
Loop Alignment for Memory Accesses Optimization

Antoine Fraboulet
LIP, ÉNS Lyon

69364 Lyon Cedex 07
France

Antoine.Fraboulet@ens-lyon.fr

Guillaume Huard
LIP, ÉNS Lyon

69364 Lyon Cedex 07
France

Guillaume.Huard@ens-lyon.fr

Anne Mignotte
LIP, ÉNS Lyon

69364 Lyon Cedex 07
France

Anne.Mignotte@ens-lyon.fr

Abstract

Portable or embedded systems allow more and more
complex applications like multimedia today. These appli-
cations and submicronic technologies have made the power
consumption criterium crucial. We propose new techniques
thanks to which we can optimize the behavioral description
of an integrated system before the hardware/software par-
titioning (Codesign). These transformations are performed
on “for” loops that constitute the main parts of the multime-
dia code which handle the arrays. We present in this paper
two new (polynomial) techniques for minimizing memory
accesses in loop nests by data temporal locality optimiza-
tion.

1 Introduction

The design of embedded or integrated systems has be-
come more and more complex, for instance with the appear-
ance of multimedia and data dominated applications. This
type of applications consumes a lot of memory for multidi-
mensional data storage like images, sound or video. Thus
more than a half of the surface of the integrated systems
of this kind of application is filled by memory. This mas-
sive memory usage combined with submicronic technolo-
gies have made power consumption criteria control com-
pulsory. Manual experimentations [2] have shown impor-
tant consumption gains by code transformations on the al-
gorithmic description of the design (MPEG4 experimenta-
tions have allowed a decrease of a factor 4 on average con-
sumption and of a factor 10 on peak power). Experiments
have also shown the relative cost of a memory operation
compared to arithmetic computations (for example, a trans-
fer from an external memory consumes 33 times more than
a 16 bits addition).

Figure 1 shows where in the development flow global
memory optimizations can be applied on a design. Once
the Hardware/Software partitioning is done, the memory is

already divided. It is therefore very important to make op-
timizations before this partitioning in order to deal with all
the memory in homogeneous vision. We want here to opti-
mize both types of memories, the one that will be included
in hardware and the one controlled by software. The han-

Optimizations
�����
�����
�����

�����
�����
�����

�������
�������
�������

�����
�����
�����

�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������	

	

 �����������

�����������
�����������
�����������

Software

Compilation

Partitioning

Hardware

Synthesis

Description
Algorithmic

Figure 1. Loop transformations in the Code-
sign flow

dling of data is done mainly through “for” loops in this kind
of design. These loops form the critical part of the opti-
mizations we want to apply at this stage. We thus propose
to transform the algorithmic description of a design by us-
ing techniques similar to the ones used in automatic paral-
lelisation [6, 7, 1] (see also [15] and [16]) so as to reduce
the consumption in power and size due to memory.

2 Memory Optimization Criteria and Asso-
ciated Techniques

Target architectures and applications impose a complex
memory hierarchy: registers, hardware and/or software
caches, on-chip or off-chip memory [3, 13]. A simplified
view of the target architecture is shown on figure 2. The

1

power consumption of a memory access increases with the
level from which the data has to be fetched. An access to an
external memory consumes more power than an access to
an on-chip memory. Memory hierarchies are well exploited
if we can achieve a good data temporal locality. This local-
ity represents the amount of time between two successive
accesses to the same memory location (either write-read or
read-read). At the level of abstraction at which we apply
loop transformations, we can only represent this parameter
in an abstract manner. We can see on the figure 3(a) a source

bus

DSP core
 or
Generic Processor

Synthesized Hardware

Memory module

External (Off-Chip) Memories

Internal (On-Chip)

Memories

Figure 2. Target Architecture

code composed with 3 different loops. The first loop com-
putes the values stored in the array b, these values are then
read in the third loop. We can have different approaches to
measure temporal locality.

The first one would be to consider loops as atomic groups
of instructions. As arrays are manipulated through loops,
this implies that we do not consider locality between mem-
ory locations but we use a coarser grain represented by com-
plete arrays. This level of granularity is used for global
code transformations such as code moving or loop merg-
ing. The figure 3(b) shows the first transformation we can
apply on the source 3(a) in order to improve temporal local-
ity. The last loop has been shifted up in order to tighten the
production and consumption of the array b. The next step
is to merge the first two loops to have a common iteration
space where the consumption of a value b(i) can be made
nearer from its production. The figure 3(c) shows the three
loops merged into one. The third loop has been also merged
because it uses values from the array a which are also in
use in the second loop. The second way to represent tem-
poral locality is to look inside loops. This representation
allows us to consider subsets of the arrays handled by the
loop. This level of abstraction can be used to perform local
loop transformations such as interchange, skewing, folding
or alignment. On the example 3(c) for each iteration, the
loop produces the value b[i], c[i], d[i] and uses the
values b[i-1], a[i] and a[i+1]. The next transfor-
mation step will take into account values that are produced
and consumed in different iterations of the loop. We call
this gap of iterations a distance. A new value is produced at
each iteration and must be kept into a separate foreground

for i=1,n
b[i]=a[i]

for i=1,n
c[i]=a[i+1]

for i=1,n
d[i]=b[i-1]

(a) source code

for i=1,n
b[i]=a[i]

for i=1,n
d[i]=b[i-1]

for i=1,n
c[i]=a[i+1]

(b) moving code

for i=1,n
b[i]=a[i]
d[i]=b[i-1]
c[i]=a[i+1]

end for

(c) loop merging

d[1]=b[0]
for i=2,n

b[i-1]=a[i-1]
d[i]=b[i-1]
c[i-1]=a[i-1]

end for
b[n]=a[n]
c[n]=a[n+1]

(d) loop alignment

Figure 3. Example of code transformations:
moving, loop merging, loop alignment.

(on-chip) memory buffer until its last use by another state-
ment of the loop. The number of “memories” needed to
store a value computed and used in different iterations is
given by the amount of iterations the value has to cross.

Figure 3(d) shows the loop once aligned to optimize the
use of the arrays b and a. We can see that values of the
array b are consumed as soon as they are produced. This
optimization increases the probability we have to find the
value b[i-1] in a very high level of the memory hierar-
chy. Optimization has also been performed in the use of the
array a: the value a[i-1] has to be fetched from distant
memory only once per loop iteration. We will use and de-
velop this measure of temporal locality for loop alignment
in the next section.

Memory is by itself a source of power consumption. It
is also important to reduce the size of the memory needed
by an application. A reduction of the amount of needed
memory can decrease the number of levels in the memory
hierarchy. A significant reduction would ideally allow to
store everything in the on-chip memory, thus enabling the
removal of the off-chip memory. This optimization can be
done only if the consumption of a value appears right after
its production. The array b on figure 3(d) can be completely
removed from memory if the array is not used elsewhere in
the code. This optimization of memory size is also associa-
ted with loop alignment.

Loop transformations at this stage of the codesign flow
can do a lot by themselves. But they cannot perform all the
needed transformations. More powerful optimizations—in
terms of power and memory size gain—can be achieved in

2

later steps of the compiling flow, once the design has been
partitioned. Optimizations like in-place mapping [4], mem-
ory distribution across modules [13], cache level optimiza-
tions [11] and many others [3, 13] have to be done after-
wards. These optimizations are enabled by high level trans-
formations done before the hardware-software partitioning.
Optimization criteria developed in the next section have
been defined considering that these transformations are per-
formed afterwards.

We present in the next two sections 3 and 4 two differ-
ent algorithms for memory accesses optimizations. The first
one minimizes the number of buffers needed between iter-
ations of a loop by loop alignment. The second one finds a
minimal bound for all dependencies of a loop.

3 Buffers Minimization in Loop Nests by
Loop Alignment

The algorithm we present in this section minimizes the
size of the foreground memory needed to store values that
are computed and used in the same loop. This minimization
can also be seen as optimizing the average distance in terms
of temporal locality between read and write accesses to the
same variable in different loop iterations. This technique is
not only useful to keep values in a memory near the top of
the hierarchy (where memories are smaller and less power
consuming) but it can also decrease the memory size needed
by the application (a dimension of an array can be reduced
to a scalar value for example).

3.1 Modeling the Problem for a Single Loop
(Monodimensional Case):

We use a Reduced Dependence Graph (���������
	�����)
representation for modeling the problem. Graph nodes (�)
represent the statements of the loop, edges () represent
data dependences between these statements. Each depen-
dence edge � is weighted by a distance ��� which corre-
sponds to the number of iterations between the two ac-
cesses. These distances are positive as a program cannot
use a value before its computation. We restrict ourselves to
the case of uniform (constant) forward (write-read) depen-
dences over the loop to be able to use retiming [12] tech-
niques.

Example: we can see on figure 4 that there are two de-
pendences of distance 2 in the first loop to statement S3
from statement S1 and S2. There is also a dependence
of distance 1 in the inner loop from statement S4 to state-
ments S1 and S2. The value produced by the statement S3
(c[i]) is consumed in the same iteration by the statement
S4. There is a dependence distance of � between these last
two statements.

for i=1,n
S1: a[i]=2*d[i-1]
S2: b[i]=3*d[i-1]
S3: c[i]=a[i-2]+

b[i-2]
S4: d[i]=2*c[i]

end for;

(a) source code

0

S3

S4

1

2 2
S1 S2

1

(b) dependence graph

Figure 4. Modeling dependences in a loop

The number of buffers needed for a statement repre-
sented by a node � depends on the dependence length � �
of all its out-edges � . This amount is given by the following
relation.

Cost per node:��� � ���������� �! "$#&%(' �)� �*� �+-, �
The total number of buffers across iterations in the graph is
thus: .0/2143 �*�5����6�!%87 � �:9
Minimizing

.0/2143 ���5� can be solved in polynomial time, as
we will see in the section 3.3, by using retiming techniques.
A retiming value ; � (integer) is associated with each node� . This weight represents a shift (or a delay) in a number
of iterations for the associated statement. Therefore apply-
ing a retiming on a graph modifies dependence distances.
The graph after retiming can be rewritten into a code, func-
tionally equivalent, but with new dependence distances ��< �
given by the following relation:

� < � �=� �?> ; "A@ ; � � �B� �+-, �
We must define a constraint in order to obtain a legal retim-
ing on the graph, dependence distances after retiming must
be positive (we cannot use a value before it is computed)

�C< ��DE�F�HGI�5JK	
3.2 Integer Linear Program Formulation:

In this section we present the ILP formulation for the
problem of minimizing

.0/2143 �*�5� .
min 6�!%87 ��� (1)

�)� > ; " @ ; � DL�M�NGO�P�Q�*�H� , �RJS	 (2)�T� DU�)� > ; " @ ; � �VGO�P�Q�*�H� , �RJS	 (3)

3

The objective function of our ILP formulation is given by
the relation (1). The constraints (2) ensure that we have a
legal retiming. The cost of a node after retiming is given
by the inequation (3). As we cannot use a ����� function in
the constraint—the problem would not be linear—we must
define the cost of a node � to be greater or equal to the cost
of each out-edge. Minimizing (1) ensures that the maximal
value is reached by �T� , giving the expected cost for each
node.

The ILP formulation given by (1), (2) and (3) minimizes
the number of buffers needed across iterations of the loop.

Values ; ��� and �T� � ����� ���?� �("$#�%(' �C� are always a
feasible solution for the problem. Furthermore any feasible
solution has a cost

� �!%87 ��� D � which ensures that an
optimal solution always exists, because of this lower bound.

Size of the formulation:� variables (; � and �T�): ��� ��� ;� constraints: ��� 	�� .
3.3 A Polynomial Algorithm

We denote
. �	� � ��
 the row vector of node costs, � ��4; �
 the row vector of node retiming values and � �� ���

the row vector of edge weights. The matrix representation
of the previous ILP formulation is given by the relation (4).��� ������� ����������� �"!!!! �#� ���%$'&)((� (�*,+�- � &/. . ��0

(4)

where the matrix 1 is the nodes-edges incidence matrix
(each column has one and only one +1 and -1, see [10])
of the reduced dependence graph � � �����
	��
��� and the
matrix 132 is defined as follow:465879#: ;=<?> if

5 9@: ; <A>5879#: ;=<CB otherwise
(5)

where the DFE G are the elements of 1 (the matrix 1H2 has the
same dimensions as 1 but we keep only its positive values).
This corresponds to the fact that we define the cost � � only
for out-edges of a node and not for in-edges.

The matrix I �KJ @ 1 1� 132ML can be transformed

into the matrix IONK� J @ 1 1 &� 132PL by a unimodular

transformation (by subtracting the last � �Q� rows from the
first � ���). The matrix ION is a nodes-edges incidence matrix
and is totally unimodular [10] (every square regular subma-
trix of IRN has a determinant of -1, 0 or +1). As we have
transformed I to ION by a unimodular operation the ma-
trix I is also totally unimodular and we can conclude that
the ILP formulation (4) admits an integral optimal solution

in the rationals and that it can be solved by a polynomial
algorithm [14, 5].

In practice, the size of the ILP is likely to be small (pro-
portional to the number of statements in a loop that have
array accesses). Although this problem can be solved very
efficiently by any ILP solver we will show how to use the
dual form of the problem (4) to reduce it to a minimal cost
flow problem [14].

Interpretation of the Dual Problem: the dual form of
the problem (4) is given by the problem (6) [14, 5]. S andT

are row vectors of size � 	�� representing the new set of
unknowns U � and V � .��W X%��� &/. . �/��Y Z%� !!!! [��Y Z\�] � $ � � + ��Y Z�� - � 0

(6)

We first change the problem to have a minimization prob-
lem instead of a maximization one. The transformed prob-
lem is given in equation (7).��� �%��� . &�. �/��Y Z%�)!!!! [�@Y Z\�] � $ � � + ��Y Z�� - � 0

(7)

The cost function on the unknown variables U � and V � to
minimize is the scalar product � 9 �^S @ T � . This minimiza-
tion is controlled by two sets of constraints which are given
in equations (8) and (9).1 9 �@S @ T �`_ � �M�ba S Tdc DL� (8)1 2 9 T _ � e!� T DU� (9)

The first set of constraints (8) imposes that �^S @ T � be
a flow over the graph [10]. The other set of constraints
given by the equation (9) means that the

T
part of the flow

on a node must be directed through one and only one of
the out-edges of this node. These constraints can be taken
into account by constructing a new graph �fN&���fN*� 	bN���3N �
from ��� � � 	����� in the following way: edges of the orig-

e2
ww

e1

V

U

V’

e2e1

(a) original graph

eu

-w e1 -w e2

w
e1

w
e2

V V’

U

M=1

e’1

vu
0 m=1

e2

M=1

e’2

e1

M=1

(b) modified graph

Figure 5. Graph transformations for flow al-
gorithm resolution

4

inal graph � are kept in the transformed graph �fN with their
respective weight. We then introduce virtual nodes � , �
 .
For each edge �S� �B� � , � , we build an edge � N � � , � , � � .
The edge � N is weighted by @ � � and has a maximal flow ca-
pacity I � set to 1. Another edge is added from the virtual
node , � to the node � . This edge has both minimal � and
maximal I flow capacity set to e and is null weighted.

An example of transformation for a node with two out-
edges is given on figure 5.

Let
�

be a flow of � N , we define for each edge � a couple�@U:��� V!�$� in the following way:U:�C� � �*��� (10)V � � � �*� N � (11)

Proposition 1 There is a bijection between the flows of �dN
and the feasible solutions of the dual problem. Furthermore
minimal cost flows of �bN correspond to optimal solutions for
the dual problem.

Proof: A complete proof is available in [9]

Computing a Minimum cost flow
�

on � N : we use a
standard algorithm for computing minimum cost flows with
both capacity and lower bounds (see [5]). To start the algo-
rithm we trivially construct an admissible flow for �fN satis-
fying capacities on edges � , � �
�I� by choosing for each ver-
tex � an arbitrary outgoing edge �*�H� , � and putting some
flow through �8�*�H� , ���4� , � , � �$� � , � ��O�
 . The minimal cost
flow algorithm introduces a graph ���(� � � built from the flow�

that will be used in the next paragraph.

Solution of the primal problem from the dual one:
once we have found an optimal solution for the flow prob-
lem we have to compute the corresponding retiming for the
primal problem.

We construct the retiming in the following way: we con-
sider the optimal flow with its associated graph ���(� � � . We
add a source � with a null weighted edge to all nodes of���2� � � and we compute the shortest path � � from � to each
node �"NOJ �fN by a Bellman-Ford algorithm [10].

We chose for each node �
; � � @ � �

as a retiming value and the cost

��� � � �2����?� �! "$#&%(' �)� > ; " @ ; � 9
Proposition 2 The proposed solution is feasible and is op-
timal for the primal problem.

Proof: A complete proof is available in [9]

Complexity: The complexity of the algorithm is	 � � �Q��� 	�� 9 � � � %(' � �������
The example we gave on figure 4, which needs 5

“buffers” is optimized on figure 6 with a cost of only 3
memories.

3

S3

S4

0

0 0
S1 S2

0

transformed code
prologue

for i=2,n-2
S4: d[i-1]=2*c[i-1]
S1: a[i]=2*d[i-1]
S2: b[i]=3*d[i-1]
S3: c[i+2]=a[i]+b[i]

end for

epilogue

Figure 6. Example of the figure 4 after itera-
tion buffers minimization

3.4 Extending the Problem to the Multidimen-
sional Case

In this section we are extending the problem to deal with
loop nests. In the multidimensional case, dependences are
handled by integer vectors. A component � E of a depen-
dence vector � corresponds to the distance carried by the
 _�� loop in the nest, starting from the outer loop. A loop
nest composed of loops will thus carry dependence vec-
tors with at most components (it can be less than if the
nest is not perfectly nested). Figure 7 shows the graph rep-

for i = 1,n
for j = 1,m

S1: a[i,j]=c[i-1,j]
S2: b[i,j]=a[i-1,j]+

c[i-1,j]
S3: c[i,j]=b[i,j]

end for
end for

(a) source code

S1

S2

S3

(0,1)

(1,0)

(1,0)

(0,0)

(b) dependence graph

Figure 7. Modeling dependences in a loop
nest

resentation for the multidimensional case.
In this case, to be correct, the dependences have to be

lexico-positive. We denote by D�� ��� the lexicographic order.

5

The equation (2) taken from the monodimensional case now
becomes:

� � > ; "�@ ; � D � � � �F� GO�P�Q�*�H� , �RJS	 (12)

These constraints are not linear and they cannot be lin-
earized, to our knowledge, without losing total unimodu-
larity on the matrix.

We propose here an efficient heuristic solution for the
multidimensional problem by reducing it to the monodi-
mensional one. This reduction is done by applying the
monodimensional algorithm several times on the loop nest.
Dependences handled by external loops are the more ex-
pensive ones as they imply manipulations of complete sub-
arrays and also imply longer life time for the buffers we
want to minimize, so we will consider them first. Incremen-
tal optimizations, like the one we propose, also provide the
opportunity to stop optimizing memory accesses and size
given a tradeoff in order to switch to another optimization
problem. For example, memory minimization is often dual
with maximizing parallelism and finding an absolute opti-
mal on memory may lead to very poor parallelism detection
in the next step of the compilation.

Heuristic for the Multidimensional Case: the heuristic
we propose for memory accesses in loop nests consist in
transforming the nest loop by loop starting from the outer-
most loop to the innermost one. At each step, we dispose
of a graph � � � � � 	���A� of dimension , and we apply
our algorithm in the first dimension to find a retiming ; that
optimizes it. Then we define

�� <5�������
	 N �
� N � from � < as
follow:

	 N �R� � JS	 � � � � � � � ���F� >�� � 9T9T9 � >�� �
 9
and �3N is defined from � by restricting it to its @ e last
components. Finally we proceed to the next step with

�� < .
Proposition 3 This heuristic produces correct code after
retiming.

Proof: A complete proof is available in [9]

Note: if the optimization is not done down to the inner-
most loop, a final retiming is needed on last dimensions in
order to ensure correction (see proof in [9] for more details).

Figure 8 shows the optimized code for example on fig-
ure 7 where the first loop has been aligned.

4 Bounding the maximal distance

Minimizing buffers between loop iterations as we have
seen in the previous section can increase the dependence
distance for some variables while decreasing for others.

S1

S2

S3

(0,1)

(0,0)

(0,0)

(1,0)

r(1,0)

transformed code
prologue

for i = 2,n-1
for j = 1,m

S3: c[i-1,j]=b[i-1,j]
S1: a[i,j]=c[i-1,j]
S2: b[i,j]=a[i-1,j]+

c[i-1,j]
end for

end for

epilogue

Figure 8. Example of the figure 7 after itera-
tion buffers minimization

However it might be more suitable to make dependences
more regular to fit better particular hardware design con-
straints (such as known number and size of cache lines).
The polynomial algorithm we propose here can modify the
dependence distances of a program by retiming [12] in or-
der to find a minimal distance bound.

Given the reduced dependence graph � � �����
	��
��� of
a loop nest as described in section 3.1 we can bound the
maximal dependence distance � of the graph.

Problem: Let � be a set of � ��� inequalities of the form

� ��> ; "P@ ; � � �I� GO��� �*�H� , �RJS	 (13)

on the unknown retiming values ; � �
� J � . These inequal-
ities represent the dependence distances once the retiming
is applied to the graph where each distance must be lower
or equal to a fixed value � . The problem is to determine
feasible values for the ; � or determine that the system is
inconsistent.

Let D �)��� @ �)� for all � in 	 , the system (13) is trans-
formed into the following system:

; " @ ; � � D � � GI���Q�B� � , � J 	 9 (14)

Such system in which each constraint has the form of in-
equality (14) arises in the shortest path problem (see [10])
that has been extensively studied and can be solved—or de-
termined inconsistent—in

	 � � �Q��� 	Q� � time by a Bellman-
Ford algorithm [10].

The minimal solution for our problem is obtained
with a logarithmic binary search for the minimal � in� �M������ � %(' �*� � �	� Complexity: each Bellman-Ford veri-
fication can be computed in

	 � � � � � 	�� � , this verifica-
tion is used

	 ��
� �B����� � %(' �*� � �� times during the binary
search. The complexity of the problem is bounded by	 � � �Q��� 	���
�� �B���2� � %(' �B� � �
� .

Starting from the graph 9(a), minimizing the maximal
dependence distance of the graph produces the graph 9(c)

6

for which the needed foreground memories are equal to 4.
A better solution, as regards memory size, would have been
achieved by the solution 9(b) for which only 3 foreground
memories are needed. However the solution 9(c) is more
regular and may be best suited for specific architectures.

0

S3

S4

1

2 2
S1 S2

1

(a) source

3

S3

S4

0

0 0
S1 S2

0

(b) minimizing
iteration buffers
(section 3)

1

S3

S4

1

1 1
S1 S2

1

(c) minimizing
maximal distance

Figure 9. Minimizing the maximal distance

5 Future Work and Conclusion

We have presented in this paper a polynomial algorithm
for memory accesses optimization by loop alignment (fold-
ing) in the monodimensional case and a heuristic based on
this algorithm for the multidimensional case. A second
polynomial algorithm was presented to minimize the maxi-
mal dependence distance of a loop nest.

These algorithms will be extended to deal with condi-
tional execution (“if”) in order to be able to model real ap-
plications. Therefore we want to use the Program Depen-
dence Graph defined in [8] by Ferrante et al. to take into
account both data flow and control flow dependencies for
source to source loop transformations.

We have also presented the approach we have taken for
automatic loop transformations on data dominated applica-
tions in multimedia applications. The interest of this auto-
matic approach is on the one hand to reduce the design time
by extracting optimizations for the description and on the
other hand to improve the development quality by propos-
ing interactive transformations that a designer could have
missed.

We want to go further in the development of new global
loop transformation techniques (loop merging, code mov-
ing, ...) as well as local transformations (loop interchange,
loop alignment, skewing). These techniques will be inte-
grated in our transformation engine LOOPING [17]. The
LOOPING project we have started is a transformation engine
prototype for source to source transformations of data dom-
inated applications in portable or embedded systems geared
toward memory and power consumption. This engine has
to be both automatic and interactive because there are many

tradeoffs that only the designer of a system can control at
this level of transformations.

References

[1] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler trans-
formations for high-performance computing. ACM Comput-
ing Surveys, 26(4):345–420, Dec. 1994.

[2] E. Brockmeyer. Low power data transfer and storage ex-
ploration for mpeg-4 on multi-media processors. Master’s
thesis, IMEC, Apr. 1998.

[3] F. Catthoor. Power-efficient data storage and transfer
methodologies: current solutions and remaining problems.
In CS annual rush on VLSI, Orlando, Apr. 1998.

[4] E. De Greef. Storage Size Reduction for Multimedia Appli-
cation. Phd thesis, IMEC, Jan. 1998.

[5] D. de Werra. Eléments de programmation linéaire avec ap-
plications aux graphes. Presses polytechniques romandes, 1
edition, 1990. ISBN 2-88074-176-9.

[6] P. Feautrier. Some Efficient Solutions to the Affine Schedul-
ing Problem, Part I, One Dimensional Time. Int. J. of Par-
allel Programming, 21(5), Oct. 1992.

[7] P. Feautrier. Fine-grain scheduling under resource con-
straints. In 7th Workshop on Language and Compiler for
Parallel Computers, Cornell University, Aug. 1994. to ap-
pear in LNCS.

[8] J. Ferrante, K. J. Otteinstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Trans-
actions on Programming Languages and Systems, 9(3):319–
349, July 1987.

[9] A. Fraboulet, G. Huard, and A. Mignotte. Loop
Alignment for Memory Accesses Optimization. Re-
search Report 1999–26, École Normale Supérieure
de Lyon, Apr. 1999. available at ftp://ftp.ens-
lyon.fr/pub/LIP/Rapports/RR/RR1999/RR1999-26.ps.Z.

[10] M. Gondran and M. Minoux. Graphs and Algorithms. John
Wiley, 1984.

[11] C. Kulkarni, F. Catthoor, and H. D. Man. Cache optimiza-
tion for multimedia compilation on embedded processors for
low power. In Proc. Intnl. Parallel Proc. Symp.(IPPS), pages
292–297, Orlando FA, Apr. 1998.

[12] C. E. Leiserson and J. B. Saxe. Retiming Synchronous Cir-
cuitry. In Algorithmica, volume 6, pages 5–35. Springer-
Verlag, 1991.

[13] P. R. Panda, N. Dutt, and A. Nicolau. Memory Issues in
Embedded Systems-On-Chip. Kluwer Academic Publishers,
1999. ISBN 0–7923–8362–1.

[14] A. Schrijver. Theory of Linear and Integer Programming.
John Wiley and Sons, New York, 1986.

[15] PRiSM SCPDP Team. Systematic construction of parallel
and distributed programs. World Wide Web document,
http://www.prism.uvsq.fr/english/parallel/paf/autom us.html.

[16] Stanford Compiler Group. Suif compiler system. World
Wide Web document, http://suif.stanford.edu/suif/suif.html.

[17] LOOPING Project. http://www.ens-
lyon.fr/ � afraboul/looping/.

7

