardware solutions, such as virtual memory for 
memory protection, OS kernel modifications, and inter-
ception of system calls. 

With DELI, we can install an observation routine that 
examines each code fragment before it is emitted into the 
code cache. That routine verifies the legality of the in-
structions (e.g., checks that direct memory references ac-
cess only the memory range assigned to the application), 
and instruments the code fragment to self-check other in-
structions that cannot be statically verified. Once the code 
is modified and cached, it self-checks its legality during 
execution without the need to interrupt the application. 
Moreover, with profiling instrumentation [2] of the code 
fragments before they are emitted into the code cache, 
clients can also monitor and enforce quantitative resource 
usage policies. 

In hardware platforms with security support, DELI it-
self has to run in trusted mode (at a privilege level above 
supervisor) to ensure the overall security of the system. 

3.3. Emulation 

With DELI in place, we can imagine building the soft-
ware infrastructure (and possibly efficient hardware) to 
implement a “universal core” for embedded applications. 
This system could pair emulation of an existing ISA with 
natively compiled high performance kernels. For example, 
we could build a VLIW engine and add an ARM software 
emulation layer on top of that. This would enable users to 
preserve their investment on existing ARM code and tools, 
and gradually migrate to native VLIW code only the parts 
that are more relevant for performance. The existence of 
DELI (and possibly a set of DELI-aware hardware fea-
tures) ensures that the emulation overhead is kept to a 
minimum. For developers, this means a gradual migration 
path, performance scalability at a reduced engineering 
cost, and vendor independence. In other words, it dimin-
ishes the impact of legacy code. 

By using the DELI infrastructure, we are developing a 
technology that includes emulation modules for legacy 
operating systems, an interface to mix native and emulated 
code, and a set of techniques for “system emulation” (i.e., 
to emulate differences in areas such as interrupt control 
and virtual memory). 

Code streaming 
An interesting application of the DELI native-to-native 

emulation capabilities (when emulated and target ISAs 
coincide) deals with the situation in which parts of the 
original code live in a remote location with respect to the 
target machine. The DELI opens up an alternative model 
for remote execution, that we call code streaming, where 
the remote application is loaded on-demand, one fragment 
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at a time, based on its execution paths. 
The code-streaming client simply instructs the DELI to 

emit fragments in the code cache, and regains control 
when execution encounters remote program locations. If 
we again refer to Figure 2, the client manipulation routine 
is here responsible for accessing the remote application, 
and for keeping the correspondence between local and 
remote program locations. The DELI caches the applica-
tion locally, so, unlike more traditional remote execution 
models, it can tolerate an intermittent connection with the 
server. What is special about code streaming is that appli-
cations do not need to be aware of its existence. DELI’s 
transparent mode does not rely on the use of a specific 
API and it fits well with legacy applications. It is also OS-
independent, does not require proprietary file systems, and 
does not rely on a specific language (unlike Java or .NET). 

4. Case Study: Emulating PocketPC 

This section presents an application of the DELI to the 
world of mobile multimedia devices. Mobile communica-
tion devices have grown to a level of maturity that allows 
deployment of rich web and media-enabled applications, 
thus demanding a significant increase in system complex-
ity and performance requirements. However, embedded 
operating systems have consolidated to only a few com-
petitors, which are only going to support a restricted num-
ber of different ISAs. In this context, we can see emulation 
as a potential solution to some of these barriers to innova-
tion, opening the way to new architectural features. We 
can identify three main scenarios where efficient emula-
tion of an embedded ISA would be beneficial. 
Emulated platform with native media engines. Emula-
tion enables developer to leverage legacy applications and 
GUIs (such as PocketPC), while combining them with 
high-performance media engines natively compiled to a 
more powerful processor. This model requires an emu-
lated-to-native interface like the one DELI provides. 
Native platform with emulated plug-ins. Even for en-
tirely new platforms (e.g., embedded Linux devices), there 
is still a strong need to support legacy applications, in the 
form of plug-ins (e.g., a media viewer). Similar considera-
tions apply Java or .NET environments for efficiency. 
Incremental migration. For families of binary incom-
patible processors (e.g., many VLIW embedded offerings), 
the problem of legacy code compatibility across different 
members of the same family could be efficiently tackled 
by the use of a lightweight dynamic translator. The DELI 
provides the building blocks that can be used to build such 
hybrid systems, so that we can guarantee a smooth migra-
tion between successive generations of processors. 

All these scenarios require mixing emulated and native 
code at different levels; DELI efficiently tackles all of 
them, by exposing the desired level of granularity that best 
meets application needs at the programmer’s level. For 

example, Original Equipment Manufacturers (OEMs) 
could use a coarse level of granularity to provide native 
multimedia libraries integrated in the context of a standard 
component of the emulated system (e.g., DirectX drivers 
in PocketPC). Alternatively, application developers could 
leverage the underlying capability of the native core by 
providing their own native implementation of the media 
kernels, still within an existing OS and development envi-
ronment. Finally, if we see the DELI as a way of provid-
ing an efficient virtual machine environment, this can 
open up new opportunities to extend system functionality 
with no changes to the OS.  

4.1. The DELIverX prototype 

DELIverX is the prototype system that we built to dem-
onstrate the feasibility of this approach and at the same 
time to help us better understand the details of the DELI 
programming interface. The DELIverX emulation system 
is defined around a Hitachi SH3 interpreted emulator, 
coupled with a just-in-time translator for an embedded 
VLIW core, which we use as a native target. DELIverX 
implements a platform emulator (i.e., ISA + system) that 
can be used as a target for a Microsoft PocketPC operating 
system compiled for the SH processor. The SH-3 [2] is a 
simple load-store RISC processor with a 5-stage pipeline 
that executes most basic instructions in one clock cycle. 
The SH3 implements a 16-bit ISA but fetches two instruc-
tions in a single access. The target processor is the 
Lx/ST210 4-wide VLIW embedded core jointly developed 
by Hewlett-Packard and STMicroelectronics [13][14]. 

The system (Figure 3) comprises a ‘traditional’ inter-
preted emulator for an SH3 ISA, complemented by 
enough system components (timers, serial ports, display, 
etc.) to be able to support a (simple) configuration of the 
WinCE kernel, after we wrote a hardware abstraction layer 
for it. The other main component of the emulation system 
is the SH to ST210 Just-In-Time compiler, which trans-
lates SH instructions into native ST210 instructions. 

We designed the JIT to be transparent to the SH3 emu-
lator, so that we can turn it on or off. The emulator in-
vokes the JIT at every instruction fetch so that it can start, 
grow or stop translations for a new region of code, or re-
lease control to an already existing translation in the DELI 
code cache. At system bootstrap, the execution of emu-
lated SH instructions takes place in the interpreted emula-
tor. At the same time, the JIT produces new code frag-
ments of translations and hands them to the DELI, occa-
sionally releasing control to the few already translated 
fragments. After the initial warm-up phase, the DELI code 
cache is primed with the working set and most of the emu-
lation time of the SH instructions is spent in the cache. 

Coupling the JIT with an interpreted emulator is not 
mandatory (we could build a system based on the JIT 
alone); however, it allows the JIT to make better decisions 
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when producing the translations. For example, the JIT can 
grow code regions past branches if it knows the branch 
outcomes at JIT time; conversely, it would be hard to ex-
ploit this information with a translate-and-execute ap-
proach. The presence of the interpreted emulator also en-
ables the JIT to ‘bail out’, so that it can make aggressive 
assumptions when generating the translation and then fall 
through to emulation for the few cases that fail. 
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Figure 3 - Structure of DELIverX. It adds three components 
to the DELI: interpreted emulator, JIT compiler and Virtual 
Machine (VM) run time. The VM run-time, the interpreted 
emulator and the JIT depend on the target being emulated. 
The VM run-time leverages services from HAM to deliver a 
faithfully emulated machine context on exceptions/interrupts, 
at the same time providing a compatible VM system. The in-
terpreted emulator and the JIT base their operations on the 
assumptions made by the VM run-time (the dotted arrows). 
The JIT also relies on some of the HAM capabilities to sim-
plify the translations emitted through the DELI interface. 

 
The JIT generates code for a run-time environment 

around which we built the SH virtual machine. In this 
world, the most difficult task is to efficiently handle a 
faithful emulation of the Virtual Memory (VM) system 
mapped onto the native VM. In general, the larger the dis-
tance between the VM parameters of the two systems, the 
greater the difficulties associated with it. In this particular 
case, we designed the Memory Management Unit (MMU) 
of the VLIW with a large degree of flexibility, exactly 
with the goal of simplifying the emulation task. 

4.2. Performance Analysis 

In this section, we report some experimental results to 
assess the performance of the DELIverX system. As we 
mentioned in section 4.1, our emulated processor is a Hi-
tachi SH3 [19], and our target is a 4-wide VLIW embed-
ded processor. Table 5 lists the most significant parame-

ters of the two systems. 
The ST210 does not currently include MMU support, 

so for our experiments we use a cycle-accurate instruction 
set simulator (ISS, validated against the hardware) aug-
mented with virtual memory support, assuming a TLB 
model as described in Table 5. The ISS models the CPU 
core and the memory system, including caches, bus trans-
actions and main memory timing. For the SH3, we use an 
HP Jornada 548 palmtop running PocketPC and we 
measure wall-clock time average on multiple runs. 

Table 5 - Parameters of the emulated and native systems 

 Emulated  
Processor 

Native  
Processor 

CPU 
Hitachi SuperH SH3, 
133 MHz 

Lx/ST210, 4-issue 
VLIW, 250MHz 

L1 
Cache 

Unified 8KB 4-way 
I$+D$ 

32KB direct mapped 
I$, 32 KB 4-way D$ 

MMU 
4-entry fully associative 
I-TLB; 32-entry, 4-way 
unified L2 

32-entry, 2-way I-
TLB; 128-entry, 16-
way unified L2 

Memory 32MB of DRAM 32MB of DRAM 
 
Note that the ST210 has significantly higher perform-

ance than the SH3. While a comparison of the two might 
seem unfair, we have to keep in mind that supporting leg-
acy code is a burden that is likely to slow down the proc-
essor evolution curve. To preserve binary compatibility in 
hardware, we have to resort to the adoption of a supersca-
lar microarchitecture, which has severe consequences on 
complexity, cost and power efficiency. For example, while 
the SH4 (SH3 successor) is indeed a 2-way in-order super-
scalar, the designers of the SH5 (SH4 successor) decided 
against widening ILP, in favor of micro-SIMD extensions 
(a binary incompatible feature). 
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Figure 4 - Performance of the ST210 vs. the SH3 (SH3 = 
1.0). The average is 7.02. The accumulated runtime of all 
benchmarks on the SH3 is about 65s (5s average); qsort is the 
shortest program (0.71s) and lame the longest (15.6s). 

 
The benchmark suite is a combination of micro-kernels 

and real applications taken from the MiBench suite [18], 
dhrystone and a few of the SPEC-2000 (bzip2 and mcf). 
We include audio (adpcm, lame, mad), and imaging (jpeg) 
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algorithms to approximate a representative workload for a 
next generation mobile computing appliance. We compile 
each benchmark for WinCE using the Microsoft Embed-
ded Visual C++ compiler (using the “maximize speed” 
configuration), and we run it in isolation within the Pock-
etPC environment. DELIverX emulates exactly the same 
system, including the PocketPC environment. The stand-
alone SH3 simulator (no JIT or DELI) on a Pentium 
III/800 runs 20x—30x times slower than the SH3.   

To understand the raw speed difference between the 
SH3 and the ST210, Figure 4 shows that—on average—
the ST210 is about 7 times faster than the SH3. Note that 
the ST210 runs without OS overhead, so this is an upper 
bound of what a real ST210-system could reach. 

In Figure 5, we show the results of DELIverX running 
on the ST210 emulating the SH3. As we can see, we often 
achieve near-native SH3 performance (the average is 99% 
of native performance), and in some cases, we even ex-
ceed it (SHA is 83% faster emulated than on the SH3). 
The chart also shows the substantial benefits that DELI’s 
dynamic code optimizer achieves (on average, a 61% im-
provement over non-optimized code). 
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Figure 5 – DELIverX performance. The y-axis shows relative 
speedup (>1.0) or slowdown (<1.0) factors vs. the SH3 
(y=1.0). The bars represent emulated code on the ST210 
VLIW without optimization (DELI/no opt) and with optimi-
zation triggered at 500 executions (DELI/opt 500). The aver-
age is 0.62 without optimization and 0.99 with optimization. 

Mixing native and emulated code 
The last set of evaluations that we present deals with 

mixing native and emulated code. We consider the case 
where we introduce a natively compiled function within a 
fully emulated platform. In this example, we use DE-
LIverX running PocketPC to invoke a cryptography kernel 
that executes the Secure Hashing Algorithm (SHA) to 
produce a key to be used for a secure transaction. SHA is a 
good example of code that benefits from instruction-level 
parallelism, and—as such—is a good target for a VLIW 
engine. In Figure 6 we can see the results of the experi-
ment: by mixing native and emulated code we can get to 
about 50% of the speed of a native-only VLIW execution, 

and still more than five times faster than running the code 
on the SH3. While improvements in SH processor design 
are likely to close this gap, the advantages of the DELI 
approach are obvious in this particular example. In a more 
complex application, the gain would obviously depend on 
the relative importance of the natively compiled code. 

This example illustrates one of the major benefits of us-
ing DELI: in a practical environment it enables developers 
to scale performance by selectively porting the compute-
intensive kernels of applications, without giving up the 
benefits of a legacy operating system and GUI. In a rich-
media world, performance is likely to be dominated by 
kernels (like SHA) that we can easily encapsulate to get 
the benefits of a VLIW engine. In this environment, the 
effect of a modest slowdown for GUI emulation is likely 
to disappear in light of the performance improvements in 
the computational kernels. 
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Figure 6 - Example of mixing native and emulated code for 
SHA cryptography (running for 4.18s). The values on the x-
axis represent speedup factors vs. the base case of a native 
SH3 execution (SH3 = 1.0). The “VLIW native” case runs 
code in isolation (without OS); all others include the Pock-
etPC overhead. The “Mix” case runs emulated PocketPC, 
with the SHA routine itself compiled natively for the ST210. 

5. Summary and Conclusions 

The DELI is a new run-time control point that lets its 
clients manipulate unmodified binaries in novel ways. It 
also allows us to build efficient emulators more easily and 
greatly enhance their functionality. The DELI unifies 
many techniques that make persistent changes at run time, 
but is not itself an emulator. Rather, it is a way of giving 
clients (including emulators) access to a caching and link-
ing mechanism that operates at the lowest software level. 

This paper describes the DELI, how it works, and what 
its interface looks like. It also presents some of the clients 
that DELI could support, including code manipulation, 
observation and emulation. The DELIverX Emulation 
prototype demonstrates the feasibility of DELI, and at the 
same time it helps us better understand the details of the 
DELI programming interface. DELIverX often achieves 
native performance, and the dynamic code optimizer adds 
substantial benefits (on average, a 61% improvement). 
Finally, we show that we can transparently mix native and 
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emulated code, yielding tremendous performance in-
creases, without having to port the entire system, nor deal 
with a clumsy accelerator interface. We find these results 
impressive enough to report on today, but we believe we 
have a lot of headroom, and will achieve much better re-
sults as we continue our development. 

The DELI is a new facility. While it would be easy to 
misunderstand it to be yet another caching-and-linking 
rewriting system, it is not that at all. It is an interface to the 
underlying mechanisms of such systems, exported for cli-
ent use. Given the idea of exporting such an interface, one 
could do many new things. We have done a significant 
amount of development on it, have learned a lot, have 
convinced ourselves that it has many practical applica-
tions, and have been able to demonstrate some of its vast 
power. That said, we believe we have only scratched the 
surface of what can be done with it. At HP Labs Cam-
bridge, we are continuing to build and refine the DELI 
infrastructure for different platforms and clients, the DE-
LIverX prototype, and we are continuing to understand 
new ways in which we can use this new control layer. 
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