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Abstract— The quality of synthesis results for most high level
synthesis approaches is strongly affected by the choice of control
flow (through conditions and loops) in the input description.
This leads to a need for high-level and compiler transformations
that overcome the effects of programming style on the quality
of generated circuits. To address this issue, we have developed
a set of speculative code motion transformations that enable
movement of operations through, beyond, and into conditionals
with the objective of maximizing performance. We have im-
plemented these code transformations, along with supporting
code motion techniques and variable renaming techniques, in
a high-level synthesis research framework called Spark. Spark
takes a behavioral description in ANSI-C as input and generates
synthesizable register-transfer level VHDL. We present results for
experiments on designs derived from three real-life multimedia
and image processing applications, namely, the MPEG-1, MPEG-
2 and GIMP applications. We find that the speculative code
motions lead to reductions between 36 % to 59 % in the number
of states in the finite state machine (controller complexity) and
the cycles on the longest path (performance) compared to the case
when only non-speculative code motions are employed. Also, logic
synthesis results show fairly constant critical path lengths (clock
period) and a marginal increase in area.

Index Terms— High-level synthesis, parallelizing compilers,
code motions, speculation, embedded systems.

I. INTRODUCTION

Recent years have seen the widespread acceptance and
use of language-level modeling (such as VHDL and Verilog)
of digital designs. Increasingly, the typical design process
starts with design entry in a hardware description language
at the register-transfer level, followed by logic synthesis.
Furthermore, with the advent of systems-on-a-chip, system
level behavioral modeling in high level languages is being
used for initial system specification and analysis. All these
factors have led to a renewed interest in high level synthesis
from behavioral descriptions [1], [2], [3], [4], [5], [6], [7], [8].

However, current synthesis efforts have several limitations:
synthesizability is guaranteed on a small, constrained subset
of the input language and the language level optimizations are
few and their effects on final circuit area and speed are not
well understood. The quality of synthesis results (in terms of
circuit delay and area) is adversely affected by the presence
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of conditionals and loops. Designers are often given minimal
control over the transformations that effect these results. All
these factors continue to limit the acceptance of high-level
synthesis tools among designers.

To alleviate the problem of poor synthesis results in the
presence of complex control flow in designs, there is a need for
high-level and compiler transformations that can optimize the
synthesis results irrespective of the choice of control flow in
the input description. To address this issue, several scheduling
algorithms have been proposed that employ beyond-basic-
block code motion techniques such as speculation to extract
the inherent parallelism in designs and increase resource
utilization [4], [5], [6], [7].

Generally, speculation refers to the unconditional execution
of operations that were originally supposed to have executed
conditionally. However, we found that there are situations
when there is a need to move operations into conditionals.
This may be done by reverse speculation, where operations
before conditionals are duplicated into subsequent conditional
blocks and hence, executed conditionally, or this may be done
by conditional speculation, wherein an operation from after the
conditional block is duplicated up into preceding conditional
branches and executed conditionally. Another code motion
technique we developed, called early condition execution,
evaluates conditional checks as soon as their data dependencies
are satisfied. In this way, all the operations in the branches of
the conditional are ready to be scheduled immediately.

A number of similar code transformations have been pro-
posed for compilers as well. Whereas compilers often pursue
maximum parallelization by applying speculative code mo-
tions, in high-level synthesis, such code transformations have
to be selected and guided based on their effects on the control,
interconnect and area costs. An important contribution of our
work is in heuristics that select the code transformations so
as to improve the overall synthesis results. In some cases, our
heuristics actually end up increasing the number of operations
by duplicating them into conditional blocks.

We thus present a priority-based global list scheduling
heuristic that directs these code motion transformations and
obtains significant reductions in schedule lengths and con-
troller complexity. Area overheads are kept in check by
using a resource binding technique that minimizes interconnect
[9]. We implemented the code motion transformations, the
scheduling heuristic, and control and binding passes in a
modular and extensible high-level synthesis framework called
Spark [10]. We also modified several parallelizing compiler
transformations [11], [12] for high-level synthesis and imple-

0000–0000/00$00.00 c© 2003 IEEE



mented them within our framework. Spark produces synthe-
sizable register-transfer level (RTL) VHDL and thus, enables
evaluation of the effects of several coarse and fine-grain
optimizations on logic synthesis results. The input language for
Spark is ANSI-C, currently with the restrictions of no pointers,
no unstructured jumps (gotos) and no function recursion.

The rest of this paper is organized as follows: the next
section reviews previous related work. In Section III, we
present the intermediate representation used by Spark and in
Section IV, we describe a set of speculative code motions that
are useful in high-level synthesis. Next, we present the Spark
framework and in Section VI, we describe the scheduling
heuristic. In Section VII, we present scheduling and logic
synthesis results for experiments using the code motions.

II. RELATED WORK

Early high-level synthesis work focused on data-flow de-
signs and applied optimizations such as algebraic transfor-
mations, retiming and code motions across multiplexers for
improved synthesis results [13], [14], [15], [16]. Recent work
has demonstrated the effectiveness of speculation in improving
schedule lengths for designs with control flow. CVLS [4] uses
condition vectors to improve resource sharing among mutually
exclusive operations. Radivojevic et al. [17] and Haynal [6]
present exact symbolic and automata-based formulation for
designs with control flow. The “Waveschedule” approach
[18] employs speculative execution to minimize the expected
number of cycles in the schedule of a design. Santos et al. [19]
and Rim et al. [20] support generalized code motions during
scheduling of designs with control flow.

A range of code transformation techniques similar to those
presented in our work have also been previously developed
for high-level language compilers (especially parallelizing
compilers) [21], [22], [23]. Although the basic transformations
(e.g. dead code elimination, copy propagation) can be used in
synthesis as well, other transformations need to be modified
for synthesis by incorporating ideas of mutual exclusivity of
operations, resource sharing and hardware cost models.

The contributions of this work include: (a) three code
motion transformations derived from speculative execution
techniques that are specifically targeted for high-level synthe-
sis, (b) a heuristic approach to drive the application of these
transformations and (c) a framework that provides a toolbox of
code transformations and supporting compiler transformations.
This enables the designer to apply heuristics to drive selection
and control of individual transformations under realistic cost
models for high-level synthesis. The synthesis framework
provides a path from an input behavioral description down
to RTL code that is synthesizable by logic synthesis tools.

III. DESIGN DESCRIPTION MODELING

The Spark synthesis framework accepts a behavioral de-
scription in ANSI-C as input. However, we do not support
pointers, unstructured jumps (gotos) and recursive functions
for synthesis. The input C code is a sequential description
of statements. Statements may be operation expressions, con-
ditional constructs (if-then-else, switch-case), and loop con-
structs (for, while, do-while loops).

Traditionally, control-data flow graphs (CDFGs) [15], [24]
have been the primary model for capturing design descriptions
for high-level synthesis. CDFGs consist of operation and
control nodes with edges for both data flow and control flow.
CDFGs work very well for traditional scheduling and binding
techniques. However, we found the abstraction level offered
by CDFGs is not enough to enable the range of coarse-grain
and fine-grain compiler transformations that we proposed. In
particular, loop and conditional structures are not maintained,
making it difficult to apply coarse-grain optimizations.

To enable the range of optimizations explored by our
work, we use a hierarchical control-flow representation called
Hierarchical Task Graphs (HTGs) [11], [25] that maintains the
control and loop constructs in the design such as if-then-else
blocks, for-loops and while-loops.

Of course, several other representation models have been
proposed for high-level synthesis [26], [27], [28], [29]. How-
ever, HTGs are a convenient representation for designs with
considerable control constructs since they maintain a struc-
tured view of the design. In fact, we maintain HTGs in con-
junction with control flow graphs (CFGs) and data flow graphs
(DFGs). Thus, whereas CFGs (and CDFGs) are efficient for
traversing the basic blocks in a design, HTGs enable higher
order manipulation – for example, they enable coarse-grain
code restructuring (such as that done by loop transformations
[12]) and also provide an efficient way to move operations
across large pieces of code [11] (see Section V-A).

In the next two subsections, we present the data flow
graphs, control flow graphs, and the hierarchical task graphs
maintained by our framework and how they all tie in together.

A. Data Flow and Control Flow Graphs

Data dependencies between operations create a partial or-
dering between the operations. If an operation opj reads the
result of another operation opi, then a flow dependency is said
to exist between operations opi and opj . Hence, opj can start
execution only after opi has finished execution. We can define
a data flow graph that captures flow dependencies as follows:

Definition III.1 A data flow graph (DFG) is a directed
acyclic graph GDFG(VDFG, EDFG), where the vertices
VDFG = {opi | i = 1, ..., nops} are the operations in the
design and the edges EDFG represent the flow data depen-
dencies between operations. A directed edge eij = (opi, opj),
where opi, opj ∈ VDFG, exists in EDFG if data produced by
operation opi is read by operation opj .

A sequence of statements or operations from the input
description with no conditionals or loops between them is
aggregated into a basic block. Whereas the input “C” de-
scription consists only of operations that execute sequentially,
the high-level synthesis scheduler can schedule operations to
execute concurrently. We aggregate operations that execute
concurrently into scheduling steps within basic blocks. These
scheduling steps correspond to control steps in high-level
synthesis [15] and to VLIW instructions in compilers [25].

This can be formally stated as follows:
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Definition III.2 A scheduling step stepj = {opk | k =
1, 2, ..., n} is an aggregation of n operations that execute
concurrently in the same cycle or time step.

Definition III.3 A basic block bbi = {stepj | j =
1, 2, ..., nsteps} is a maximal sequence of nsteps consecutive
scheduling steps, where the flow of control enters at the
beginning and leaves at the end without halting or possibility
of branching except at the end.

The presence of conditional and loop constructs in a design
description introduces the notion of control flow paths. Control
flow can branch into multiple control paths at fork (or branch)
basic blocks and merge back into a single control flow path at
join (or merge) basic blocks. We define a control flow graph
that captures this control flow information as follows:

Definition III.4 A control flow graph (CFG) is a directed
graph GCFG(VCFG, ECFG), where the vertices VCFG =
{bbi | i = 1, 2, ..., nbbs} are the basic blocks in the design
and the edges ECFG represent the flow of control between
the basic blocks. A directed edge eij = (bbi, bbj), where bbi,
bbj ∈ VCFG, exists in ECFG if the signifies that bbj executes
after bbi has finished execution. bbi is denoted as a predecessor
of bbj and bbj as a successor of bbi. There exists a unique
initial basic block bb0 ∈ VCFG from which all paths in GCFG

originate; FirstBB(GCFG) returns bb0.

The mapping of operations in the DFG to basic blocks in
the CFG is given by the following definition:

Definition III.5 There exists a many-to-one mapping of op-
erations in the data flow graph GDFG(VDFG, EDFG) to the
basic blocks in the control flow graph GCFG(VCFG, ECFG)
given by BBOps: VDFG 7→ VCFG. Thus, ∀ opi ∈ VDFG,
BBOps(opi) gives the basic block bbj ∈ VCFG that operation
opi is mapped to,

B. HTGs: A Model for Control-Intensive Designs

Whereas CFGs are useful for maintaining the flow of control
between basic blocks, we employ hierarchical task graphs
to maintain structure of the design description. We define a
hierarchical task graph as follows:

Definition III.6 A hierarchical task graph is a hierarchy
of directed acyclic graphs GHTG(VHTG, EHTG), where the
vertices VHTG = {htgi | i = 1, 2, ..., nhtgs} can be one of
three types TypeHTG = {SN , CN ,LN}, corresponding to
single, compound, and loop nodes:

1) Single nodes represent nodes that have no sub-nodes
and are used to encapsulate basic blocks.

2) Compound nodes are recursively defined as HTGs,
i.e., they contain other HTG nodes. They are used to
represent structures like if-then-else blocks, switch-case
blocks or a series of HTGs.

3) Loop nodes are used to represent the various types of
loops (for, while-do, do-while). Loop nodes consist of a
loop head and a loop tail that are single nodes and a
loop body that is a compound node.

(a) (b) (c)

<

7:  x = v + e;
8:  y = v − e;

4:      v = t + c;
     else
      {

      }   

2:  u = a − b;
1:  t = a + b;

3:  if (a < b)

5:      w = u + c;
6:      v = w  − d;
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Fig. 1. (a) Example C description. (b) Corresponding Hierarchical Task
Graph (HTG) representation. (c) HTG representation with the control and
data flow graphs overlaid on top. An empty basic block, bb 4, is added to the
control flow graph in the Join node of the If-HTG node.

The edge set EHTG in GHTG represents the flow of control
between HTG nodes. An edge (htgi, htgj) in EHTG, where
htgi, htgj ∈ VHTG, signifies that htgj executes after htgi

has finished execution. Each node htgi in VHTG has two
distinguished nodes, htgStart and htgStop, belonging to VHTG

such that there exists a path from htgStart to every node in
htgi and a path from every node in htgi to htgStop.

The htgStart and htgStop nodes for all compound and
loop HTG nodes are always single nodes. The htgStart and
htgStop nodes of a loop HTG node are the loop head and
loop tail respectively and those of a single node are the node
itself. For the rest of this paper, we will denote the top-
level HTG corresponding to a design as the Design HTG.
The design HTG is constructed by creating a compound node
corresponding to each control construct in the design.

Consider the sample “C” code in Figure 1(a). The HTG
representation for this code is given in Figure 1(b). The HTG
representation consists of a compound design HTG (htg0) that
encapsulates the HTG nodes, htg1 to htg7, and the control
flow edges between the HTG nodes (shown by dashed arrows).
The if-then-else control construct from the source code is
encapsulated in the compound If-HTG node, htg2. The If-
HTG node consists of a single node for the conditional check,
a compound node for the true/then branch, a compound node
for the false/else branch and a single node for the Join node
(containing only an empty basic block as explained below).
The htgStart node for an If-HTG is the single node with the
conditional check and the htgStop node is the Join node: in
Figure 1(b), these correspond to htg3 and htg6 respectively.
Similarly, htg1 and htg7 are the htgStart and htgStop nodes
of the design HTG, htg0.

In Figure 1(c), we show how the control flow graph (CFG)
and data flow graph (DFG) can be overlaid onto the HTG
graph. Basic blocks are denoted by shaded boxes within the
HTG nodes (bb0 to bb5) and operations are denoted by circular
nodes with the operator sign within (operations 1 to 8). Dashed
lines denote control flow between HTG nodes and solid lines
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Fig. 2. (a) The hierarchical task graph (HTG) representation of the “waka”
benchmark with the control and data flow graphs overlaid on top. (b) The
HTG representation of a For-Loop.

denote data flow between operations. A fork in the control
flow (i.e. a Boolean condition check) is denoted by a triangle
(4) and a merge by an inverted triangle (5).

Note that, for clarity, the true and false branches in Figure
1(c) are shown as a single node encapsulating a basic block. In
practice, the single node is then encapsulated in the compound
HTG node that forms the true or false branch.

Also, during the construction of HTGs, we add empty
“Join” basic blocks where multiple control flow path merge.
In Figure 1(c), basic block bb4 corresponds to a Join basic
block that is encapsulated in the single Join node htg6. Join
HTG nodes serve as the htgStop nodes of compound HTG
nodes and enable an easier and more structured approach to
the hierarchical composition of nodes. Detailed notes on HTG
construction are presented in [25].

Figure 2(a) illustrates the HTG for the synthetic benchmark
“waka” [4] along with the control flow and data flow graphs.
This design contains an If-HTG node, whose false/else branch
contains another If-HTG node. bb0 to bb10 denote basic blocks.

We show a For-loop HTG in Figure 2(b). The For-loop
HTG, htg0, consists of 3 sub-nodes: (a) Loop head (htg1):
consists of a single node with an optional initialization basic
block, (b) Loop body (htg2): a compound HTG node contain-
ing a single HTG node (htg3) for the conditional check basic
block and a compound HTG node (htg4) for the main body of
the loop, and an optional single node (htg5) for the loop index
increment basic block, and (c) Loop tail/exit (htg6): a single
node with an empty basic block. There is a backward control
flow edge from the end of the loop body to the conditional
check single node. Maintaining the loop hierarchy allows us to
treat the back edges as implicit self-loops on composite nodes
[25]. Therefore, at any hierarchy level, the HTG is a directed
acyclic graph.

The relationship between HTGs and CFGs is captured by
the following definition:

Definition III.7 Given GCFG(VCFG, ECFG) and
GHTG(VHTG, EHTG), there exists a one-to-one mapping of
the basic blocks in GCFG to the single nodes in GHTG given
by: HtgBB : VCFG 7→ VHTG. Thus, ∀ bbj ∈ VCFG there
exists a htgi ∈ VHTG such that TypeHTG(htgi) = SN .

We capture the input description using a design graph that
is defined as follows:

Definition III.8 A design graph, DG(VD, ED, BBOps,
HtgBB), is a layered graph1, where the vertex set
VD = {VDFG ∪ VCFG ∪ VHTG} consists of three
layers of nodes corresponding to the nodes of the
graphs GDFG , GCFG, and GHTG and the edge set
ED = {EDFG ∪ ECFG ∪ EHTG} consists of the edges
corresponding to the edges of the graphs GDFG , GCFG,
and GHTG. DG also contains the mapping BBOps between
the operations in GDFG and the basic blocks in GCFG and
the mapping HtgBB between the basic blocks in GCFG and
the single nodes in GHTG.

For clarity, in the rest of this paper, we make several
simplifications in the figures used for the examples. We omit
the single HTG node that encapsulates basic blocks. Control
flow edges in HTG representations are shown to originate from
basic blocks and terminate at basic blocks (i.e. these represent
the edges from the control flow graph).

IV. CODE MOTIONS IN HIGH-LEVEL SYNTHESIS

Computationally expensive portions of several classes of
applications – particularly multimedia and image processing
applications – are characterized by the presence of a con-
siderable number of unpredictable branches. These control
constructs limit the amount of instruction-level parallelism that
can be exploited from the input description [30], [31]. There
are usually not enough operations available for execution to
utilize all the resources in each cycle or scheduling step.
Hence, there are a number of idle resources in a basic block.

A resource is said to be idle in a scheduling step if there
is no operation scheduled to execute on that resource in
that scheduling step (the converse of an idle resource is a
busy resource). Idle resources can be utilized by moving and
scheduling operations from subsequent or preceding basic
blocks. The candidate operations for these code motions are
operations whose data dependencies are satisfied, but the
conditions under which they execute may not have been
evaluated. One of the key enabling transformations for such
type of code motions is speculation.

A. Using Speculation in High-Level Synthesis

Speculative execution or speculation refers to the execution
of an operation before the branch condition that controls the
operation has been evaluated2. In our approach to speculation

1A k-layered graph is a connected graph in which the vertices are
partitioned into k sets L = l1, ..., lk and edges run between the vertices
of successive layers, li and li−1.

2Data speculation is another type of speculation in which an operation is
executed with potentially incorrect operand values.
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Fig. 3. Extracting the inherent parallelism in a design by speculating
the addition operations. This requires an additional resource, but leads to
a reduction in the longest path.

for high-level synthesis, we store the result of an speculated
operation in a new register. If the condition that the operation
was to execute under evaluates to true, then the stored result
is committed to the variable from the original operation, else
the stored result is discarded.

We demonstrate speculation by the example in Figure 3. In
Figure 3(a), variables d and g are calculated based on the result
of the calculation of the conditional c. Since the operations that
produce d and g execute on different branches of a conditional
block, these operations are mutually exclusive. Hence, these
operations can be scheduled on the same hardware resource
with appropriate multiplexing of the inputs and outputs, as
shown by the circuit in Figure 3(a).

Now, consider that an additional adder is available. Then,
the operations within the conditional branches can be calcu-
lated speculatively and concurrently with the calculation of
the conditional c, as shown in Figure 3(b). The corresponding
hardware circuit is also shown in this figure. Based on the
evaluation of the conditional, one of the results will be
discarded and the other committed. It is evident from the
corresponding hardware circuits in Figures 3(a) and (b) that
as a result of this speculation, the longest path gets shortened
from being a sequential chain of a comparison followed by
an addition to being a parallel computation of the comparison
and the additions.

This example also demonstrates the additional costs of
speculation. Speculation requires more functional units and
potentially more storage for the intermediate results. Uncon-
trolled aggressive speculation can also lead to worse results
due to multiplexing and control overheads. On the other hand,
judicious use of speculation can improve resource utilization.

B. Reverse Speculation

Reverse speculation refers to moving an operation opi from
its basic block bbj into the successors of bbj . We employ this
code motion to duplicate operation opi into the branches of
an If-HTG when the If-HTG is the successor of bbj . Reverse
speculation has been referred to as lazy execution [20] and
duplicating down in past literature [32].

Reverse speculation is useful in instances where an oper-
ation inside a branch of an If-HTG is on the longest path
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Fig. 4. Reverse Speculation: (a) An example design (b) Operation b is reverse
speculated into the branch of the If-HTG that uses its result, i.e., the false
branch. (c) Operation d is now speculated into basic block bb0. This reduces
the schedule length by one cycle.

through the design, whereas an operation before the If-HTG
is not. We demonstrate this by an example in Figure 4(a).
In this design, operation b, that is on the shorter dependency
path (< b, g, h >), is placed in the basic block before the If-
HTG, whereas operation d, that is on the longer dependency
path (< d, e, f, h >), is placed in the true branch of the If-
HTG. If we reverse speculate operation b into the conditional
branches, as shown in Figure 4(b), the adder in basic block
bb0 is left idle (see next paragraph for an explanation of why
b is not duplicated). This enables us to speculatively execute
operation d in bb0, as shown in Figure 4(c). The dashed lines
in Figure 4 demarcate the state assignments (S0 through S4)
for the three designs. Clearly, the final design in Figure 4(c)
after reverse speculation of b and speculation of d requires one
state less than the original design in Figure 4(a).

Note that, while applying reverse speculation in the example
above, a data dependency analysis determines that the result
of operation b is used only in the false branch of the If-
HTG. Hence, instead of duplicating b into both branches,
we move b only into the false branch of the If-HTG, as
shown in Figure 4(b). In the general case, reverse speculation
leads to duplication of the operation into both the branches
of an If-HTG. It is also important to make a distinction
between moving operations into a later scheduling step and the
downward operation duplication done by reverse speculation.
When an operation encounters a fork node while being moved
down, it has to be duplicated into all the control paths that lead
out of the fork node (unless its result is not needed in one of
the branches).

C. Early Condition Execution

We employ reverse speculation by using another novel
transformation called early condition execution. This trans-
formation attempts to schedule operations such that the con-
ditional check can be evaluated or scheduled as soon as
possible. Any operations before the conditional check that are
unscheduled are moved into the branches of the If-HTG by
reverse speculation. Evaluating a conditional check early using
early condition execution resolves the control dependency for
operations within branches of the If-HTG. These operations
are, thereby, available for scheduling sooner.

Early condition execution is demonstrated by an example in
Figure 5(a). In this example, comparison operation c computes
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Fig. 5. Early condition execution: (a) Original design (b) Comparison
operation c is scheduled as soon as possible to evaluate the conditional check
early. All unscheduled operations before the conditional checks are reverse
speculated into the branches of the If-HTG.
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Fig. 6. (a) HTG representation of an example. (b) Operations x and y are
speculated leaving resources idle in the conditional branches. (c) Operation z
is conditionally speculated into the conditional branches (bb1 and bb2).

a conditional that is checked in basic block bb1 (the Boolean
conditional check is denoted by a triangle). We can schedule
this comparison operation concurrently with operation a in
state S0 in basic block bb0, as shown in Figure 5(b). Now, the
conditional check in basic block bb1 can be executed “early”
in state S1. However, operation b in basic block bb0 has not
been scheduled as yet. Therefore, this operation is reverse
speculated into basic block bb3 (and not into bb2 since its result
is used only in bb3). These code motions lead to an overall
shorter schedule length, as shown by the state assignments in
Figures 5(a) and 5(b).

D. Conditional Speculation

Often design descriptions have instances where there are
idle resources in the scheduling steps of the basic blocks
that comprise the branches of an If-HTG. Speculating out
of If-HTGs also leaves resources idle in the basic blocks of
the conditional branches. To utilize these idle resources, we
propose duplicating operations that lie in basic blocks after
the conditional branches up into the basic blocks that comprise
the conditional branches. We call this code motion conditional
speculation. This is similar to the duplication-up code motion
used in compilers and the node duplication transformation
discussed by Wakabayashi et al. [4].

We demonstrate conditional speculation by the example in
Figure 6(a). In this example, operations x and y both write to
the variable a in the conditional branches bb1 and bb2. Con-
sider that this design is allocated one adder, one subtracter and
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Fig. 7. The Spark High Level Synthesis Framework: a complete synthesis
system that provides a path from an architectural description in “C” to
synthesizable register-transfer level VHDL.

one comparator. Then, operations x and y can be speculatively
executed as shown in Figure 6(b). The speculation of these
operations leaves the resources in basic blocks bb1 and bb2

idle. Hence, the operation z that lies in basic block bb4 can be
duplicated up or conditionally speculated into both branches
of the If-HTG and scheduled on the idle adder, as illustrated
in Figure 6(c). Operation z is dependent on either the result
of operation x or operation y depending on how the condition
evaluates (since operation z is dependent on the variable a).
Hence, the duplicated operations, z1 and z2, directly read the
results of operations x and y respectively. We have also shown
the state assignments (S0, S1 and S2) for the three designs
using dashed lines in Figure 6. Clearly, for this example, this
set of code motions leads to a design that requires one less
state to execute.

Note that, correctness issues place a number of constraints
on the kind of code motions that can be done. We have omitted
these for brevity, but they are detailed in [33] and are also dealt
with to some extent in [25] and [11].

V. THE Spark HIGH LEVEL SYNTHESIS FRAMEWORK

We have implemented the various speculative code motions
in a modular and extensible high-level synthesis framework
called Spark. Spark provides a range of coarse-grain and fine-
grain transformations and has been designed to aid in experi-
menting with new transformations and heuristics that optimize
the quality of synthesis results, in terms of circuit delay and
area. Figure 7 provides an overview of the Spark framework.
As shown in this figure, besides the input description, Spark
also takes additional information as input, such as a hardware
resource library, resource and timing constraints, and user
directives for the various heuristics and transformations.

The design flow through the Spark framework is as follows:
Spark accepts a behavioral description of a design in ANSI-
C, creates the intermediate representation that comprises of
HTGs, CFGs and DFGs, runs a data dependency analysis pass,
schedules the design, binds the resources, performs control
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b = e − f

cond

x = a + b a = c − d
x = a − b

If Node

BB 2Op: y = e + f
z = y + x

cond = a < b

z = y + x

x = a − b
a = c − dx = a + b

cond

b = e − f

If Node

Op: y = e + f

cond = a < b

BB 2

BB 1 BB 1

(a) (b)

Fig. 8. Trailblazing: Operation op1 is moved from basic block bb2 to basic
block bb1 across the if-then-else HTG node without visiting each basic block
inside the node.

synthesis, and finally generates an output in register-transfer
level VHDL.

The core of the synthesis framework has a transformations
toolbox that consists of a data dependency analysis pass,
the Trailblazing parallelizing code motion technique [11],
dynamic renaming of variables, the basic operations of loop
pipelining (or software pipelining), and supporting compiler
passes such as constant propagation and dead code elimination.
Passes from the toolbox are called by a set of heuristics
that guide how the code refinement takes place. Since the
heuristics and the underlying transformations that they use are
fairly independent, writing new heuristics can be as simple as
making calls to the toolbox. The use of transformations can
be controlled by the designer using scripts, hence, enabling
experimentation with different transformations and heuristics.

A scheduling heuristic employs the techniques from the
transformations toolbox to create a scheduled design (de-
scribed in Section VI). The scheduling phase is followed by a
resource binding and control synthesis phase. This phase binds
operations to functional units, ties the functional units together
(interconnect binding), allocates and binds storage (registers),
generates the steering logic and generates the control circuits
to implement the schedule. The focus of our resource binding
approach is to minimize the interconnect (multiplexers and de-
multiplexers) between functional units and registers [9]. After
binding, we generate a finite state machine controller for the
scheduled and bound design.

The back-end of the Spark framework consists of a register-
transfer level (RTL) VHDL generator. This RTL VHDL
belongs to the subset of VHDL that is synthesizable by
commercial logic synthesis tools and hence, the Spark frame-
work integrates into the standard synthesis design flow. This
completes the path from architectural design and specification
in a high level language such as “C” to synthesizable RTL
VHDL code and then down to the synthesized net-list.

A. Trailblazing: A Hierarchical Code Motion Technique

The speculative code motions employed by Spark are en-
abled by the Trailblazing code motion technique [11]. Trail-
blazing exploits information about the hierarchical structure
of the design that is maintained by hierarchical task graphs
(HTGs) [25] to perform efficient code motions across large

(b)

(c)

(e)

(d)

(a)

2

1

4

3

2

1

4

3

1: m = a + b;  3: m1 = e − f
2: n = m − c;   5: m = m1;  4: o = m1+ e

1: t1 = a + b;   3: t2 = e − f
2: t3 = t1 − c;  4: t4 = t2 + e2:  n = m − c

3:  m = e − f
4:  o = m + e

1:  m = a + b

Fig. 9. (a) Example C description. (b) Corresponding DFG. (c) DFG after
scheduling: ops. 1 and 3 and ops. 2 and 4 are scheduled concurrently.
(d) Scheduled output code generated if only flow data dependencies are
maintained. (e) Output code generated if non-flow data dependencies are also
maintained. Concurrent operations are written in the same line.

pieces of code. The Trailblazing algorithm returns a set of
trails or control flow paths that an operation will have to follow
in order to move from one basic block to another. To move
the operation along these control flow paths, the Trailblazing
algorithm employs the use of the speculative code motions
presented earlier in this paper. Details about the Trailblazing
algorithm are discussed in [11].

To understand the hierarchical moves performed by Trail-
blazing, consider the example in Figure 8. In this example,
we want to move the operation Op : y = e + f from basic
block bb2 to basic block bb1. While moving this operation,
Trailblazing encounters the htgStop node of an If-HTG node.
It checks if the moving operation has any dependencies
with the If-HTG node. Since, in this example, there are no
dependencies, operation Op is moved across the If-HTG node
to bb1 without visiting each sub-node of the If-HTG, as shown
in Figure 8(b).

B. Eliminating data dependencies by Dynamic Renaming

There are four types of data dependencies that can exist
between operations [32]: flow (variable read after write), anti
(write after read), output (write after write) and input (read
after read). High-level synthesis approaches have traditionally
chosen to retain only flow data dependencies. However, this
means that the variable names from the original description are
discarded, thereby, impairing the ability to correlate the input
description with the intermediate representation and the final
output code generated after synthesis. This makes it difficult to
visualize the effects of applying the various transformations.

To understand the need for maintaining non-flow data
dependencies, consider the sample “C” description in Figure
9(a) and its corresponding data flow graph in Figure 9(b). One
possible schedule is shown in Figure 9(c), where operations
1 and 3 and operations 2 and 4 are scheduled concurrently.
The output code corresponding to this scheduled design, when
non-flow data dependencies are not maintained, is given in
Figure 9(d). In this output code, we have to create new vari-
ables that store the result of each operation in the scheduled
design. Clearly, it takes some effort to correlate the operation
statements in this output code with the operation statements
in the input code (especially operations 2 and 4).

If we maintain non-flow data dependencies as well, we can
generate the output code given in Figure 9(e). In this code,
the variables that each operation writes to are maintained as
per the original code. By inspecting this code, we see that
concurrent execution of operations 1 and 3 requires renaming
the result variable of operation 3 to m1. Operation 5 is inserted
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x=z+1

x=y+1 x=y+1
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(b)

x’=z+1

x=y

z=y+1

x=y

(c)

z=x+1

x=y+1

y=y’

y’=z+1

(a)

Fig. 10. Moving an operation across another operation while eliminating (a)
an anti dependency (b) an output dependency and (c) a flow dependency.

in the code to copy the new variable m1 to the variable m from
the original code, as shown in Figure 9(e). Thus, operation 4
can be executed concurrently with operations 2 and 5 using the
new variable m1 after employing dynamic variable renaming.

Although non-flow data dependencies can restrict code
motions, these can often be resolved by dynamic renaming
and combining [34]. Figures 10(a) to (c) demonstrate how one
operation can be moved past another one while dynamically
eliminating data dependencies. In Figure 10(a) the operation
that writes to variable y is scheduled at an earlier time step
by moving only the right hand side of the operation. The
result is written to a new destination variable y′ and the
original operation is replaced by a copy operation from y′ to y.
Similarly, in Figure 10(b), an output dependency between two
operations that write to the same variable x, can be resolved
by creating a new destination variable x′ while moving the
operation and replacing the original operation with a copy
operation. These copy operations can also be circumvented by
a technique known as combining. Combining replaces the copy
in the operation being moved by the variable being copied.
This is demonstrated in Figure 10(c), where the operation
z = x + 1 is moved past the copy operation x = y. The
variable x is replaced with the variable y on the right hand
side of the moving operation.

VI. PRIORITY-BASED GLOBAL LIST SCHEDULING

HEURISTIC

Scheduling is the task of assigning operations to control
steps or time intervals while respecting data dependencies and
resource constraints (if any) [15]. For the purpose of evaluating
the various code motion transformations, we have chosen a
Priority-based global list scheduling heuristic, although the
transformations presented here can be employed by other
scheduling heuristics as well. Priority list scheduling works
by ordering and scheduling operations based on a priority or
cost associated with them.

Our objective is to minimize the longest delay through the
design. Hence, the priority of an operation is determined by
the length of the data dependency chain from the operation
to the outputs of the design. The priority of an operation is
calculated as the delay of the resource that the operation can be
mapped to summed with the maximum of the priorities of all
the operations that use its result. A priority of zero is assigned
to operations that produce outputs. A priority of one (or two
if the output operations are multiplications) is assigned to
operations whose results the output operations depend on and
so on. The priority of an operation that creates a conditional

/* Schedules the Design Graph DG */
PriorityListScheduling(DG, R, CMs)

1: Pr ← CalculatePriority( GDFG )
2: stepk ← First scheduling step in FirstBB(GCFG)
3: while (stepk 6= φ) {
4: foreach (resource res ∈ R) {
5: A ← GetAvailableOps(DG, stepk, res, CMs)
6: if (A 6= φ) {
7: Pick Operation op ∈ A with lowest cost
8: TrailblazeOp(op, res, stepk, DG, CMs)
9: }
10: } /* end foreach */
11: stepk ← GetNextSchedulingStep(GHTG, GCFG, stepk)
12: } /* end while */

Fig. 11. Priority-based List Scheduling Heuristic.

/* Gets ops for scheduling on res in stepk */
GetAvailableOps(DG, stepk, res, CMs)
Returns: Available Operations List A

1: A ← Unscheduled operations in GCFG

that can be scheduled on res
2: foreach (opi ∈ A) {
3: if (data dependencies of opi cannot be satisfied)
4: A ← A - opi

5: if (MoveIsNotPossible(opi, stepk, CMs)
6: A ← A - opi

7: }
8: Calculate cost of operations in A
9: return A

Fig. 12. Algorithm to determine the list of Available operations.

check is assigned the maximum of the priorities of all the
operations in the branches of the If-HTG.

Our scheduling heuristic is presented in Figure 11. The
inputs to this heuristic are the unscheduled design graph DG
and the list of resources R. Additionally, we can specify a
list of allowed code motions, CMs, (i.e., speculation, reverse
speculation, conditional speculation et cetera). This gives us
control over the code motions employed while scheduling
the design by selecting and de-selecting code motions from
CMs. We can thus analyze the performance-area trade-offs
of individual code motions.

The heuristic starts by assigning a priority to each operation
in the input description as explained above. Scheduling is
done one scheduling step at a time while traversing the basic
blocks in the design CFG GCFG, starting with the first step
in the first basic block of GCFG (line 2 of the algorithm). For
each scheduling step (stepk) in the basic block, the scheduler
iterates over each resource res in the resource list R and calls
the GetAvailableOps function. This function returns a list of
available operations A that may be scheduled on res in stepk.
(lines 4 to 5 in the algorithm in Figure 11).

Available operations is a list of operations whose data
dependencies are satisfied and that can be moved in the design
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graph and scheduled on the given resource at the current
scheduling step. Pseudo-code for collecting the list of available
operations is given in Figure 12. Initially, all unscheduled
operations in the design that can be executed on the resource
type of res are added to the available operations list. The
unscheduled operations are collected by traversing the basic
blocks on the control flow paths from the current basic block
being scheduled. However, this basic block traversal algorithm
skips over the loop body of any loop nodes it encounters.
This is because operations from within loop nodes can only be
moved outside the loop body by transformations such as loop-
invariant code motion and loop pipelining. Operations whose
data dependencies are not satisfied and cannot be satisfied by
variable renaming are also removed from this list (lines 3 and
4 in Figure 12).

The available operations algorithm then calls the
MoveIsNotPossible function (presented in [33]). This
function employs Trailblazing to determine all the code
motions required to move the operation opi from its current
position to the scheduling step stepk under consideration.
Operations that require code motions that have not been
enabled in the list of allowed code motions CMs are removed
from the available list (lines 5 and 6 of the algorithm).

Finally, the available operations algorithm assigns a cost
for each remaining operation in A. Currently, this cost is the
negative of the operation’s priority, i.e.:

cost(opi) = −Pr(opi) ∀ opi ∈ GDFG

Since the scheduler picks the operation op with the lowest cost
from the available operations list (line 7 of Figure 11), this
effectively means that the operation with the highest priority
in the available list is chosen. Hence, operations that are on
the longest path through the design are favored for scheduling.
In this way, the cost function attempts to minimize the longest
delay through the design.

It is important to note that minimizing a different cost
function such as average delay can be done by incorporating
control flow information into the cost function. Also, if we
have profiling information about which control paths are more
likely to be taken, then we can give operations on those
paths a higher priority than operations on less taken paths.
Future work entails enhancing the cost function to include
hardware (control, interconnect, and area) cost models of the
code transformations.

Next, the scheduling heuristic calls Trailblazing to move the
chosen operation op to the current scheduling step stepk (line
8 of algorithm in Figure 11). This scheduling procedure is
repeated for all resources in each scheduling step as the basic
blocks in the design are traversed from top to bottom by calling
function GetNextSchedulingStep (presented in [35]). This
function traverses the design using topological ordering. Thus,
when a fork node of an If-HTG is encountered, the branches of
the If-HTG are traversed (scheduled) first and then, the basic
blocks past the join node of the If-HTG are traversed [33].

Note that, since operations with higher priorities may be
speculated into a basic block, the (lower priority) operations
that were originally placed in that basic block by the designer
may be left unscheduled. Either new scheduling steps are
added to the current basic block to schedule them or if reverse

AllowConditionalSpec(op, BBList, bbcurr)
Returns: True if op should be conditionally speculated
1: foreach (bbi in BBList) {
2: if (bbi is not scheduled)
3: return false
4: if (FindIdleResInBB(bbi, op) = φ) {

/* Check if we can insert a new step in bbi */
5: if (NumSteps(bbi) ≥ NumSteps(bbcurr))
6: return false /* Cannot insert op in bbi */
7: }
8: }
9: return true

Fig. 13. Heuristic to determine whether to schedule operation op into basic
block bbcurr by conditionally speculating (duplicating) into the basic blocks
in BBList.

speculation has been enabled, then these operations are reverse
speculated into the branches of the subsequent If-HTG.

A. Scheduling Loops

Scheduling of loops is done by the same procedure outlined
above. However, user-specified loop transformations such as
loop unrolling are applied first. Also, the scheduler cannot
move operations into or out of the loop body. This can only
be done by transformations such as loop-invariant code motion
or loop pipelining. Hence, the available operations algorithm
does not collect unscheduled operations from inside a loop
body to schedule them outside the loop body. Also, while
scheduling the loop body of a loop node, available operations
are collected only from within the loop body.

The Spark framework can schedule all types of loops,
including those with unknown loop iteration bounds. Our finite
state machine (FSM) is generated such that at the end of a
loop body, the next state is either the first state in the loop
body or the state after the loop body, depending on whether
the loop condition is satisfied or not. Hence, loop bounds
are not required for generating correct, synthesizable VHDL.
However, when the loop bounds are unknown, several loop
transformations cannot be applied to the design and we cannot
establish the number of cycles that the loop takes to execute.

B. A Heuristic to Determine Whether to Apply Conditional
Speculation

Experimental results have shown us that conditional specu-
lation, when applied unchecked, can lead to increased schedule
lengths and interconnect complexity due to operation duplica-
tion. Hence, we have developed a heuristic that determines
if an operation op should be conditionally speculated (CS).
This heuristic AllowConditionalSpec, is outlined in Figure
13. The heuristic starts with the list of basic blocks (BBList)
into which an operation op will be duplicated, if it is scheduled
in basic block bbcurr. The heuristic returns a true result if it
is possible to conditionally speculate op in each basic block
in BBList and a false result otherwise.

The heuristic iterates over each basic block bbi in the list
BBList and returns a false result if any bbi ∈ BBList is
unscheduled. This is because without scheduling a basic block
bbi first, it is not possible to accurately determine if there is
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# # # # # Resources
Benchmark Ifs Lps BBs Ops +− ∗ / << == [ ]

Mpeg-1 pred1 4 2 17 123 2 1 - 2 2 2
Mpeg-1 pred2 11 6 45 287 2 1 - 2 2 2
Mpeg-2 dpframe 18 4 61 260 4 1 - 2 2 2
GIMP tiler 11 2 35 150 3 1 1 2 2 2

TABLE I

CHARACTERISTICS OF THE FOUR DESIGNS USED IN OUR EXPERIMENTS,

ALONG WITH THE RESOURCES ALLOCATED FOR SCHEDULING THEM.

an idle resource in bbi on which to schedule operation op. If
bbi is scheduled, the AllowConditionalSpec heuristic calls
the FindIdleResInBB (presented in [36]) to find an idle
resource on which operation op can be scheduled (line 4 in
Figure 13).

If there is no idle resource in bbi, then the heuristic checks if
it is possible to create a new scheduling step in bbi in which
op can be scheduled. We can add a new scheduling step in
bbi when the number of scheduling steps in bbi is less than
the number of scheduling steps in bbcurr. This check prevents
basic block bbi from becoming the critical path in the design
with the most number of cycles (or scheduling steps) among
its mutually exclusive control paths. Thus, this check ensures
that the length of the longest path (path with the maximum
number of scheduling steps or cycles) through the If-HTG
does not increase by applying conditional speculation. The
AllowConditionalSpec heuristic returns a true result if it
either finds an idle resource or if it is possible to add a new
scheduling in each bbi ∈ BBList (line 9 of the algorithm).

VII. EXPERIMENTAL SETUP AND RESULTS

We used four designs as case studies to study the impact
of the proposed code motions: first on the scheduling and
controller size results and then on the logic synthesis results.
These four designs are derived from three moderately complex
real-life applications representative of the multimedia and
image processing domains. The designs are: the pred1 and
pred2 functions from the Prediction block of the MPEG-1
algorithm, the dpframe estimate function from the Motion
Estimation block of the MPEG-2 encoder algorithm [37] and
the tile function3 (with the scale function inlined) from the
“tiler” transform of the GIMP image processing tool [38].
Results for more designs are presented in [33].

Table I lists the characteristics of the four designs in terms
of the number of if-then-else conditional blocks (If HTGs),
loops (Loop HTGs), non-empty basic blocks and the total
number of operations in the input description. The number
of If HTGs, Loop HTGs, and basic blocks is indicative of
the control complexity of the design. All these designs have
doubly nested loops. Typical run times of Spark to produce
the results for these designs are in the range of 5 user seconds
on a 1.6 Ghz Linux PC.

Table I also lists the type and quantity of the resources used
for scheduling these designs: +− does add and subtract, ==
is a comparator, ∗ a multiplier, / a divider, [ ] an array address
decoder and << is a shifter. The multiplier (∗) executes in 2

3Note that this floating point function has been arbitrarily converted to an
integer function for the purpose of our experiments. This does not affect the
nature of the data and control flow, but only the data that is processed.

Allowed MPEG-1 pred1 MPEG-1 pred2
Code Motions # States Long Path # States Long Path

Within BBs 71 2009 125 4555
+across HTGs 60(-14.3 %) 1937(-3.6 %) 111(-11 %) 4409(-3.2 %)
+early cond exec 61(+1.7 %) 1937(0 %) 113(-1.8 %) 4409(0 %)
+speculation 56(-8.2 %) 1862(-3.9 %) 104(-8.0 %) 4178(-5.2 %)
+cond spec 40(-28.6 %) 1091(-41 %) 74(-28.8 %) 2575(-38.4%)
Total Reduction 42.9 % 45.7 % 40.8 % 43.5 %

TABLE II

SCHEDULING RESULTS AFTER APPLYING THE SPECULATIVE CODE THE

MPEG-1 pred1 AND pred2 FUNCTIONS.

Allowed MPEG-2 dpframe GIMP tiler
Code Motions # States Long Path # States Long Path

Within BBs 77 911 69 6144
+across HTGs 72(-6.5 %) 863(-5.3 %) 66(-4.3 %) 5944(-3.3 %)
+early cond exec 71(-1.4 %) 859(-0.5 %) 63(-4.5 %) 5544(-6.7 %)
+speculation 58(-18.3 %) 607(-29.3 %) 54(-14.3 %) 4734(-14.6 %)
+cond spec 49(-15.5 %) 571(-5.9 %) 31(-42.6 %) 2534(-46.5 %)
Total Reduction 36.4 % 37.3 % 55.1 % 58.8 %

TABLE III

SCHEDULING RESULTS AFTER APPLYING THE SPECULATIVE CODE THE

dpframe estimate AND tiler DESIGNS.

cycles and the divider (/) in 5 cycles. All other resources are
single cycle.

A. Effects on Performance and Controller Size

Tables II and III list the scheduling results for the four
designs as each code motion is enabled. These scheduling
results are in terms of the number of states in the finite
state machine controller (denotes controller complexity) and
the cycles on the longest path in the design (i.e. execution
cycles). The longest path through an if-then-else construct is
the number of scheduling steps through the longest branch. For
loops, the longest path length of the loop body is multiplied
by the number of loop iterations (loop bounds are known for
all four designs).

The rows in Tables II and III present results with each code
motion enabled incrementally, i.e., these signify the “allowed
code motions” while determining the available operations (see
Section VI) and do not represent an ordering of code motions.
We first allow code motions only within basic blocks (first
row) and then, then across hierarchical blocks as well, i.e.,
across entire if-then-else conditionals and loops (second row),
then with reverse speculation and early condition execution
also enabled (third row), then with speculation (fourth row),
and finally, with conditional speculation enabled as well (fifth
row). The percentage reductions of each row over the previous
row are given in parentheses.

The results in Tables II and III demonstrate that enabling
just the non-speculative code motions across hierarchical
blocks of code (second row) leads to modest improvements:
ranging from 4 % to 14 % in the number of FSM states and
3 to 5 % in the cycles on the longest path. Early condition
execution (that employs reverse speculation) also leads to little
or no improvements. (see third row in Tables II and III).

The largest improvements in performance (cycles) are ob-
tained by employing speculation and conditional speculation.
Speculation reduces the number of states and the number of
cycles by 8 to 18 % and 3 to 29 % respectively. Conditional
speculation leads to even more impressive improvements of 15
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Fig. 14. Effects of Speculative Code Motions on logic synthesis results for
pred1, pred2, dpframe estimate, and tiler designs.

to 42 % in the number of states and 5 to 46 % in the number
of cycles, as shown in the fifth row of Tables II and III.

The total reductions for the two metrics with all the code
motions enabled over code motions only within basic blocks
are given in the last row of Tables II and III. These improve-
ments are in the range of 36 to 55 % and 37 to 58 % in
the number of states and cycles respectively. These substantial
gains demonstrate that speculative code motions are essential
in designs with moderate control-flow. We also find that to be
truly effective all the code motions must be applied together,
thus, giving the scheduler the maximum freedom to choose
from among the candidate operations. Note that, when code
motions only within basic blocks are enabled, our global list
scheduling heuristic reduces to the classical list scheduling
approaches presented for data flow only designs [15], [16].

B. Effects on Area and Clock Period
In order to gauge the control and interconnect costs of the

code motions, we synthesized the register-transfer level (RTL)
VHDL generated by Spark after scheduling and resource
binding using the Synopsys Design Compiler logic synthesis
tool. We used the LSI-10K synthesis library for technology
mapping.

The logic synthesis results are summarized in the graphs in
Figure 14 for the four designs. We map three metrics in these
graphs: the critical path length (in nanoseconds), the unit area
(in terms of synthesis library used) and the maximum delay
through the design. The critical path length is the length of
the longest combinational path in the netlist as reported by the
static timing analysis tool. The critical path length dictates the
clock period of the final design. The maximum delay is the
product of the longest path length (in cycles) and the critical
path length (in ns) and signifies the maximum input to output
latency of the design.

The bars in in the graphs in Figure 14 present results
for code motions within basic blocks only (first bar), for
code motions across hierarchical blocks enabled as well (sec-
ond bar), early condition execution enabled also (third bar),

Schedule Length
Benchmark # Resources CVLS HRA Radiv Santos Spark

BBs [4] [39] [17] [5] Ours
kim [39] 7 2+,1-,2== 6 7 6 6 6

parker[40] 20 2+,3-,5== 4 NA 4 4 4
waka [4] 9 1+,1-,2== 7 7 7 7 7
rotor [17] 11 2+-,2*,1[ ] NA NA 8 8 8

TABLE IV

COMPARISONS WITH PREVIOUS WORK USING CLASSICAL HIGH-LEVEL

SYNTHESIS BENCHMARKS. NA = RESULTS ARE NOT AVAILABLE.

speculation enabled as well (fourth bar), and finally with
conditional speculation enabled as well (fifth bar). Thus, the
fifth bar represents the results with all the speculative and
non-speculative code motions enabled and the second bar
represents the results when only the non-speculative code
motions are enabled.

The graphs in Figure 14 show that the total delay is almost
halved when all the code motions are enabled over when code
motions only within basic blocks are allowed. The results in
these graphs also show that the critical path lengths remain
fairly constant as the code motions are enabled. This means
that the clock period does not increase by applying these code
motions. The constant critical path length, coupled with large
decreases in cycles on the longest path, leads to large decreases
in the total delay through the circuit.

However, code motions such as speculation and conditional
speculation can lead to an increase in area, as we can see from
graphs in Figure 14. This area increase is due to the increasing
complexity of the interconnect (multiplexers and associated
control logic) that is a product of the shorter schedule lengths
produced by the speculative code motions. Shorter schedule
lengths mean that resource utilization and resource sharing
increases and this leads to an increase in the complexity of
the multiplexers and associated control logic. This complexity
increase is particularly large due to conditional speculation
because it duplicates operations and thus, more operations are
mapped to the same number of resources as before.

Note that critical path lengths remain fairly constant despite
the increases in interconnect complexity, since these increases
are counter-balanced by decreases in the controller size. We
found that critical paths in our designs typically start in the
control logic that generates the select signals for the multiplex-
ers, continue through the multiplexers, the functional unit, a
de-multiplexer, and finally write to an output register. Even
though the code motions increase the size and complexity of
the multiplexers and de-multiplexers, they also lead to fewer
states in the FSM controller. Thus, the size and complexity of
the controller decreases.

We also keep area and critical path overheads in check
by employing an interconnect minimizing resource binding
methodology [9] that aids the logic synthesis tool to optimize
away a lot of the complexity of the interconnect. The area may
still increase sometimes since we direct the logic synthesis tool
to sacrifice area in a bid to achieve shorter critical path lengths.

C. Comparison with Previous Work

In Table IV, we compare our scheduling results with the
CVLS approach [4], the HRA approach [39], the exact ap-
proach presented by Radivojevic [17] and the approach pre-
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sented by Santos et al. [5]. The classical high-level synthesis
benchmarks used for comparisons in these works are used
here as well. These are: kim [39], parker [40], waka [4] and
rotor [17]. The columns present the number of basic blocks,
the resources used for scheduling and the longest path length
(cycles) of the schedule produced by each approach. For these
small benchmarks, nearly all the approaches (including Spark)
are able to achieve the shortest scheduling length. We are
unable to compare area and control costs, since these have
not been published in previous work.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a set of speculative code motions that re-
order, speculate, and sometimes even increase the number of
operations in a behavioral description so as to achieve higher
quality of synthesis results. These code motions are essential
for minimizing the effects of the choice of control flow or
programming style in high level languages. We presented a
scheduling heuristic that guides these code motions and im-
proves scheduling results (schedule length and FSM states) and
logic synthesis results (circuit area and delay) for moderately
complex real-life designs by up to 50 % in performance and
controller size, when compared to list scheduling techniques
that allow code motions only within basic blocks. We imple-
mented the code motions and heuristics in the Spark high-level
synthesis framework that provides a platform for applying a
range of coarse-grain and fine-grain code optimizations aimed
at improving synthesis results. Future work entails developing
more comprehensive cost models that incorporate the control
and interconnect costs of the code motions.
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