Modeling and Simulation of Embedded Processors Using
Abstract State Machines

Dirk Fischer, Jurgen Teich, Ralph Weper

Electrical Engineering Department
University of Paderborn
D-33098 Paderborn, Germany
email: {fischer,teich,weper } @date.uni-paderborn.de

ABSTRACT

We demonstrate how application specific instruction set pro-
cessors (ASIPs) may be systematically described using the
formalism of Abstract State Machines (ASM) as introduced
by Gurevich [10]. We developed a modeling environment,
called ArchitectureComposer, which automatically generates
an ASM model from the graphical input of an architecture’s
description on register transfer level. ArchitectureComposer
emits XASM [1] code which in turn is processed by the tool
Gem-Mex [3] which automatically generates a cycle-accurate
simulator for the specified architecture.

This framework is part of the project BUILDABONG at
the University of Paderborn dealing with joined architec-
ture/compiler co-generation for application specific instruc-
tion set processors (ASIPs).

Here, we focus on the underlying mathematical model of
ASMs and introduce the applied tools, e.g. Architecture-
Composer, in particular the features of the graphical ar-
chitecture editor and the automatic XASM-code generator,
and briefly describe how these tools are embedded in the
BUILDABONG project.

1. INTRODUCTION

Special application domains such as digital signal process-
ing require the design of special instruction set processors
(ASIPs) in order to fulfill efficiency, cost, and other design
criteria.

The final architecture of an ASIP is not a priori fixed but
is the result of an iterative process of prototyping. Thereby,
the simulation of a preliminary architecture design is of ut-
most importance.

In this paper, we introduce a methodology for the automatic
generation of efficient yet cycle-accurate and bit-true simu-
lators from graphical entry of processor building blocks.

In the first step, a processor’s control- and data path is en-
tered graphically using a library of customizable building
blocks such as register files, memories, arithmetic and logi-
cal units, buses, etc. From this description, a mixed behav-
ioral and structural model of the customized processor is
generated using the formalism of Gurevich’s Abstract State
Machines (ASMs) [10].

We describe ASMs using the specification language XASM
[1]. XASM is supported by the Gem-Mex [3] tool that is
able to automatically generate a debugging and simulation
environment for the given XASM specification.

This methodology is part of the project BUILDABONG
(Building special computer architectures based on architec-
ture and compiler co-generation) [5].

In this paper, first, we give an overview of related work.
Then, we introduce the basics of ASMs as the underlying
mathematical model of our methodology and explain the
major advantages of ASMs for describing the behavior of
a processor. In Section 5, we present the features of the
graphical editor tool ArchitectureComposer and demonstrate
how this tool automatically generates XASM-code from a
graphical architecture description.

2. RELATED WORK

In the following, we list some significant approaches aiming
at architecture/compiler co-design.

The RECORD system (University of Dortmund, Germany)
[15] aims at automatic code generation for fixed-point DSPs
with a fixed instruction word length. The target processor
has to be specified by the user in the structural hardware
description language MIMOLA [4].

LANCE (University of Dortmund, Germany) [12] is a de-
velopment environment for C compilers. The system serves
as a basis for developing new code generation and optimiza-
tion techniques for embedded processors, with emphasis on
DSPs.

The hardware description language nML [7] maintains con-
cise, hierarchical processor descriptions in a behavioral style.
An example of the use of nML is the CBC/SIGH/SIM frame-
work [6] consisting of the retargetable code generator CBC
which uses a standard code-generator generator for instruc-
tion selection, and the instruction set simulator SIGH/SIM.
Another approach using nML is CHESS [8, 14], developed
at IMEC in Leuven, Belgium, a retargetable code genera-
tion environment for fixed-point DSP processors. CHESS
uses a mixed behavioral/structural processor model and is
supported by the simulator tool CHECKERS [14].

The machine description language LISA [18] is the basis for a

retargetable compiled simulator approach [17] developed at
RWTH Aachen, Germany, which reaches simulation speeds
in the order of 100K instr./sec.

The FLEXWARE (SGS Thompson, Bell Northern Re-
search) [16] framework consists of the retargetable code
generator CODESYN and the instruction set simulator IN-
SULIN. CODESYN takes one or more algorithms expressed
in a high-level language and maps them onto a user defined
instruction set to produce optimized machine code for a tar-
get ASIP or a commercial processor core. INSULIN is based
on a reconfigurable VHDL model of a generic instruction set
Processor.

At the ACES laboratory of the University of California,
Irvine, the architecture description language EXPRESSION
[11] has been developed. From an EXPRESSION descrip-
tion of an architecture, a retargetable compiler and a cycle-
accurate simulator can be automatically generated. The tool
is supported by the graphical design environment V-SAT.

CASTLE [13] is an automata-theoretic approach describ-
ing the behavior of the data path as extended finite state
machines which are extracted from a register transfer level
description of the target processor based on a VHDL-
template.

3. BUILDABONG

BUILDABONG (”Building special computer architectures
based on architecture and compiler co-generation”) is the
name of our project at the University of Paderborn [5] which
aims at architecture and compiler co-generation for special
purpose processors, i.e., DSP type and VLIW processors.
The project started in 1999 and consists of the following
four phases of development, see also Figure 1:

[Mhasc -
[e il
[Mme? =]
[Phacd

[0 Input (usert

1 Architecture

ASM Generator

3 Retargetable

Compiler

Instruction Set
Description
(User)

1 ASM | P Library]

Simulutor
Generator
(Gem-Mex)

1 Parser
Linker
Loader

2 Simulator

Figure 1: Overall software architecture and design
flow in the BUILDABONG project

phasel architecture entry and composition:
An object-oriented tool for hierarchical graphical entry

and composition of a processor architecture (Archi-
tectureComposer) has been developed from which an
ASM description of the resulting architecture is gen-
erated automatically. For this purpose, a library of
common high-level components to compose an archi-
tecture (e.g., address generation units, buses, ALUs,
memory units, register files, etc.) has been defined
being parameterizable in bit width, number of inputs,
etc.

phase2 architecture simulation:
ArchitectureComposer generates the ASM description
of the processor’s behavior from which subsequently, a
cycle-accurate and bit-true instruction set simulator is
generated using the Gem-Mex environment for ASM
prototyping [3]. Currently, we have reached this level
of implementation.

phase3 compiler generation (retargeting):
In order to allow the compiler to exploit architec-
tural changes, e.g., number of functional units, dis-
tributed register files, etc., the necessary informa-
tion for code generation and instruction scheduling
is extracted from the graphical description (editor,
phase 1).

phase4 architecture/compiler optimization:

The final goal of the project is to provide an explo-
ration framework for joint architecture/compiler co-
generation. For this purpose, an exploration tool has
to be developed which adds profiling functions to the
ASM description that are evaluated during simulation,
and is responsible to explore the design space of archi-
tecture and compiler changes.

4. ABSTRACT STATE MACHINES

Here, we introduce the basic concepts of Abstract State Ma-
chines (ASM) as the fundamental mathematical theory of
our model and demonstrate their suitability for modeling
computer architectures on a high level of accuracy.

4.1 Basicsof ASMs

In mathematics, domains, also called universes [10], func-
tions, and relations constitute a structure. Structures with-
out relations are traditionally called algebras. A sequential
Evolving Algebra, or now called Abstract State Machine [10]
M =V, fi,..., fr) is a first order algebra with:

e V being a finite vocabulary (called SuperUniverse) and

e f; being a finite set of n-ary functions over V.

States of M are structures (resp. algebras) over V. Now, an
ASM M is defined by a an initial state So and a program P
(Update Rules) consisting of a finite set of transition rules
each of the form:

e if <Cond> then <Rule> endif (Conditional)
with <Cond>, <Rule> being terms over V,

e Rule_ 1 Rule_2 Rule.3 ... Rule.n
with <Rule_i> being terms over V,

(Block)

o f(tr,...;tn) =t (Update)
with f(t1,...,tn),t being terms over V. Let f denote
an arbitrary n—ary function and ¢1,--- ,%, denote a
sequence of parameters. Then, a (function) update
f(ti, -+ ,tn) :=t sets the value of f at (t1,--- ,tn) to
t. Note, that Updates are computed simultaneously.

In general, <Rule> is a finite set of update rules and <Cond>
may be an arbitrary boolean valued expression (first-order
logic formula). Since algebras do not include relations, the
equality-relation is expressed by its characteristic function.
So, the evaluation of a condition is the comparison of a term
(an n-ary function) and a nullary function true resp. false
or undef.

The operational semantics of an ASM may be described as
follows [10]: The effect of a transition rule R when applied
to a state S; (which itself is an algebra) is to produce an-
other algebra (or state) S;+1 which differs from S; by the
new values for those functions at those arguments where the
values are updated by the rule R. If Cond is true, the rule
can be executed by simultaneously executing each update in
the set of Updates. An ASM terminates when it runs into a
fixed point Sy, i.e. S, evokes no further Updates.

4.2 Modeling Processors with ASMs

We aim at a cycle-accurate model of computer architec-
tures. This means that we have to describe an architec-
ture’s behavior on at least register transfer level (RTL). In
general, the execution of a register transfer may depend on
a machine’s internal state (e.g. state of mode registers,
drivers, and/or the value of certain instruction bit vari-
ables). Leupers [15] demonstrates that the behavior of a
processor architecture may be described on register trans-
fer level by a set of so-called guarded register transfer pat-
terns (GRTP), where a register transfer pattern denotes a
set of operations to be performed if the associated guard,
a boolean function representing a machine’s internal state,
is evaluated to true. With this concept, we can consider
a processor as a machine which in every control step exe-
cutes the same set of parallel guarded operations, each of
which has the form: if <register_transfer_condition>
then <register_transfer_pattern> The correspondence
of GRTPs and ASM transition rules is obvious.

4.3 Advantages of ASM Models

The main advantages of using ASMs for processor modeling
may be summarized as follows:

e Shortness of description (e.g., 200 lines XASM code
for the ARM7 processor [19])

o readability of the specification (no syntactic overhead),
e cycle accuracy and acceptable simulation speed,

e bit-true simulation of irregular arithmetic operations
on arbitrary large word-lengths using a C-based library
of configurable standard functions based on arbitrary
precision numbers (GNU-MP) since the inclusion of
C-libraries is strongly supported by the XASM envi-
ronment.

5. ARCHITECTURE COMPOSER

ArchitectureComposer is a tool for the automatical genera-
tion of an ASM model of a processor given by a graphical
description of the architecture’s control- and data path.

5.1 The Architecture Editor

The tool supplies a library of standard components neces-
sary for designing the basic elements of a processor, e.g.
registers, memory, logical and arithmetical units. Figure 2
shows the graphical composition of a simple architecture,
the lower left window displays the set of basic architecture
modules to choose from.

These basic elements are parameterized. The parameters of
each element can be manipulated at any time via a dialog.
See, e.g., the upper right dialog of Figure 2 for changing the
parameters of the multiplexer AluOpMuz with three inputs
of six bit each and a control port width of two bits.

MECEE

D dateix.or2.cas

T

Figure 2: Designing a MIPS like processor architec-
ture using Architecture Composer

Interconnections of basic elements are automatically vali-
dated. Finally, the editor allows to cluster nets and define
new components this way (component generation) [2]. Thus,
an overall architecture is represented hierarchically.

After architecture entry, the XASM-code generator (see Sec-
tion 5.2) creates a corresponding behavioral and structural
description in XASM notation [1].

5.2 Automatic XASM-Code Generation

In our approach, code generation is performed according to
the following scheme:

1. Generation of output signal declarations: For each out-
put signal of each hardware component, a function dec-
laration is generated. Thus, a function represents the
output signal of a hardware component.

2. The functions corresponding to sequential elements
(e.g. memory) are initialized in a separate block en-
capsulated by the keywords init and endinit.

3. Memory and register assignments are encoded as
guarded update rules.

We distinguish two kinds of hardware components:

a) combinational elements (e.g. comparators, multipliers,
adders, etc.) and

b) sequential elements (registers, memories, etc.)

Non-hierarchical combinational elements are modeled by an
external library of C-functions providing the necessary arith-
metic and logical functions. Using the XASM construct de-
rived function, an alias for the respective function call is
declared. For each sequential element, an XASM function
is generated which in turn is used in the update rules, see
Section 4.1.

<[FElnE

congst1 const2

& ¥ Mult

Figure 3: Example of a simple data path

Ezample: Here, we consider the XASM code generation for
the simple architecture displayed in Figure 3. The generated
XASM code looks as follows:

asm MAIN is
use cpucore
derived function Mult_res ==
c_mult (Add_res, consti_out, 8, COMPLEMENT_2)
derived function Add_res ==
c_add (A_out, B_out, 8, COMPLEMENT_2)
derived function El_out ==
c_extract (Mult_res, 16, 0, 8)
derived function COMP1_out ==
c_gteq (const3_out, Add_res, 8, COMPLEMENT_2)
function A_out
function B_out
function constil_out
function const2_out
function const3_out

init

A_out := "00000000"

B_out := "00000000"

constl_out := "00000010"

const2_out := "00000001"

const3_out := "00001000"
endinit
if COMP1_out = "1" then A_out := El_out
endif
if COMP1_out = "1" then B_out := const2_out
endif

endasm

In the above code, the construct use cpucore is needed
for linking the library of C functions (cmult, c_add,
c_extract) mentioned above. These external functions,
marked by a prefix c_ call the generic simulation engine
gen_lib which is independent of an architecture’s internal
number representation or word length. This simulation en-
gine is supported by the GNU Multiple Precision Arithmetic
Library [9] operating on arbitrary word-length integers. So,
operands, represented by bitstrings, are converted to inte-
ger values, then the respective operation is performed on
the integer operands and the result is converted back to a
bitstring of the machine’s representation format.

5.3 Automatical Simulator Generation

After generation of the XASM description by Architecture-
Composer, the XASM-compiler translates this description
into C-code and uses the gcc-compiler to compile these C-
files. Subsequently, the resulting object files are linked with
the simulation engine mentioned in Section 5.2 and the
XASM runtime library. The result is an interactive simula-
tion and debugging environment controled by Tcl/ Tk scripts
provided by the Gem-Mex tool [1, 3].

Figure 4 displays the design workflow including a snapshot of
a typical simulation and debugging session (case study Texas
Instruments TMS3200C6201) using the Gem-Mex environ-
ment. In this case study [20], the ASM model has still been
handwritten. The application has been programmed in C
code, the corresponding TI-C6 assembly code was produced
by the Texas Instruments Code Composer Studio compiler.

Application Program
(Assembler) T _
e Architecture

Description

_main. ADD.L1 A0ShAL
MV.S2 17B4
LMBD.L2 B1,B2B3
MV.SL _main
ADDLIX ALBOAL
MV.L2 B2B3

Architecture
Composer

SimulationCore

(C Code

gen lib

Simulator Generator

Debugoc];i ng
an
Simulation
Environment

Figure 4: Workflow of the Simulation

6. CONCLUSION AND FUTURE WORK

In this paper, we describe how cycle-accurate processor be-
havior may be efficiently modeled using the formalism of
Abstract State Machines [10]. We introduce the tool Archi-
tecture Composer for hierarchical graphical entry and compo-
sition of processor architectures. Given the graphical repre-
sentation of a processor’s control- and data path, Architec-
ture Composer automatically generates an ASM model in the
ASM specification language XASM. From this XASM-code,
a simulator and debugging environment can be generated
automatically by the Gem-Mex tool.

The presented methodology is part of the first two phases of
the project BUILDABONG which aims at joined architec-
ture/compiler co-generation. In the future, given a specifi-
cation of a problem and constraints on the hardware design,
our task is to explore architecture tradeoffs. For this pur-
pose, we need the editor described above and a compiler
tool which is retargetable to the architecture emitted by the
editor to guarantee optimal scheduling and resource utiliza-
tion. The development of such a compiler tool is the current
field of research in the BUILDABONG project (phase 3).

7. REFERENCES
[1] M. Anlauff. XASM - an extensible, component-based
abstract state machines language. In Y. Gurevich,
P. Kutter, M. Odersky, and L. Thiele, editors,
International Workshop on Abstract State Machines,
volume 1912 of Lecture Notes on Computer Science
(LNCS), pages 69-90. Springer, 2000.

[2] M. Anlauff, D. Fischer, P. Kutter, J. Teich, and
R. Weper. Hierarchical microprocessor design using
XASM. In Proceedings of the Tth International
Conference on Computer Aided Systems Theory:
formal Methods and Tools for Computer Science
(EUROCAST 2001), Las Palmas de Gran Canaria,
Spain, Feb. 19-23, 2001. (to appear).

M. Anlauff, P. Kutter, and A. Pierantonio. Formal
aspects of and development environments for
Montages. In Second Int. Workshop on the Theory
and Practice of Algebraic Specifications, Workshops in
Computing. Springer-Verlag, 1997.

(3

—_

[4

[l

S. Bashford, U. Bieker, B. Harking, R. Leupers,

P. Marwedel, A. Neumann, and D. Voggenauer. The
MIMOLA language - version 4.1. Technical report,
University of Dortmund, 1994.

[5

—_

http://www-date.upb.de/RESEARCH/BUILDABONG/
buildabong.html.

[6

—_

A. Fauth. Beyond tool-specific machine descriptions.
In P. Marwedel and G. Goossens, editors, Code
Generation for Embedded Processors, pages 138-152.
Kluwer Academic Publishers, 1995.

[7] A. Fauth, J. Van Praet, and M. Freericks. Describing
instruction set processors using nML. In Proceedings
on the European Design and Test Conference, Paris,
France, pages 503-507, March 1995.

[8] G. Goossens, J. Van Praet, D. Lanneer, W. Geurts,
and F. Thoen. Programmable chips in consumer
electronics and telecommunications. In G. de Micheli

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

and M. Sami, editors, Hardware/Software Co-Design,
volume 310 of NATO ASI Series E: Applied Sciences,
pages 135-164. Kluwer Academic Publishers, 1996.

T. Granlund. The GNU multiple precision library,
edition 2.0.2. Technical report, TMG Datakonsult,
Sodermannagatan 5, 11623 Stockholm, Sweden, 1996.

Y. Gurevich. Evolving algebras 1993: Lipari guide. In
E. Borger, editor, Specification and Validation
Methods, pages 9-36, Oxford University Press, 1995.

Ashok Halambi, Peter Grun, Asheesh Khare, Vijay
Ganesh, Nikil Dutt, and Alex Nicolau. Expression: A
language for architecture exploration through
compiler /simulator retargetability. In Proc. Design
Automnation and Test in Europe (DATE’1999), 1999.

http://1s12-www.informatik.uni-dortmund.de/
leupers/lanceV2/lanceV2.html.

M. Langevin, E. Cerny, J. Wilberg, and H.-T.
Vierhaus. Local microcode generation in system
design. In P. Marwedel and G. Goossens, editors, Code
Generation for Embedded Processors, pages 171-187.
Kluwer Academic Publishers, 1995.

D. Lanneer, J. Van Praet, A. Kifli, K. Schoofs,

W. Geurts, F. Thoen, and G. Goossens. Chess:
Retargetable code generation for embedded dsp
processors. In P. Marwedel and G. Goossens, editors,
Code Generation for Embedded Processors, pages
85-102. Kluwer Academic Publishers, 1995.

R. Leupers. Retargetable Code Generation for Digital
Signal Processors. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1997.

P. Paulin, C. Liem, T. May, and S. Sutarwala.
Flexware: A flexible firmware development
environment for embedded systems. In P. Marwedel
and G. Goossens, editors, Code Generation for
Embedded Processors, pages 67-84. Kluwer Academic
Publishers, 1995.

S. Pees, A. Hoffmann, and H. Meyr. Retargeting of
compiled simulators for digital signal processors using
a machine description language. In Proceedings Design
Automation and Test in Europe (DATE’2000), Paris,
March 2000.

S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr.
Machine description language for cycle-accurate
models of programmable DSP-architectures. In
Proceedings of the 36th Design Automation Conference
(DAC’99), New Orleans, June 1999.

J. Teich, P. Kutter, and R. Weper. Description and
simulation of microprocessor instruction sets using
ASMs. In Y. Gurevich, P. Kutter, M. Odersky, and

L. Thiele, editors, Int. Workshop on Abstract State
Machines, volume 1912 of Lecture Notes on Computer
Science (LNCS), pages 266-286. Springer, 2000.

J. Teich, R. Weper, D. Fischer, and S. Trinkert. A
joined architecture/compiler design environment for
ASIPs. In ACM SIG Proceedings International
Conference on Compilers, Architectures and Synthesis
for Embedded Systems (CASES 2000), pages 26-33,
San Jose, CA, U.S.A., November 2000.

