Assembly to High-Level Language Translation

*

Cristina Cifuentes, Doug Simon and Antoine Fraboulet
Department of Computer Science and Electrical Engineering
The University of Queensland
Brisbane, Qld 4072, Australia

Email: {cristina,dougs,afrab}@csee.uq.edu.an

Abstract

Translation of assembly code to high-level language
code is of importance in the maintenance of legacy code,
as well as in the areas of program understanding, port-
ing, and recovery of code.

We present techniques used in the asm2c translator,
a SPARC assembly to C translator. The techniques in-
volve data and control flow analyses. The data flow
analysis eliminates machine dependencies from the as-
sembly code and recovers high-level language expres-
sions. The control flow analysis recovers control struc-
ture statements. Simple data type recovery is also done.

The presented techniques are extensions and im-
provements on previously developed CISC techniques.
The choice of intermediate representation allows for
both RISC and CISC assembly code to be supported by
the analyses.

We tested asm2c against SPEC95 SPARC assem-
bly programs generated by a C compiler. Results using
both unoptimized and optimized assembly code are pre-
sented.

1. Introduction

Recovery of high-level language code from assembly
and machine code is an area of research that has not
been widely researched in recent years, partly due to
the complexity of the problem as well as the lack of
techniques available in this field. In the context of fix-
ing the year 2000 bug, the Gartner Group estimated
that many organizations are missing 3% to 5% of their
source code portfolios. This means that a medium-
sized information systems organization with a software
portfolio of 30 to 50 million lines of code could easily be
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missing a million lines or more [7]. Further, some large
organisations have thousands of lines of code written in
assembly code and cannot benefit from state of the art
object-oriented technicques unless the assembly code is
reengineered into some high-level language.

These facts point to the need for research into ways
of translating machine and assembly code to high-
level language code, based on sound compiler tech-
nology. In essence, the problem becomes one of pro-
gram comprehension; being able to understand existing
code generated by assembler and compiler tools, and
to apply techniques which will “undo” what the as-
sembler/compiler has done. This transformation con-
verts low-level assembly code into a higher level of
abstraction that resembles today’s high-level language
(HLL) programs. Several techniques used in industry
involve proprietary techniques that have not been pub-
lished (e.g. Source Recovery’s IBM 360 decompiler [7]).
In this paper, we concentrate on the translation from
SPARC assembly code to an imperative procedural lan-
guage like C. Other target languages can benefit from
the same techniques; we chose C due to its popularity
in the Unix community. The reader is referred to [16, 6]
for ways of translating machine code to assembly.

Translation of assembly to HLL code requires a se-
ries of analyses in order to abstract away from the hard-
ware features of assembly languages, and to recover the
high-level features available in most common procedu-
ral programming languages. The aim of this process
is to recover HLL code which is comparable to that
produced by native programmers rather than assem-
bly code written in C which emulates features of the
machine such as registers and the stack. The main
types of analyses are:

e data flow analysis to recover high-level language
expressions and statements (other than control
transfer statements), actual parameters, and func-

tion return values, and to remove hardware ref-
erences from the code, such as registers, pipeline



references and stack references;

e control flow analysis to recover control flow struc-
ture information, such as loops and conditional
statements, as well as their nesting level; and

e type analysis to recover high-level type informa-
tion for variables, formal and actual parameter
types, and function return types.

In this paper we concentrate on the data flow and
control flow analysis techniques as applied to RISC as-
sembly code. Simple type analysis is performed implic-
itly in the algorithms used. We express properties of
the techniques used, as well as the intermediate rep-
resentation used in asmZc. We tested the techniques
using a large set of assembly programs created by com-
piling the SPEC95 benchmarks to assembly code. The
rest of this paper is structured in the following way: §2
explains the intermediate representation used in this
analysis, §3 summarizes the properties used by the
techniques to handle RISC assembly code, §4 shows
sample code obtained from these techniques on both
optimized and unoptimized code, §5 shows results ob-
tained with the assembly version of the SPEC95 bench-
marks and §6 discusses previous work in the area. Fi-
nally, §7 provides conclusions on this work.

2. Intermediate representation

Assembly programs are parsed and stored in an in-
termediate representation suitable for HLL recovery
analysis. There are two levels to the representation
in order to perform different types of analyses: a con-
trol flow graph for each procedure, and a high-level in-
struction for a sequence of assembly instructions. Dur-
ing the parsing of assembly code, machine idioms are
checked for, in order to remove particularities of the
machine itself. In the case of SPARC, most of the id-
ioms relate to the synthetic instructions described in
the SPARC manual [17]; we replace such instructions
by more expressive ones. For example, the increment
instruction is replaced by an addition instruction with
explicit operands rather than implicit ones, and a sub-
tract with carry using destination register %g0 is re-
placed with a compare instruction (as register %go0 is
hardwired to zero).

2.1. Control flow graph

The control flow graph (CFG) of a procedure stores
information about its instructions in basic blocks.
There are several types of nodes based on the last in-
struction on that block or the existence of a label on
the target block; these are:

e l-way: block ends with an unconditional branch,

e 2-way: block ends with a conditional branch,

e n-way: block ends with an unconditional branch
on a register,

e call: block ends with a procedure call,

e ret: block ends on a return/restore, and

e fall: (fall through) block that is followed by a la-

belled instruction.

Constructing the CFG is straight-forward, except
for extra analysis needed in the case of n-way nodes.
When a branch on a register is met, it is not al-
ways possible to determine the target address(es) of
the branch using static analysis. Two techniques are
commonly used to solve this problem: intraprocedu-
ral (backwards) slicing [5] and pattern matching. The
former technique is performed on the register branch,
in order to obtain the set of instructions the indexed
branch depends on. If the register can take a series
of different values, these values are determined by a
forward walk of the sliced instructions, making it pos-
sible to determine the size of the indexed table and
the offsets to search for. On the other hand, the pat-
tern matching technique requires patterns to be de-
termined (for example, from different ways compilers
generate switch statements), and matching to be per-
formed against those patterns. In the cases were an in-
dexed jump cannot be resolved, we flag the basic block
as having zero out-edges and the graph as being an
incomplete one (a non-connected graph given that all
the assembly code is parsed into basic blocks) for that
procedure. The CFG generation technique, which has
been used in RISC binary profilers like gqpt [11] and
in decompiling CISC code [5], is easily implemented
on RISC machines due to the stylized code fragments
that compilers generate for indexed jumps. In con-
trast, CISC code is much harder to analyse for indexed
jumps.

The generation of the CFG needs to remove depen-
dencies on the hardware pipeline by analysing delayed
instructions. On SPARC [17], instructions that trans-
fer flow of control work in combination with the next
instruction; the delayed instruction. The delayed in-
struction may or may not be executed based on the
type of branch. If enabled, it is executed prior to the
target of the branch being reached. This semantic be-
haviour is documented in the SPARC manual [17], and
needs to be removed from the graph in order to build a
machine-independent graph. In our framework, the re-
moval of delayed instructions used to be dealt with by
using pattern matching and idioms. However, we now
support a transformational approach which is proved
to produce the right code for all combinations of de-
layed instructions [14].



2.2. High level opcodes

Assembly mnemonic instructions used in applica-
tions programs can be represented by a set of five dif-
ferent high-level opcode instructions:

e assignment (:=): assigns the right-hand side ex-

pression to the left-hand side location,

e conditional (jcond): checks the value of an expres-
sion to determine which is the target address for
the branch,

e unconditional (jump): unconditional transfer of
control; equivalent to a goto,

e call (call): procedure call invocation, and

e return (ret): return from a procedure.

An almost one to one mapping of assembly instruc-
tions to the above high-level instructions requires one
traversal of the code. Some use-definition analysis
of condition codes is required to merge compare and
conditional jump instructions into jcond instructions.
Note that at this stage, expressions that form part of an
assignment are very simple and machine-dependent (as
they use registers), e.g. %15 = %i0 + 10. Through-
out the analysis, expressions of several instructions are
merged to regenerate more complex expressions and
remove register references.

It is important to point out that since no con-
trol structure recovery analysis has been performed
at this stage, it is unknown whether the conditional
jcond instruction is the header of an if..then, an
if..then. .else, or a while structure.

For analysis purposes, definition-use (du) and use-
definition (ud) chains are constructed for each register
and condition code in an instruction. These chains are
at the procedure level; i.e. they do not cross proce-
dure boundaries. However, they do take into account
summary information provided by the called proce-
dure. Figure 1 shows a C program which implements
the string length function strlen and uses it in its
main. The corresponding, unoptimized, assembly code
is shown in Figure 2. In Figure 2, extraneous text lines
of data have been removed and the code has been an-
notated with ud and du chains.

3. Data and control flow analysis tech-
niques

The techniques described in this section are an ex-
tension of the data and control flow techniques used in
dee [6], an 80286 CISC decompiler for the recovery of
C code from DOS binary executables. In this paper,
we extend the techniques to deal with RISC code by
stating the properties underlying the techniques, which

int strlen (char #s)
{ char *t = s;
while (*s != ’\0?)
S+t;
return s-t;

} T

int main (void) T

{ char *s = 'hello";
int size;

size = strlen(s);
return 0;
' G )

Figure 1. String length (strlen) program in C
and corresponding control flow graph

lead to improvements on the algorithms used. The test-
ing of these techniques is done in the context of large
programs and optimized code; the CISC techniques
had only been tested with small, unoptimized code,
and hence were not exposed to very large unstructured
examples which make the restructuring process harder
to achieve.

3.1. Dataflow analysis

High-level language statements can be translated to
a series of assembly load and store instructions that
make use of the machine’s registers. Registers are nor-
mally used as carriers of intermediate values to calcu-
late a new result or transfer it to a new memory loca-
tion. To reverse this process, forward substitution on
registers is used.

A definition of a register r at instruction ¢ in terms
of a set of ay registers, r = f1({ax},7), can be forward
substituted at the use of that register on another in-
struction j, s = fo({r,...},J), if the definition at 7 is
the unique definition of r that reaches j along all paths
in the program, and no register a; has been redefined
along that path. The resulting instruction at j would
then look as follows:

s = fa({fi{axt,d), ...}, J)

and the need for the instruction at ¢ would disappear.
The previous relationship is partly captured by the du
and ud chains of an instruction: a use of a register is
uniquely defined if it is only reached by one instruction,
that is, its ud chain set has only one element. This re-
lationship is known as the r-clear;_,; relationship for
register r. More formally,

s= f({fi{ar},0),...},7) iff  |ud(r,j)|=1A
ud(r, j) =1 A
J € du(r,i) A

Vay, e ap-clear;;

Note that this definition does not place a restriction on
the number of uses of the definition of r at 7. Hence,



strlen: LiveIn={%00->%i0} LiveOut={%i0->%00}
12 save ¥%sp,-120,%sp

13 st %10, [%fp+68] ud(%i0)=-1

14 1d [%fp+68],%00 du(%00)=15

15 st %00, [%fp-20] ud(%00)=14

.LL2:

17 1d [%fp+68]1,%00 du(%00)=18

18 1dub [%00],%01 ud(%00)=17 du(%o1)=19
19 511 %01,24,%02 ud(%o01)=18 du(%02)=20
20 sra %02,24,%00 ud(%02)=19 du(%00)=21
21 cmp %00,0 ud(%00)=20 du(cc)=22
22 bne .LL4 ud(cc)=21

24 b .LL3

.LL4:

27 1d [%fp+68],%o01 du(%o1)=28

28 add %o1,1,%00 ud(%01)=27 du(%00)=29
29 mov %00,%o01 ud(%00)=28 du(%01)=30
30 st %o1, [%fp+68] ud(%o1)=29

31 b .LL2

.LL3:

34 1d [%fp+68]1,%00 du(%00)=36

35 1d [%fp-201,%01 du(%o01)=36

36 sub %00,%01,%00 ud(%00)=34 ud(%o01)=35 du(%00)=37
37 mov %00,%i0 ud(%00)=36

38 b .LL1

LL1:

41 ret

main: LiveIn={} LiveOut={}
58 sethi %hi(.LLCO),%o01

59 mov .LLCO,%00 du(%00)=60

60 st %00, [%fp-20] ud(%00)=59

61 1d [%fp-20],%00 du(%00)=62

62 call strlen,0 ud(%00)=61 du(%00)=64
64 st %00, [kfp-24] ud(%00)=62

65 mov 0,%i0

66 b .LL5

.LL5:

69 ret

70 restore

&=

e}géeﬂ
b

e/

Figure 2. Unoptimized SPARC assembly code
for strlen program, annotated with definition-
use and use-definition chains. The CFGs for
strlen and main are also shown.

if the number of elements on du(r, ¢) is n, instruction ¢
can potentially be substituted into n different instruc-
tions ji, provided they satisfy the r-clear;_,;, property.

Throughout the analysis we treat registers and con-
dition codes in the same way—as registers. Each con-
dition code is treated as a different register. This is
needed as instructions may set n condition codes and
use m condition codes. However, for the purposes of
illustration in Figure 2, all condition codes have been

grouped into one as the use of m overlaps with the
definition of n for the sample example.

Forward substitution analysis uses the r-clear;_;,
relationship in an intra and interprocedural way.
Hence, it is able to eliminate condition codes and in-
termediate registers, and places actual arguments into
the procedure call argument lists, as well as determine
the return value of functions. This can be achieved
by noting that the high-level instructions use or define
registers or condition codes in the following way:

e assignment: defines registers or condition codes on
the left-hand side, and uses registers or condition
codes on the right-hand side,

e conditional: uses condition codes and registers,

e call: uses registers passed as actual arguments,
and defines returned registers.

In the case of register-windowed architectures like
SPARC, the summarized Liveln and LiveOut informa-
tion for a procedure needs to make the mapping of
callee registers to caller registers; as seen in Figure 2
for the strlen function.

3.2. Control flow analysis

Transfers of control are modelled in assembly code
via conditional jumps (based on the value of one or
more condition codes), and unconditional jumps (i.e.
goto’s). Forward and backward jumps denote tradi-
tional 2- or n-way conditionals, and loops respectively.
The control flow graph of a procedure, CFG = (N, E),
captures the transfers of control relationships between
basic blocks in the program, hence it is used as the
basis for the analysis. The process involves the de-
termination of conditionals and loops, followed by the
restructuring of conditionals.

The node that contains the control transfer instruc-
tion is called the header node. The follow node is the
node that contains the first instruction to be executed
after the equivalent HLL control structure has been ex-
ecuted. If h is the header node and f the follow, we
denote conditionals by A3 f. Loops are denoted by the
header h and latching node ! as h O [. A latching
node is the “last” node in the loop; the one with the
back-edge to the header node.

Structuring conditionals

For a subgraph headed by a 2- or n-way conditional
node, there exists a unique node such that all paths
from each of the out-edges from the header converge
upon it. We define the follow node of a conditional
to be that convergence node, and point out that the



header’s immediate post-dominator satisfies this prop-
erty.

The set of nodes on all paths starting from one suc-
cessor of a conditional header is called a branch. More
formally:

Vs € (succ(h)\{f}), branch of Al f is the set {n €
N|nisonapaths— fAnég{h, f}}.

This definition implies that a branch may be empty.

If a subgraph represents a structured conditional
h$ f, it satisfies the following two properties:

1. Vb; € branches of hROf o), (bi) =0 , and
2. V¥b; € branches of hOf o (An € |J;(b;) @ (m,n) €
Eamg ({h}U U (5)))-

The first property states that the membership of
the branches must be mutually exclusive (i.e no node
may belong to more than one branch of a given condi-
tional). The second property states that the predeces-
sor of any node within a branch must be either another
node within the same branch or the conditional header.
An unstructured conditional will violate at least one of
these properties.

The type of a conditional is determined by its header
node: an n-way node is equivalent to the start of a
switch or case statement, and a 2-way node can be
one of the following statements:

e if..then..else - neither successor of the header

is the follow node or at least one successor is
reached by a back edge.

e if..then - the false successor is the follow node.

e if..else - the true successor is the follow node.

Structuring loops

An ordering between the nodes in a CFG is given by a
post-order walk of the graph during a depth-first search
traversal. This ordering implies that leaf nodes in the
underlying depth-first search tree (DFST) will have a
smaller order than nodes higher up in the tree, and that
the header of the CFG will have an order equal to the
number of nodes within the graph. Once this partial-
order has been established, a loop h O [ is determined
by a back-edge from a node lower in the underlying
DFST to a higher node in the tree; i.e. order(h) >
order (1) and the edge (I,h) € E.

In our work, we have used interval theory [1] to de-
termine the nesting level of loops and the nodes that
belong to the loop. However, different methods can be
used for this purpose. Using intervals, the nodes that
belong to a loop can be determined by the following
set:

loopNodes(h O l) = {n € Ne order(l) < order(n) <
order(h) An € I(h)}

where I(h) denotes the interval that A belongs to.
Nodes that belong to a loop are tagged as belonging to
the most nested loop they belong to.

Finally, the type of the loop is determined by its
header and latching nodes in the following way:

e A pre-tested loop header will be a 2-way node that
controls the loop iterations and will have a latch-
ing node that has a solitary edge back to the loop
header. One of the edges from a pre-tested loop
header will lead to the follow node of the header
when it was previously structured as a 2-way con-
ditional.

e A post-tested loop may have either a 2- or 1-way
node as a header node and a 2-way latching node.
The loop will have a 2-way header node if the first
statement within the loop is a 2-way conditional.

e An endless loop will have either a 2- or 1-way
header node for the same reasons as a post-tested
loop, but it will only have a 1-way latching node.
The difference between an endless loop with a 2-
way header and a pre-tested loop is whether or not
the follow of the conditional is a node within the
loop or not.

Note that back-edges out of an n-way conditional are
not structured as loops, as that would generate too
many goto’s in the generated code (one for each arm
of an n-way conditional).

Restructuring conditionals

To improve the code generated when a 2-way condi-
tional overlaps with a loop or n-way conditional, we
make use of the nodes’ n-way header tag and their loop
header tag. For a 2-way conditional h>f that repre-
sents an unstructured jump into or out of a loop, h’s
loop header tag will be different to f’s loop header tag.
Similarly for an unstructured jump into or out of an
n-way conditional, h and f’s respective n-way header
tags will be different. We use this information to mod-
ify the type of a 2-way conditional and its follow, so
that a simple “if condition goto label” can be emitted
during code generation.

For example, to restructure a 2-way conditional h f
in which one branch makes an unstructured exit from
a loop, we detect such branch by testing the following
two conditions:

1. h has a different loop header than f, and

2. 3's € succ(h) e there is a path from s to the latch
node of the loop enclosing h (s may be the latch
node).



If both conditions hold, then s is determined to be
the new follow for the conditional headed by h. If s is
the successor of the true branch of h, then the type of
the conditional is changed to be if. .else otherwise it
is set to if..then. This allows for the generation of a
goto as part of that branch.

Similar rules are created for unstructured entries
into a loop and n-way structures. We point out that
unstructured forward exits from an n-way structure are
not possible as any conditional within the n-way struc-
ture will have the same follow as the n-way node (by
construction).

Lastly, 2-way nodes that have a successor s reached
by a back-edge that was not structured as the latch
node for a loop are restructured. This case includes
that of an unstructured back-edge out of an n-way
structure. In this case, we set the new follow of the
2-way to be the successor not reached by the back-
edge. The type of the node is changed to be if..then
or if. .else, based on whether s is the successor along
the true or false branch.

Concrete details of the implementations of these al-
gorithms and examples are given in [15].

4. Sample generated code

Applying the data flow method to the example of
Figure 2 leads to the pseudo-C code on the left-hand
side of Figure 3. The right-hand side shows the code
after control flow analysis. This code is comparable to
the initial C code of Figure 1. In Figure 3, local vari-
ables have been given the names loc1 and loc2 as the
names were not available from the assembly code. A
few registers remain, these are of three types: registers
in the formal parameter list (which can be removed
by naming the formal parameters), registers that are
redundant (i.e. not used and hence can be eliminated
via dead register analysis), and registers that cannot be
eliminated and are equivalent to register-variables (e.g.
i0:=locl-loc2in strlen), hence they are replaced by
new named local variables in the procedure.

We applied the same techniques to optimized level
02 assembly code of the strlen program. The opti-
mized assembly code is shown in Figure 4, annotated
with ud and du chains, and the CFG for each routine.
The generated code after data flow analysis is on the
left-hand side of Figure 5, and after control flow anal-
ysis and variable renaming on the right-hand side. Tt
is clear from this code that although it is longer and
different to the one generated for the unoptimized case,
both programs are functionally equivalent to the initial
code of Figure 1.

As another example, consider the left-hand side of

%i0 strlen(%io )

{
locl := %i0
loc2 := locl
.LL2:
jeond ((([loc1]<<24)>>a24) != 0) .LL4
jump .LL3
.LL4:
locl := locl + 1
jump .LL2
.LL3:
%i0 := locl - loc2 strlen (arg0)
jump .LL1 {
.LL1: locl := arg0
ret loc2 := locil
} while (*locl '= 0)
locl := locl + 1
main( ) resO := locl - loc2
{ ret (res0)
%01 := %hi(.LLCO) ¥
locl := .LLCO
loc2 := strlen (locl) main()
%i0 := 0
jump .LL5 locl := &labelLLCO
.LL5: loc2 := strlen(locl)
ret ret
} }

Figure 3. Generated pseudo-C code after data
flow analysis for unoptimized assembly code
(left-hand side) and after control flow analysis
(right-hand side)

Figure 6, which shows the pseudo-C code generated
for the recursive fibonacci routine. This code was com-
piled using O2 optimization level. The right-hand side
shows the code after control flow analysis. In this case,
due to the base types used by the program (only inte-
gers) being the same as those available in the machine
(word), the generated code trivially supports the types
of the variables as integers.

5. Results

We tested asmZc against the assembly version of
the integer SPEC95 benchmark programs, and gath-
ered statistical data on the number and type of assem-
bly instructions that were transformed into high-level
instructions. The statistical information aids in com-
paring the complexity of recovery of HLL code, as ex-
plained in further paragraphs.

The benchmarks that were used for testing purposes
were:

e go: artificial intelligence; plays the game of Go

e m88ksim: moto 88K chip simulator; runs test pro-

gram

e gce: GNU C compiler; builds SPARC code

e compress: compresses and decompresses file in

memory

e li: LISP interpreter

e ijpeg: graphic compression and decompression



strlen: LiveIn={%00} LiveOut={}

12 ldsb [%001,%g2 du(%g2)=13
13 cmp %g2,0 ud(%g2)=12 du(cc)=14
14 be _delayed_l14c1l ud(cc)=13
ba _delayed_114c2
_delayed_l14cl:
mov %00,%g3 du(%g3)=24
ba .LL3
_delayed_114c2:
15 mov %00,%g3 du(%g3)=24
16 add %00,1,%00 du(%00)=18 du(%o00)=21 du(%00)=24
.LL6:
18 ldsb [%00],%g2 ud(%00)=16 ud(%00)=21 du(%g2)=19
19 cmp %g2,0 ud(%g2)=18 du(cc)=20
20 bne_a _annulled_120c3 ud(cc)=19

ba _annuled_120c4
-annulled_120c3:

21 add %00,1,%00 ud(%00)=16 ud(%00)=21
du(%00)=18 du(%00)=21 du(%00)=24
ba .LL6
_annuled_120c4:
.LL3:
24 sub %00,%g3,%00 ud(%00)=16 ud(%00)=21
ud(%g3)=-1 ud(%g3)=15
23 retl
main: LiveIn={} LiveOut={}
40 sethi %hi(.LLCO),%00
42 mov .LLCO,%00 du(%00)=41
41 call strlen,O ud(%00)=42
43 ret
strien

-

|

faH delayed 114c2:

ilway_delayed |14cl:

Tlway_annulled 120c3;
return_annuled_|20c4:

Figure 4. Optimized level O2 SPARC assem-
bly code for strlen program, annotated with
definition-use and use-definition chains

e perl: manipulates strings (anagrams) and prime
numbers in Perl.

The benchmark programs were compiled with gcee on
a SPARC V9 machine using the -S option to produce
assembly code. We compiled to assembly to have large
test assembly programs as we were unable to get sample
programs from industry. Two compilations to assem-
bly were made, one without optimization, and another
with optimization level O2. Figure 7 shows the num-
ber of assembly lines for each benchmark program, for
both unoptimized and optimized cases.

5.1. Data flow results

Figure 8 shows the results for the unoptimized ver-
sion of the benchmarks. For each program, the first

%00 strlen(%o0 )
{
jecond ( [%00] == 0 )
_delayed_114c1
jump _delayed_l114c2
-delayed_114c1:

%g3 := %o0
jump .LL3
-delayed_114c2:
%g3 := %o0
%00 := %00 + 1 strlen (arg0)
.LL6: {
jcond ( [%o0] != 0 ) if (*arg0 == 0)
-annulled_120c3 glbl := arg0
jump _annulled_120c4 else
_annulled_120c3: {
%00 := %00 + 1 glbl := arg0
jump .LL6 argl := arg0 + 1
_annulled_120c4: while (*arg0 != 0)
.LL3: arg0 := arg0 + 1
%00 := %00 - %g3 }
ret arg0 := arg0 - glbl
¥ ret (arg0)
}
main( )
{ main ()
%00 := %hi(.LLCO) {
%00 := strlen (.LLCO) locl := strlen (&labelLLCO)
ret ret
} }

Figure 5. Generated pseudo-C code from op-
timized assembly code (left-hand side) and
after control flow analysis (right-hand side)

%i0 fib(%io ) fib (arg0)
{

{
%10 := %io locl := arg0
jeond ( %i0 <= 2 ) _delayed_1l15c1 if (arg0d <= 2)
jump _delayed_115c2 argd := 1
.delayed_115c1: else
%i0 := 1 arg0 :=
jump .LL& fib(locl-1) +
_delayed_115c2: fib(loc1-2)
%i0 := 1 ret (arg0)
%10 := fib (%10 - 1) + fib (%10 - 2) }
.LL4:
ret
¥

Figure 6. Generated pseudo-C code for the
recursive fibonacci function from optimized
code (left-hand side), and after control flow
analysis (right-hand side)

Benchmark | O0 Asm LOC | O2 Asm L.LOC
go 108995 55035
m&8ksim 41307 22361
gec 384546 153004
li 16697 10250
iipeg 56440 28691
perl 58757 35885

Figure 7. Number of assembly lines of code
(LOC) processed by the asm2c tool.



column shows the original number of assembly instruc-
tions, and the second column shows the generated num-
ber of HLL assignment and call statements, as well as
simple conditionals. The average reduction rate was
66.63%, which clearly shows the code explosion gen-
erated by the compiler when emitting assembly code
without optimizations. These results are comparable
to results on an 80286 CISC machine, where a reduc-
tion in the number of instructions was 70% [3], and
with results achieved by the text compression method

on MIXAL code; 40% [10].

Spec95 w/o optimization
450000

400000 1

350000 1

300000 q

250000 1
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200000 1

150000 q

100000 q
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0
go m88ksim gce compress li ijpeg perl

Figure 8. Comparison results for unoptimized
assembly code

Figure 9 shows the results for the level O2 optimiza-
tion case. It is clear from the figures that the final dif-
ference in the number of instructions was small; with
only a 5.58% reduction rate. This small difference on
its own shows how well the compiler is doing at gen-
erating assembly code and that there is an almost 1:1
correlation between the average number of assembly
instructions and high-level instructions. Checking the
generated high-level code, it is clear that extra analysis
for optimized code is needed to improve the quality of
the recovered code, however, the code is valid code as
for generated. For example, a loop that was optimized
by loop unrolling, will be recovered as a loop with du-
plicated code throughout it; checking for duplicated
code and then folding the code would be an extension
to the analysis that would improve the quality of the
generated code. Nevertheless, the generated code is of
a high-level of abstraction and does not resemble as-
sembly code.

5.2. Control flow results

We collected data for the following types of control
transfer statements: 2-way conditionals, loops, n-way

Spec95 with O2 optimization

120000

100000 — q

80000 q

instr.

60000 q

40000 q

ol _anl

m88ksim gce compress

ijpeg perl
Figure 9. Results for level O2 optimized as-
sembly code

conditionals, and goto’s. Figures 10, 11, 12, and 13 pro-
vide comparative data based on the number of a given
control transfer statement; 2-way statements, loops, n-
way statements and goto’s respectively. 3 bars are used
to represent different information about a program, in
left to right order, the unoptimized regenerated C code,
the optimized regenerated C code, and the original C
code. The data for the regenerated C code was gath-
ered by asm2c itself, and the data for original C pro-
grams was gathered with the aid of scripts.

Recovered loops are a combination of 2-way condi-
tionals and goto statements. As can be seen in Fig-
ure 11, the number of loops in the original C programs
were normally higher than those recovered from unop-
timized and optimized assembly code. However, Fig-
ure 10 shows that the generated code contains more
conditionals and Figure 13 states that the generated
code contains more goto statements than in the orig-
inal C code. These figures imply that our loop recov-
ery algorithm can be improved in order to deal with
some of the 2-way conditionals and gotos that can be
transformed into a loop. However, these loops are the
unstructured ones and design decisions will most in-
variably lead to different C code.

The large number of goto statements is also due to
the fact that we are not recoverying short-circuit evalu-
ated expressions from the assembly code. We have also
noticed that redundant goto statements are generated
in the code—these are a legacy of the labels found in
the original assembly code and need to be removed by
an extra pass through the code.

5.3. Maintainability of the generated code

As can be seen from the examples in this section, the
generated code resembles the original C code in that
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Figure 10. Comparison of number of 2-way
Statements
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Figure 11. Comparison of number of Loop
Statements

high-level statements are used throughout the program
and no emulation of the original machine exists in such
generated code. However, the lack of meaningful vari-
able names and the lack of comments makes it hard to
understand the functionality of the program. Clearly,
if such names and comments do not exist in the as-
sembly code, they cannot exist in the recovered HLL
code.

Companies that provide a translation service will
make use of human resources to aid in this area. As re-
ported by Freeman [7], the Source Recovery company
makes use of any supporting information that clients
can provide them with, such as file layouts, source of
copybooks, JCIL programs, documentation, and pro-
gram and application specifications, to recover mean-
ingful variable names. This clearly makes the code
more maintainable and has no impact on the perfor-
mance of the application.

Informal comments received from software reengi-
neers who are familiar with both assembly and C code
points to the usefulness of the translation scheme as it

Number of HLL Switch/Case Statements

350

200

Switch/Case Statements

150 |

100

1| e,

gee 9o ijpeg li masksim perl vortex

Figure 12. Comparison of number of n-way
Statements
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Figure 13. Comparison of number of Goto
Statements

saves hours of hand-crafted translation time. When
asked which code would they rather maintain, they
pointed to the generated code as it was smaller than the
assembly version and it had control structures. They
thought that the generated code needs improvements
in the form of data types for variables (particularly
compound data types) and variable naming conven-
tions. However, there was no general agreement as to
which naming convention to use, and it was thought
that changing names of variables by hand would be
needed. Also, comments in the code are needed and
the maintainer would need to add these. It was gener-
ally believed that an interactive tool would be helpful
for making changes to the generated code, so that the
tool could check the impact of changes on data types
and the like. Overall, the generated code was rated
useful and it was acknowledged that documentation,
data types and name changes are required.



6. Previous work

Recovery of HLL code from assembly code has not
been widely studied in the literature. A few techniques
were studied in the 70s, mainly in what we would
consider nowadays toy languages: MIXAL and Var-
ian Data Machine’s assembler. Both techniques were
studied within a decompilation of assembly language
framework. Results in this area have been based on
forward substitution in order to eliminate intermedi-
ate loads and stores; examples are [10, 9, 3].

In the area of control flow analysis, there have been
algorithms to structure HLL code that uses goto’s, into
a more structured form. Baker [2] restructured the con-
trol flow of Fortran programs to remove goto’s. Licht-
blau [12] made use of graph transformations to restruc-
ture the flow of control of a program. More recently, Ci-
fuentes [4] recovered the underlying control structures
of disassembled assembly code with general structuring
algorithms. Proebsting [13] recovered the underlying
control structured of Java bytecode programs by using
pattern matching techniques.

A few commercial assembler to C or COBOL trans-
lation tools are available in the market. For exam-
ple, ASM370C Translator by Micro-Processor Services
translates mainframe assembler 360 or 370 into C, and
XTRAN by Pennington Systems translates PDP 11 as-
sembler to C. More recently, the Source Recovery com-
pany offers machine and assembly code translations to
COBOL for IBM 360 machines [8]. Pattern matching
techniques are used to recover COBOL code based on
the code that the compiler generates.

7. Summary and conclusions

We have presented the properties underlying algo-
rithms for the translation of assembly code to im-
perative high-level language code. The aim of the
techniques is to remove all low-level dependencies on
the machine, such as registers, stacks and condition
codes, and recover high-level abstractions such as con-
trol statements, assignments, expressions, parameters,
and function calls. Simple type recovery is also sup-
ported.

The results show that a high percentage of high-
level language statements and control structures are
recovered. There is room for improvements with the
recovery of unstructured code though. From a mainte-
nance point of view, asm2c is at the initial stage of a
source code recovery framework. Human resources are
required to enhance the documentation and readability
of the recovered code, and lift it up to a maintainable
level. asm2c provides maintainers with a quick way of

translating a large percentage of their assembly code
into a high-level language representation.
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