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Abstract

Portable or embedded systems allow complex applica-
tions like multimedia today. These memory intensive
applications and submicronic technologies have made
the power consumption criterion crucial. We propose
new source to source transformations thanks to which
we can optimize the behavior of these applications by
reducing the amount of needed physical memory and
hence the associated power consumption. These trans-
formations are performed on “for” loops that constitute
the main parts of the multimedia code which handle
the arrays. We present in this paper new techniques
for minimizing memory size by loop fusion and loop
alignment. These techniques do not depend on any ar-
chitectural consideration or parameter as we do not use
cache size or cache line size to drive the transforma-
tions. Further optimizations that will consider these
parameters to improve data-movement strategies over
the memory hierarchy can be applied later to complete
and refine the optimization framework.

1. Introduction

The design of embedded or integrated systems has
become more and more complex, for instance with the
appearance of multimedia and data dominated appli-
cations. This type of applications consumes a lot of
memory for multidimensional data storage like images,
sound or video. More than 50% of the surface of in-
tegrated systems of this kind of application is filled
by memory. This massive memory usage combined
with submicronic technologies have made power con-
sumption criterion control compulsory. Manual exper-
imentations [2] have shown important memory size and
power consumption gains by code transformations on

the algorithmic description of the design (MPEG4 ex-
perimentations have allowed a decrease of a factor 4
on average consumption and of a factor 10 on peak
power). Experiments have also shown the relative cost
of a memory operation compared to arithmetic compu-
tations (for example, a transfer from an external mem-
ory consumes 33 times more than a 16 bits addition).
Thus it has become very important to minimize redun-
dant data transfers over the memory hierarchy as well
as the application memory footprint.
Once the Hardware/Software partitioning within

the design is done, the memory is already divided. It is
therefore very important to make optimizations before
this partitioning in order to deal with all the memory in
homogeneous vision. The main drawback is that we do
not have any information about the memory hierarchy
structure and physical specifications that will be avail-
able on the final implementation. The only assumption
here is that the system will include a memory hierarchy
with at least two levels of memory called background
(main) and foreground (caches) memories. We want
here to optimize both types of memories either if they
are controlled by hardware or controlled by software.
The handling of data is done mainly through “for”

loops in multimedia designs. These loops form the crit-
ical part of the optimizations we want to apply at this
stage. We thus propose to transform the algorithmic
description of a design by using techniques similar to
the ones used in automatic parallelization [1] so as to
reduce the memory size and memory accesses power
consumption [14, 2, 10, 5]. Techniques we propose do
not depend on any architectural consideration or pa-
rameter except that there exists a memory hierarchy.
They are well suited for embedded or portable sys-
tems design space exploration prior to the Codesign
step [15, 4].



The next section will present the optimization cri-
teria we use for the transformations. Sections 3 and 4
will present two different optimizations, namely loop
fusion for memory minimization and loop alignment
for buffer minimization.

2. Memory Optimization Criteria and

Associated Techniques

Target architectures and applications impose a com-
plex memory hierarchy: registers, hardware and/or
software caches, on-chip or off-chip memories [15]. The
power consumption of a memory access increases with
the level from which the data has to be fetched. As an
access to an external memory consumes more power
than an access to an on-chip memory, memory hier-
archies are well exploited if we can achieve a good
data temporal locality. This locality represents the
amount of time between two successive accesses to the
same memory location (either write-read or read-read).
Temporal locality is improved as this amount of time
gets shorter. At the level of abstraction at which we
apply loop transformations, we can only represent this
parameter in an abstract manner. We can have differ-
ent approaches to measure temporal locality.

2.1. Coarse Grain Locality Optimization

The first approach considers loops as atomic groups
of instructions. As arrays are manipulated through
loops, this implies that we do not consider locality be-
tween exact memory locations but we use a coarser
grain represented by complete arrays. This level of
granularity is used for global code transformations such
as code moving or loop fusion [1]. For instance, the last
loop on figure 1(a) has been shifted up on figure 1(b)
by code moving in order to tighten the production and
consumption of the array b. Loop fusion on figure 1(c)
gives a common iteration space where the consumption
of a value b[i] can be made nearer from its produc-
tion. We will use and develop the coarse grain tempo-
ral locality for memory minimization by loop fusion in
section 3.

2.2. Fine Grain Locality Optimization

The second approach to represent temporal local-
ity is to look inside loops. This representation allows
us to consider subsets of the arrays handled by the
loop. This level of abstraction can be used to perform
local loop transformations such as interchange, skew-
ing, folding or alignment [1]. On the example on fig-
ure 1(c) the loop produces, for each iteration, a value

for i=1,n

b[i]=a[i]

for i=1,n

c[i]=a[i+1]

for i=1,n

d[i]=b[i-1]

(a) source code

for i=1,n

b[i]=a[i]

for i=1,n

d[i]=b[i-1]

for i=1,n

c[i]=a[i+1]

(b) moving code

for i=1,n

b[i]=a[i]

d[i]=b[i-1]

c[i]=a[i+1]

end for

(c) loop fusion

d[1]=b[0]

for i=2,n

b[i-1]=a[i-1]

d[i]=b[i-1]

c[i-1]=a[i-1]

end for

b[n]=a[n]

c[n]=a[n+1]

(d) loop alignment

Figure 1. Example of code transformations:
moving, loop merging, loop alignment.

b[i], c[i], d[i] and uses values b[i-1], a[i] and
a[i+1]. A new value b[i] is produced at each iteration
and must be kept into a separate foreground (on-chip)
memory buffer until its last use by another statement of
the loop. The number of “memories” needed to store a
value computed and used in different iterations is given
by the amount of iterations the value has to cross. This
iteration gap is called a distance.
Figure 1(d) shows the loop once aligned to optimize

the use of the arrays a and b. We can see that values of
the array b are consumed as soon as they are produced.
This optimization increases the probability we have to
find the value b[i-1] in a very high level of the memory
hierarchy. Optimization has also been performed in the
use of the array a: the value a[i-1] has to be fetched
from distant memory only once per loop iteration. We
will use and develop the fine grain temporal locality for
buffer minimization by loop alignment in section 4.

2.3. Optimization Flow and Related Works

Memory accesses are by themselves a huge source
of power consumption. It is also important to reduce
the size of the memory needed by an application. A
significant reduction of the amount of needed memory
can decrease the number of levels in the memory hi-
erarchy and it could ideally allow to store everything
within the on-chip memory, thus enabling the removal
of the off-chip memory. This optimization can be done
only if the consumption of a value appears right after



its production. For instance, the array b on figure 1(d)
that is produced and used within the same loop can
be completely removed from memory and replaced by
a scalar if it is not used elsewhere in the code [3, 6].
Several efforts have been aimed at using loop trans-

formations and scheduling techniques to improve local-
ity by loop transformations. McKinley and Kennedy
in [13] studied maximum reuse by loop fusion and
proved the problem to be NP-Hard. Despite our prob-
lem is different from maximum reuse, as we are inter-
ested in fusing dependencies that have a same label and
not constrain all dependencies to be maximally fused,
the complexity of our loop fusion problem still remains
exponential. Other global loop transformation tech-
niques for memory size optimizations [12, 3] are driven
by memory hierarchy parameters such as cache size,
cache line size or the number of available registers.
Once the partitioning between hardware and soft-

ware has been done many optimizations can be applied
on a design. A recent study on cache level optimiza-
tion techniques can be found in [10] and data layout
organization is studied in [6]. These optimizations are
enabled by high level transformations done before the
hardware-software partitioning. Optimizations devel-
oped in the two next sections have been defined con-
sidering that these transformations are performed af-
terwards.

3. Loop Fusion for Memory Minimiza-

tion

The algorithm we present in this section minimizes
in an optimal way the size of the temporary arrays
used in data dominated applications such as multime-
dia ones. The size of the memory is approximated by
the maximum size of time overlapping arrays. This
is based on the assumption that the memory will be
shared afterward by further optimization techniques.
We use a data flow graph (DFG) (G = (V,E,A))

representation for modeling the dependencies [1].
Graph nodes (V ) represent the loop nests and edges
(E) represent data dependences between these loops.
A is the set of all arrays handled in the source code.
Each array ai ∈ A has an associated weight size(ai).
Our Memory Cost function is defined as following:

MemoryCost = max
∀t







∑

ai∈Live arrays(t)

size(ai)







Where t is a execution time slot and size is the stor-
age size of an array.

Two nodes can be merged if and only if none of the
dependence are reversed in the fuse loop compared to
the original code. An edge that carries a dependency
which prevents the fusion of its source node and its des-
tination node is called a fusion preventing edge (FPE)
and is marked with a slash. Each edge is labeled by
the name of the array ai ∈ A that carries the depen-
dence and is weighted by the size of this array. An edge
is labeled by only one array and if there are multiple
array dependencies between two loops then the graph
becomes a multigraph with multiple edges between two
nodes. Figure 2(b) represents the dependence graph

L1:for i=1 to n

a1[i]=...

endfor

L2:for i=1 to n

a2[i]=f2(a1[i-1])

endfor

L3:for i=1 to n

a3[i]=f3(a2[i+1])

endfor

L4:for i=1 to n

...=f4(a1[i],a3[i])

endfor

L1

L2

L3

L4

a1

a3

a2

a1

(a) source code (b) dependence graph

Figure 2. Modeling dependences

computed from the source code on Figure 2(a). Loops
L2 and L3 cannot be fused due to the dependence car-
ried by a2. If these loops were merged the code would
read a2[i+1] (from L3) before its computation (from
L2) in the same iteration. Isolated statements are also
considered as nodes. Dependences between code state-
ments and loops are preserved as we perform code re-
organization during the transformation. An isolated
statement will be represented in the graph as a regular
node but all its incoming and outgoing edges will be
marked as fusion-preventing ones.

3.1. Removable Arrays Detection

In order to remove an array from the program by
merging the loops we need to merge all the nodes con-
nected by an edge which is labeled by this array in the
DFG. Merging is not needed for an edge e = (u, v) la-
beled by an array a if there exist a path from u to v
that contains a FPE. Detection of all the arrays that
could be removed by loop fusion is performed with a
transitive closure on the DFG (O(|V |3)). For instance,
array a1 cannot be removed because there is a path be-
tween L1 and L4 that goes through the FPE (L2,L3).
Removing the array a1 from the memory would require
the fusion of loops L1, L2 and L4 and would create a



cycle between L124 and L3 in the dependence graph.
Such a cycle is not allowed in order to preserve the
precedence constraints imposed by data dependencies.
Removable arrays are marked with a star as they can
be removed by merging loops. We call by extension
starred edges an edge that carries a dependence on a
removable array.

3.2. Con¤icts Detection and Resolution

The previous step can detect if an array can be re-
moved from the memory by loop fusion but the de-
tection is local and some problems can arise when we
consider removable arrays altogether. For instance, on
Figure 3(a) arrays a and b can be removed if we con-
sider them separately. Unfortunately, removing both
at the same time is not feasible. The situation can
be more complicated as can be seen on Figure 3(b)
where the fusion cannot be performed without creat-
ing a dependence cycle between loops (L1,L3,L6) and
loops (L2,L4,L5).

L2

L3

L1

a*

b*

(a) direct conflict

L6

L1

L4

L2

L5L3

a* b* c*d

a*

(b) conflict path

Figure 3. Con¤ict Between Potentially Remov-
able Arrays

In order to complete the fusion process we need to
solve all possible conflicts by reducing the set of starred
arrays without compromising the global optimality.
Conflicts arise when several potential removable ar-

rays are located on a cycle of the graph while part of
this cycle contains a FPE. Given µ an elementary cycle
of the graph with a given direction over this cycle. We
denote µ+ the set of edges in the cycle oriented toward
the cycle cover direction, µ− is the set of edges oriented
the other way round (see [9] for more details).

We can associate to µ a vector
→
µ = (µ1, µ2, . . . µ|E|)

such as:

µu =







+1 if u ∈ µ+

−1 if u ∈ µ−

0 if u 6∈ µ+ ∪ µ−

Note that −
→
µ is also a vector associated to the cycle

µ with a different cover direction.

Proposition 1 In order to solve all possible problems
that would create an illegal fusion we need to detect and
cut all undirected elementary cycle µ of the graph such
as

→
µ is composed in the following way:

• all +1 (resp. −1) are starred edges

• at least one −1 (resp. +1) is a FPE

A complete proof is available in [7]. Cycle which
follows the proposition 1 are detected by exploring the
graph for each edge e = (u, v) that is fusion preventing.
This implies that we will look for all the cycles µ for
which

→
µ contains only starred edges in µ+.

Once the set C of all the cycles have been detected
we have to decide which starred array will not be con-
sidered for fusion. This step is done through an Integer
Linear Program (ILP) [16].
We associate a binary variable xai

to each starred
array ai that could be removed but which has been in-
cluded in a cycle during the previous step. If xai

= 0
then the array ai will be considered for removal by
fusion otherwise (xai

= 1) the array will cease to
be starred. For multi-graphs (for instance, k edges
a1, a2, . . . , ak) between two nodes u and v, a new vari-
able xuv is introduced to resume the arrays on this
multi-egde. A variable xuv will be set less or equal
to each variable xa1

. . . xak
associated with the multi-

edge. If xuv is set to 1 (the multi-edge is removed from
a path) then all associated variables will also be set to
1 and arrays will be unstarred. Otherwise a variable
xai

can be set to 1 without interfering with other ar-
rays on the multi-edge. For each detected cycle µ ∈ C

we need to decide which array carried by edges in µ+

will not be starred anymore. Thus the sum of all the
variables xuv on a cycle path must be greater than or
equal to 1.
The objective function of our ILP is thus to mini-

mize the sum of the size of starred arrays that we have
to remove from the set of all possible starred arrays we
found in section 3.1 (equation 1).

min
∑

ai∈A

sizeai
∗ xai

(1)

xai
∈ {0, 1}, ∀a ∈ A (2)

∑

(u,v)∈µ+(c)

xuv ≥ 1, ∀µ ∈ C (3)

xuv ∈ {0, 1}, ∀(u, v) ∈ E (4)

xuv ≤ xai
, ∀ai ∈ (u, v),∀(u, v) ∈ E (5)

The ILP formulation given by (1), (2), (3), (4) and
(5) minimizes the size that cannot be kept starred due
to dependence constraints in a graph.



Values xai
= 1,∀i are always a feasible solution for

the problem. Furthermore any feasible solution has
a cost

∑

ai∈A
sizeai

∗ xai
≥ 0 which ensures that an

optimal solution always exists, because of this lower
bound.

3.3. Graph Clustering and Fusion

All edges that are still starred can now be fused. The
only remaining step is to compute the clusters that will
make the transformed dependence graph nodes. We
have to ensure that if two nodes u and v will belong
to the same cluster then all nodes that belong to a di-
rected path from u to v will be also taken in the cluster.
This step can be performed efficiently by computing a
modified transitive closure (O(|V |3)) in which if there

is a path u
∗
→ v, a path u → w and a path w → v

then u, v and w will be in the same cluster (see [7] for
details). Code generation can be performed by writing
the code for each loop following the numbering given
by a simple order such as the node height.

4. Buffers Minimization by Loop Align-

ment

Once the coarse grain temporal locality has been
considered as in the previous section, the fine grain
locality can be optimized using more precise depen-
dency information. The algorithm we present in this
section minimizes, in polynomial time, the size of the
foreground scalar memories needed to store values that
are computed and used within the same loop. This
minimization can also be seen as optimizing the av-
erage distance in terms of temporal locality between
read and write accesses to the same variable in differ-
ent loop iterations. This technique is not only useful
to keep values in a memory near the top of the hierar-
chy (where memories are smaller and less power con-
suming), it reduces the register pressure and can also
decrease the memory size needed by the application (a
dimension of an array can be reduced to a scalar value
for instance [3, 6]). We present here only the mono-
dimensional case (i.e. single loop) due to the lack of
space. The multi-dimensional case is not polynomial
anymore and a heuristic is proposed in [8].
We use a Reduced Dependence Graph (G =

(V,E,w)) representation for modeling the problem.
Graph nodes (V ) represent the loop statements, edges
(E) represent data dependences between these state-
ments. Each dependence edge e is weighted by a dis-
tance we which corresponds to the number of iterations
between the two accesses. These distances are positive
as a program cannot use a value before its computation.

We restrict ourselves to the case of uniform (constant)
forward (write-read) dependences over the loop to be
able to use retiming techniques [11].

for i=1,n

S1: a[i]=2*d[i-1]

S2: b[i]=3*d[i-1]

S3: c[i]=a[i-2]+

b[i-2]

S4: d[i]=2*c[i]

end for;

0

S3

S4

1

2 2
S1 S2

1

(a) source code (b) dependence graph

Figure 4. Modeling dependences in a loop

We can see on figure 4 that there are two depen-
dences of distance 2 in the first loop to statement S3
from statements S1 (a[i-2]) and S2 (b[-i2]). There
is also a dependence of distance 1 in the inner loop from
statement S4 to statements S1 and S2 on d[i-1]. The
value produced by the statement S3 (c[i]) is consumed
in the same iteration by the statement S4. There is a
dependence distance of 0 between these last two state-
ments.
The number of buffers needed for a statement repre-

sented by a node u depends on the dependence length
we of all its out-edges e. This amount is given by the
following relation and represent the cost per node:

cu = max
e=(u,v)∈E

we (u
e
→ v)

The total number of buffers across iterations in the
graph is thus:

Cost(G) =
∑

u∈V

cu.

A retiming value ru (integer) is associated with each
node u. This weight represents a shift (or a delay) in
a number of iterations for the associated statement.
Therefore applying a retiming on a graph modifies de-
pendence distances. The graph after retiming can be
rewritten into a code, functionally equivalent, but with
new dependence distances wr,e given by the relation

wr,e = we + rv − ru, (u
e
→ v)

We must define a constraint in order to obtain a
legal retiming on the graph, dependence distances after
retiming must be positive (we cannot use a value before
it is computed)

wr,e ≥ 0, ∀e ∈ E

We present here the ILP formulation for the problem
of minimizing Cost(G).



min
∑

u∈V

cu (6)

we + rv − ru ≥ 0, ∀e = (u, v) ∈ E (7)

cu ≥ we + rv − ru, ∀e = (u, v) ∈ E (8)

The objective function of our ILP formulation is
given by the relation (6). The constraints (7) ensure
that we have a legal retiming. The cost of a node after
retiming is given by the inequation (8). As we can-
not use a max function in the constraint—the prob-
lem would not be linear—we must define the cost of a
node u to be greater or equal to the cost of each out-
edge. Minimizing (6) ensures that the maximal value is
reached by cu, giving the expected cost for each node.
Values r = 0 and cu = maxe=(u,v)∈E we are always

a feasible solution for the problem. Furthermore any
feasible solution has a cost

∑

u∈V cu ≥ 0 which ensures
that an optimal solution always exists, because of this
lower bound.
Minimizing Cost(G) can be solved in polynomial

time O(|V ||E|.(
∑

e∈E w(e))) by using a the dual form
of the problem to reduce it to a minimal cost flow prob-
lem (see [8, 16] for details).

5. Conclusion and Future Work

We have presented in this paper optimal algorithms
to minimize the memory size needed for temporary ar-
rays by loop fusion and to optimize the data locality
within a loop nest by loop alignment. These transfor-
mations are independent from any architectural con-
straint or parameter.
Loop alignment can help to remove Fusion Prevent-

ing Edges from the original graph by modifying the
dependence distance for some arrays and allow fusions
that would have not been feasible without prior mod-
ifications. Loop fusion combined with loop alignment
improves data locality within a loop nest and increase
the search space and potential benefits of further op-
timizations such as cache level memory management
and data layout organization.
As these transformations are source to source they

can be easily integrated to an existing CAD tool-chain
as a design preprocessor that can be run prior to any
other tool of the chain. Therefore it will enable new op-
timizations obtained using existing memory and power
management techniques in CAD tools.
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