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ABSTRACT

Portable or embedded systems as well as submicronic tech-
nologies have made the power consumption criterium cru-
cial. Memory is known to be extremely power consuming.
Moreover multimedia applications are memory intensive ap-
plications. Therefore, we propose new techniques to opti-
mize a behavioral description of multimedia applications be-
fore the hardware/software partitioning (Codesign). These
transformations are performed on “for” loops that constitute
the main parts which handle the arrays of the multimedia
code. This paper presents an optimal algorithm to reduce
the use of temporary arrays by loop fusion. Although the
algorithm is not polynomial, experiments have shown that
it is very efficient.

1. INTRODUCTION

Code transformations for the design of an integrated sys-
tem can be performed at several levels. For instance, Boolean
functions minimization can be considered at the gate level.
At the Register Transfer Level, transformations are per-
formed on the control state charts by splitting or merging
nodes. Moreover, at every stage of the design we can apply
transformations used in software compilers [1, 2].

In this paper, we will focus on the design of data flow
dominated embedded systems. These systems use signals
and data stored in arrays such as images, video and sounds.
This type of applications consumes memory for multidimen-
sional data storage. More than a half of the surface of in-
tegrated systems of this kind is filled by memory. Memory
is known to be power consuming. Therefore, this massive
memory made power consumption criteria control compul-
sory. Power optimization by memory optimization can be
done in several ways: the reduction of the size of the memory
and improved data-movement strategies over the memory
hierarchy.

Once the Hardware-Software partitioning is done, the mem-
ory has already been divided. It is therefore very important
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to make optimizations before this partitioning in order to
deal with all the memory in homogeneous vision. Moreover,
it allows to optimize both types of memories, the one that
will be included in hardware and the one controlled by soft-
ware.

Methods and tools defined in this paper are specific to
Codesign [3] because in the case of software-only compila-
tion the memory is already instantiated in hardware and
cannot be tuned. Moreover, the memory is rarely shared in
software; a memory cell is used for only one array cell (un-
less explicitly stated when the designer uses the same name
for two non-overlapping objects).

On the opposite, during silicon compilation the physical
memory is optimized all along the design chain. In-Place
Mapping [4] can allow to share memory by overlapping ar-
rays when possible, memory allocation can select memory
modules upon several criteria (size, number of ports) and as-
signment computes hardware addresses for accessing arrays
in memory [5, 6, 7). The memory is instantiated on-demand
and specific modules can be used or even built specifically.
This will be the main assumption for memory optimization
by code transformations.

All the optimizations undertaken during silicon compila-
tion improve the design starting from a given description.
However, a preprocessing source-to-source code transforma-
tion similar to the one used in software compilation can be
applied on the design in order to improve the efficiency, or
enable, further optimizations. The source-to-source trans-
formations we propose are target independent code opti-
mizations. We do not consider specific modeling of the tar-
get except that it has, at least, two levels of memory [8], in-
cluding a cache memory. These transformations are good on
general principles and are a complement to transformations
that are designed for a specific target platform on which
more precise information, such as cache line size or number
of registers, can be used to drive further loop transforma-
tions [9, 10].

The handling of arrays is done mainly through “for” loops
in multimedia applications. These loops form the critical
part of the optimizations we want to apply at the Codesign
stage. We propose to transform the algorithmic description
of a design by exploiting and adapting techniques similar
to the ones used in automatic parallelization [2] so as to
reduce the size of needed memory and the associated power
consumption by enabling powerful optimizations. Further
optimizations have to be applied later in the design flow
when more architectural parameters are set for the design
in order to complete the optimization process. However,



these other steps and interactions between them are beyond
the scope of this article.

In this paper, we will present a “for” loop transformation
to optimize memory size. Loop fusion is a program trans-
formation that collapses several loops into one. Memory
minimization by loop fusion is obtained in our case by re-
ducing the size of temporary arrays that are typically used
to store intermediate results during multimedia processing.

An array written in a loop and read in another one must
be stored in memory between these operations. In order to
be removed from memory an array must be produced and
used within the same loop nest and it must not be used
elsewhere in the code. Once the statements that produce
and consume values stored in an array have been merged
within the same loop body several techniques can be used
to reduce the size of this array or even to completely remove
it.

For instance, scalar replacement [11] techniques can re-
move an entire array from the application’s memory foot-
print as shown on Figure 1. Scalar replacement is a trans-
formation that uses dependence information to find reuse of
array values and expose it by replacing the references with
scalar temporaries.

L1: for i=1 to n

Alil = ...
endfor L12: for i=1 to n
L2: for i=1 to n a= ...
.= f(A[i]) ...o= f(a)
endfor endfor

(a) source code (b) after fusion

Figure 1: Scalar replacement after loop fusion

On Figure 1(a) the loop L1 produces values stored in array
A and the loop L2 consumes these values. Merging these two
loops (Figure 1(b)) allow to replace the array A, if not used
elsewhere in the code, by a scalar a thus reducing the size
of needed memory for the application.

Dependencies may not allow to remove completely an ar-
ray by scalar replacement. In such cases we can apply intra-
array storage order optimization [4]. This technique calcu-
lates an address reference window for a given storage order
of a multi-dimensional array. Given the size of this window,
we can “fold” array elements onto the same locations and
hence increase the memory reuse. Intra array storage opti-
mization is illustrated on Figure 2. The array A from source
code on Figure 2(a) is replaced by a window of 2 values a[0]
and a[1] on the fused code (Figure 2(b)).

L1: for i=1 to n
Alil = ...
endfor L12: for i=1 to n
L2: for i=1 to n ali%2] = ...
.= £(A[i-1],A[i]) . = f(ali%2-11, ali%2])
endfor endfor

(a) source code (b) after fusion

Figure 2: Intra-array storage optimization

Loop fusion increases the number of statements and ac-
cessed arrays within a loop nest. Sometimes loops access
more data than can be handled by a cache. Further code
transformations are needed to complete the optimization

process once the memory hierarchy parameters such as the
number of available registers or cache size and cache line
size are known. In these cases, the iteration space of a loop
can be blocked into sections whose reuse can be captured
by the cache. Strip-mine-and-interchange [2] is a transfor-
mation that achieves this result. Its effect is to shorten the
distance between the source and sink of a dependence so
that it is more likely for data to reside in the cache when
the reuse occurs. Extensive studies for cache optimizations
can be found in [11, 9].

2. MEMORY MINIMIZATION BY LOOP
FUSION

The algorithm we present in this section minimizes in an
optimal way the size of the temporary arrays used in data
dominated applications such as multimedia ones.

Previous algorithms for performing loop fusion have only
considered the case when all loop headers are conformable [12,
13]. We consider a wider class of problems where the loops
being considered for fusion need not have conformable head-
ers. Loops with non conformable headers can be fused by
using conditional statements to control the execution of op-
erations within the loop nest. Both scalar replacement and
intra array storage optimization techniques can handle con-
ditional control flow.

The algorithm for maximal reuse by loop fusion proposed
by McKinley and Kennedy in [12] has been proven NP-Hard.
Our problem is different from mazimal reuse because we do
not constrain all edges to be maximaly fused but the com-
plexity still remains exponential. We propose an algorithm
that is efficient in practice and solves our problem with an
optimal solution. A survey on loop fusion algorithms com-
plexity can be found in [14].

2.1 Modeling the Problem

We approximate memory size requirement by the maxi-
mum size of time overlapping arrays. Memory used by non
time overlapping arrays can be reused by inter storage op-
timization [4]. Our Memory Cost function is defined as fol-
lowing:

M Cost =
emoryCos mazx ' Z
a;eLive arrays(t)

Size(as)

Where t is a time slot and Size is the storage size of an ar-
ray. Figure 3(b) represents the life time of arrays computed
on Figure 3(a) source code. MemoryCost is maximized dur-
ing loop L4 (see figure 3(b)) and is equal to sum of the size
of arrays al, a2, a3 and a4.

We use a Data Flow Graph (DFG) (G = (V, E, A)) rep-
resentation for modeling the dependencies [2]. Graph nodes
(V) represent the loop nests and edges (E) represent data
dependences between these loops. A is the set of all ar-
rays handled in the source code. Each array a; € A has an
associated weight size(a;).

A data dependence between two array references is repre-

sented by a hybrid distance/direction vector § = {61 ...0,}
with the most precise information derivable. The vector
component represents the data dependence corresponding
left to right from the outermost loop to the innermost one
enclosing the reference.



L1: for i=1 to n al
®

alfi] = ...

endfor

L2: for i=1 to n a2
a2[i] = f2(a1l[il)

endfor [ 2N J

L3: for i=1 to n a3
a3[i] = £3(a2[i+1])

endfor L 4

L4: for i=1 to n aa

a4[i] = f4(ai1l[i-1]1,a3[i]) v +-4----=
endfor @
L5: for i=1 to n
. = £f5(a2[i],a3[i],a4[i])
endfor

(a) source code (b) array life time

Figure 3: Array variables life time

Figure 4 represents the dependence graph computed from
the source code on Figure 3(a). Loops L2 and L3 cannot
be fused due to the dependence carried by a2. If the loops
were merged the code would read a2[i+1] (from L3) before
its computation (from L2) in the same iteration.

Two nodes can be merged if and only if none of the depen-
dence are reversed in the fuse loop compared to the original
code. An edge that carries a dependency which prevents the
fusion of its source node and its destination node is called a
fusion preventing edge (FPE) and is marked with a slash.

Each edge is labeled by the name of the array a; € A that
carries the dependence and is weighted by the size of this
array. An edge is labeled by only one array and if there
are multiple array dependencies between two loops then the
graph becomes a multigraph with potentially multiple edges
between two nodes.

Figure 4: Modeling dependences

Isolated statements are also considered as nodes. Depen-
dences between code statements and loops are preserved as
we perform code reorganization during the transformation.
An isolated statement will be represented in the graph as a
regular node but all its incoming and outgoing edges will be
marked as fusion-preventing ones.

An array can be removed from the memory, or at least
minimized in size, if we can fuse all the loops that write
into it with the loops that are reading its values. A remov-
able array is marked with a star on the representations (see
Figure 5).

2.2 Removable Arrays Detection

In order to remove an array from the program by fusion
we need to fuse all the nodes connected by an edge which
is labeled by this array in the DFG. An array cannot be
removed by fusion there exists an edge e = (u, v) labeled by
this array and there exists a path from u to v in the DFG
that contains a FPE.

In order to detect all the arrays that could be removed by
loop fusion we perform a transitive closure on the DFG as
can be seen on Figure 5.

Figure 5: Transitive closure of the DFG for remov-
able array detection

Array a2 cannot be removed because there is a direct FPE
between loops L2 and L3. The same situation occurs for
array al where there is a path between L1 and L4 that goes
through the FPE (L2,L3). Removing the array al from the
memory would require the fusion of loops L1, L2 and L4 and
would create a cycle between the newly fused node L124
and L3 in the dependence graph. Such a cycle is not allowed
in order to preserve the precedence constraints imposed by
data dependencies.

Arrays a3 and a4 are marked with a star as they can
be removed by merging loops L3, L4 and L5. We call by
extension starred edges an edge that carries a dependence
on a removable array.

2.3 Connicts Detection and Resolution

The previous step can detect if an array can be removed
from the memory by loop fusion but the detection is local
and some problems can arise when we consider the remov-
able arrays altogether. For instance, on Figure 6(a) arrays
a and b can be removed if we consider them separately. Un-
fortunately, removing both at the same time is not feasible.
The situation can be more complicated as can be seen on
Figure 6(b) where the fusion cannot be performed without
creating a dependence cycle between loops (L1,L3,L6) and
loops (L2,L4,L5).

In order to complete the fusion process we need to solve
all possible conflicts by reducing the set of starred arrays
without compromising the global optimality. This resolu-
tion is done in two steps, the first one identifies all possible
conflicts in the graph and the second one solves all these
conflicts in a global optimal way.
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(b) conflict path

(a) direct conflict

Figure 6: Conflict between removable arrays

2.3.1 Congicts Detection

Problems arise when several potential removable arrays
are located on a cycle of the graph while part of this cycle
contains a FPE. Given p an elementary cycle of the graph
with a given direction over this cycle we denote ™ the set
of edges in the cycle oriented toward the cycle cover direc-
tion, p~ is the set of edges oriented the other way round
(see [15] for more details). We can associate to p a vector

—

i = (p1, p2, . .. pyg|) such as:

+1 ifuept
=< —1 ifuep”
0 ifuguup

Note that —ﬁ is also a vector associated to the cycle u
with a different cover direction.

PROPOSITION 1. In order to solve all possible problems
that would create an illegal fusion we need to detect all undi-
rected elementary cycle p of the graph such as 1 is composed
in the following way:

e all +1 (resp. —1) are starred edges
e at least one —1 (resp. +1) is a FPE

PRrROOF. Assume that we have a fused graph G that is ille-
gal. We want to prove that this original (unfused) graph was
composed of, at least, one cycle such as described in Propo-
sition 1. A fused graph G is illegal if it contains an oriented
dependence cycle pq. This dependence cycle is composed
of FPE or unstarred edges since all the starred edges have
been fused. As there was no dependence cycle before the
fusion (the original graph is a DAG) the last edge es that
has been fused is starred and is oriented in a direction that
prevents the original graph from being cyclic. Thus, the

vector p’ associated with the undirected cycle composed of
U es corresponds to the definition given in proposition 1.
Now we want to prove that if there exists a non oriented
cycle in the original graph that follows the proposition 1 the
graph resulting from the fusion of all the starred edges will
produce an illegal fused graph. Let us suppose that we have
fused all but one starred edges from an undirected cycle p

to produce a graph G’. The vector 1’ in G’ has only one +1
(resp. —1) that corresponds to a starred edge and at least

one —1 (resp. +1) that corresponds to a FPE. If we fuse
the last starred edge then we produce a directed cycle in the
resulting graph composed of all the edges, of which at least

one was an FPE, that were marked —1 (resp. +1) in p/. [

Cycle detection algorithm. We perform cycle detection by
exploring the graph for each edge e = (u,v) that is fusion
preventing by looking for all cycles from u to v that follows
the proposition 1. This implies that we will look for all the
cycles p for which 1 contains only starred edges in pt.

In order to speed up the exploration we use the property
that we can stop the exploration on a path p as soon as we
encounter an edge in p that is not starred.

exploration(G = (V, E) k,u,v)
begin
mark[k] < true
for all t € V do
begin
if t =v and t # u then
C — CU{v € V|mark[v] = true}
else if e = (k,t) € E and e is starred
and mark[t] = false
exploration(G,t,u,v)
else if e = (¢, k) € E and mark[t] = false
exploration(G,t,u,v)
end
mark[k] < false
end

begin
C—10
for all e = (u,v) € V
exploration(C,u,u,v)
end

Figure 7: Graph exploration for conflict detection

We denote C the set of all cycles detected during the ex-
ploration of the graph. The next step will solve simultane-
ously all the dependency problems within these cycles.

2.3.2 Integer Linear Programming Consict Resolu-
tion

In this section we present the ILP formulation [16] for
solving dependency cycles conflicts detected in the previous
step of the algorithm.

Once all the cycles have been detected we have to solve
the global problem to decide which array will be taken out
of the set of removable arrays.

We associate a binary variable x4, to each starred array
a; that could be removed but which has been included in a
cycle during the previous step. If x4, = 0 then the array a;
will be considered for fusion otherwise (z,, = 1) the array
will cease to be starred. For multi-graphs (for instance, k
edges labeled a1, as,...,ar) between two nodes v and v, a
new variable x,, is introduced to resume the arrays on this
multi-edge. A variable x,, will be set less or equal to each
variable Zq, ...Zq, associated with the arrays of the multi-
edge. If zy, is set to 1 (the multi-edge is removed from
a path) then all associated variables will also be set to 1
and all arrays will be unstarred. Otherwise a variable xq,
can be set to 1 without interfering with other arrays on the
multi-edge (equation 3).



For each detected cycle u € C' we need to decide which
array carried by the edges in i will not be starred anymore.
Thus the sum of all the variables x,, in the /1+ set of a cycle
must be greater than or equal to 1 (equation 2).

The objective function of our ILP is thus to minimize
the sum of the size of arrays that have to be removed from
the set of all possible starred arrays detected in section 2.2
(equation 1).

min Z S12€q; * Ta, (1)
a; EA
S w1, VueC (2)
(u,v)€pt(c)
Tuy < Lay, Va; € (’U,, ’U),V(U, U) S (3)
Ta, € {0,1}, Va € A (4)
ZTuw € {0,1}, V(u,v) € E (5)
The ILP formulation given by (1), (2), (3), (4) and (5)

minimizes the size that cannot be kept starred due to de-
pendence constraints in a graph.

Values z,, = 1,Vi are always a feasible solution for the
problem. Furthermore any feasible solution has a cost

E Stz€q; * Ta; > 0

a; EA

which ensures that an optimal solution always exists, be-
cause of this lower bound.

2.4 Graph Clustering and Fusion

All the edges that are still starred can now be fused. The
only remaining step is to compute the clusters that will con-
stitute the transformed dependence graph nodes. We have
to ensure that if two nodes v and v will belong to the same
cluster then all nodes that belong to a directed path from
u to v will be also taken in the cluster. This step can be
performed efficiently by computing a modified transitive clo-
sure in which if there is a path u = v, a path v — w and a
path w — v then u, v and w will be in the same cluster.

Code generation can be performed by writing the code for
each loop following the numbering given by a simple order
such as the height defined as follow:

h(z) = 0ifd (z)=0
~ | max {h(y),y — = € E} + 1 otherwise

Figure 8 represents the modified dependence graph and
the code corresponding to the loop fusion. Arrays a3 and
a4 can be now replaced by scalars within the loop L’3.

3. EXPERIMENTATIONS

We have implemented this algorithm and tested it using
randomly generated graphs. We have chosen to generate
graphs that are a lot more complex than graphs that can be
found in real applications. Generated graphs were ranging
from 10 to 30 nodes for which the number of edges was twice
the number of nodes. Each edge has the probability of 1/3 to
be fusion preventing and all weights were randomly chosen
between 1 and 100. Arrays were constrained to belong to a
path (writing in an array cannot be done by two potentially
parallel loops). The number of in-edges (edges pointing to a
node) was limited to 10 for each node as well as the number
of out-edges (edges going out of a node). This limit is very

L1: for i=1 to n
al[il=...
endfor
L2: for i=1 to n
a2[il=f2(a1[i])
endfor
L’3: for i=1 to n
a3[i]=f3(a2[i+1])
a4[i]=f4(a1l[i-1],
a3[i])
...=f5(a2[i],
a3[i],a4[i])

= endfor

(a) clustered depen- (b) modified code

dence graph

Figure 8: Clustering and code output

high compared to real application codes and plays a major
role for the cycle enumeration problem.

Tests were done on 21,000 different graphs. We used the
ILP solver LP_SOLVE freely available from its ftp site [17].
Although the cycle enumeration step is exponential in the-
ory as well as the ILP resolution, we achieved an average
calculation time of 0.050 seconds per graph (including cycle
enumeration and ILP resolution) on a Pentium II running
at 450 MHz. The average potential gain in size (arrays that
were completely fused) was 60.7% and the average number
of fused arrays was 61.8%.

4. FUTURE WORK AND CONCLUSION

We have presented in this paper an optimal algorithm
to minimize the memory size needed by temporary arrays in
an application. This algorithm has a theoretical exponential
complexity due to its cycle enumeration step and its Integer
Linear Program but is very efficient in practice. Further-
more, real life problem size are usually small as the number
of nodes in our graph represents the number of loop nests
in a program.

Our memory optimization cost function, unlike many oth-
ers in the literature, does not rely on any memory hierarchy
parameter and loop fusion for memory minimization can be
applied as a general preprocessing step before any other op-
timization.

As it is a source to source transformation it can be eas-
ily integrated to an existing CAD tool-chain as a design
preprocessor that can be run prior the traditional design
flow. Thus, it will enable new optimizations obtained us-
ing existing memory and power management techniques in
CAD tools. The power and memory interest of this au-
tomatic approach is on the one hand to reduce the design
time by extracting optimizations for the description and on
the other hand to improve the development quality by a
tool which will propose interactive transformations that a
designer could have missed.

We would like to combine the present work with our loop
alignment techniques developed for memory accesses opti-
mization [18]. Loop alignment can help to remove FPE from
the original graph and can also reduce the dependence dis-
tance between statements. Loop fusion combined with loop
alignment improves data locality within a loop nest. Once



a loop has been aligned, improved scalar replacement and
intra array storage optimization results can be achieved over
the data for both memory size and data locality.
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