Conception et systèmes embarqués complexes *Master 2004*

Antoine Fraboulet, Tanguy Risset antoine.fraboulet@insa-lyon.fr, tanguy.risset@ens-lyon.fr Lab CITI, INSA de Lyon, Lab LIP, ENS de Lyon

Master 2004

Master 2004

Plan

Architecture

Organisation Logicielle

Méthodes de conception

SocLib

Conception de systèmes embarqués complexes

Antoine FRABOULET, Tanguy RISSET antoine.fraboulet@insa-lyon.fr tanguy.risset@ens-lyon.fr

Plan

Master 2004

Plan

Architecture

Organisation Logicielle

Méthodes de conception

- 1. Architecture matérielle
- 2. Organisation logicelle
- 3. Méthodes de conception
- 4. Plateforme SocLib

Présentation

- Master 2004
- Plan

Architecture

Présentation

- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Architecture des systèmes embarqués
 - Processeur
 - Mémoires
 - ◆ Système à bus
 - Périphériques
 - Communications

Compilation et interprétation

- Master 2004
- Plan

Architecture

Présentation

Compilation et interprétation

- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

SocLib

Langage de haut niveau

Assembleur

int a,b,c;

load R0, @b load R1, @c add R3, R0, R1 store R3, @a

Binaire

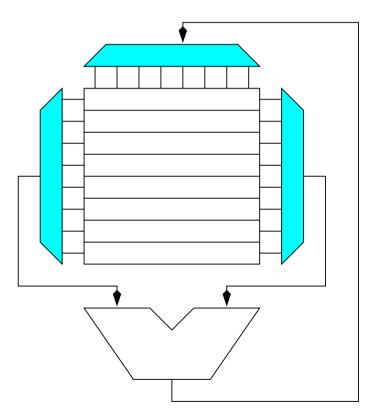
01001011...10101 01001010...10001

. . .

10010011...00011

- Master 2004
- Plan

Architecture


- Présentation
- Compilation et interprétation

Processeur - Mémoire

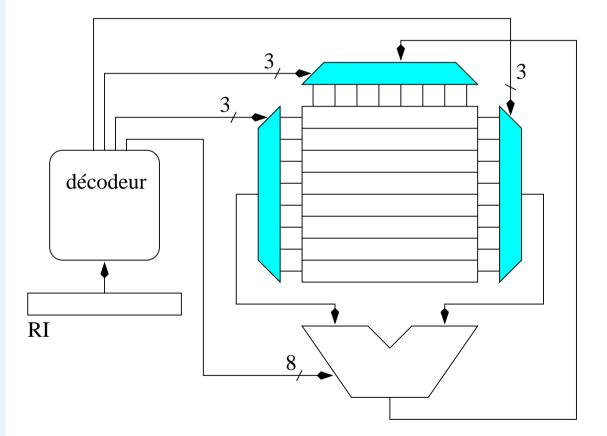
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Master 2004
- Plan

Architecture


- Présentation
- Compilation et interprétation

● Processeur - Mémoire

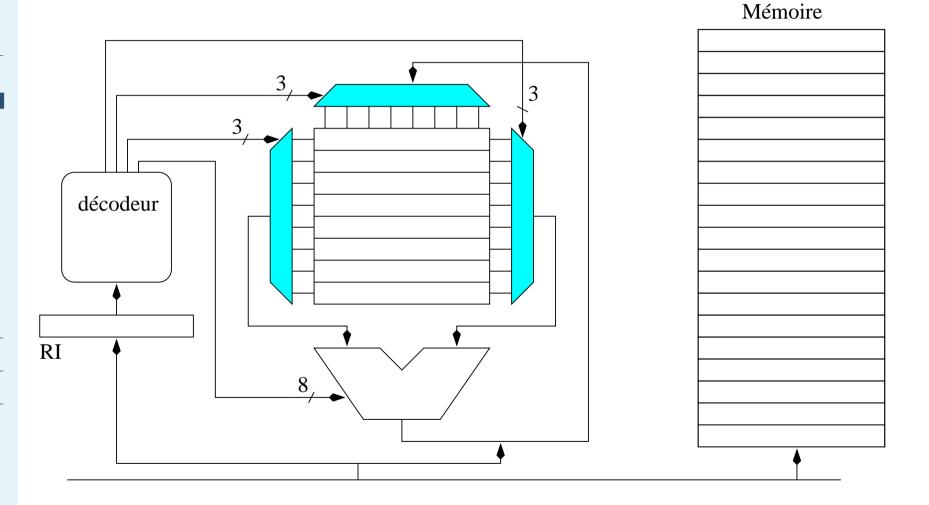
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Master 2004
- Plan

Architecture


- Présentation
- Compilation et interprétation

● Processeur - Mémoire

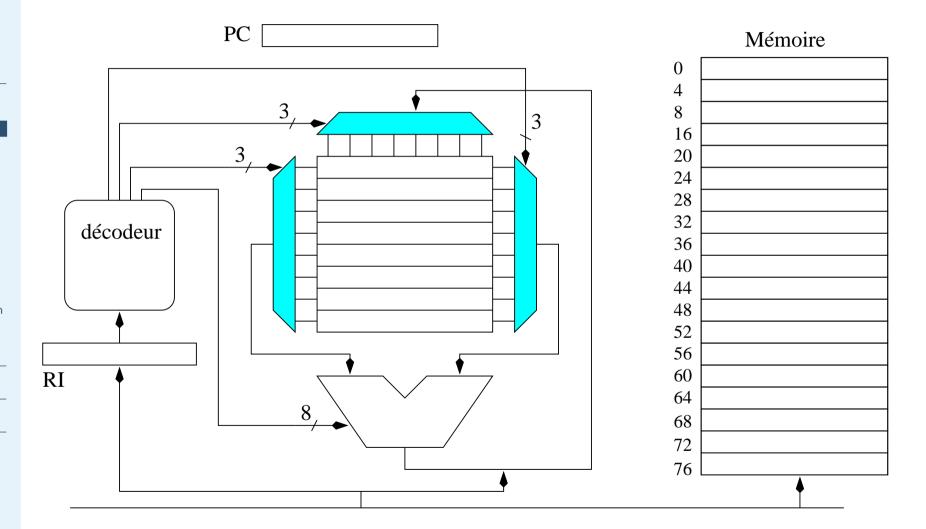
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Master 2004
- Plan

Architecture


- Présentation
- Compilation et interprétation

● Processeur - Mémoire

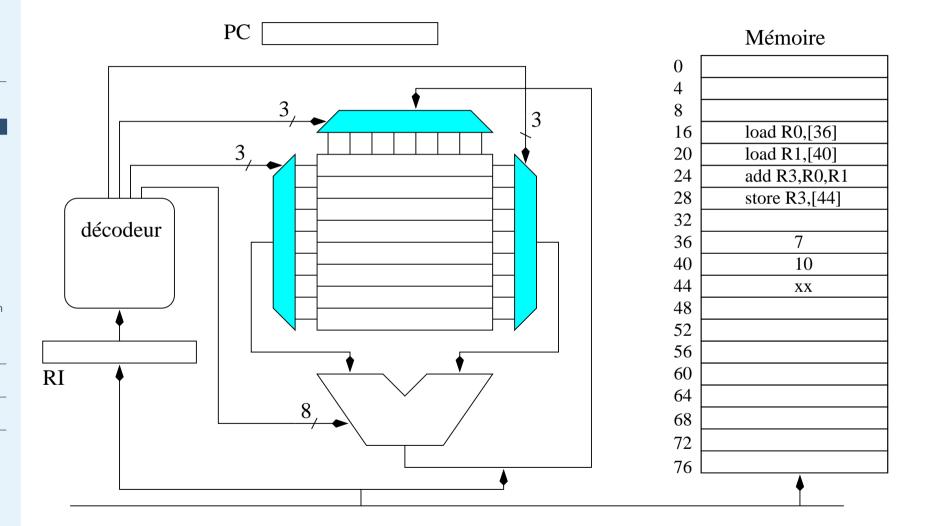
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Master 2004
- Plan

Architecture


- Présentation
- Compilation et interprétation

● Processeur - Mémoire

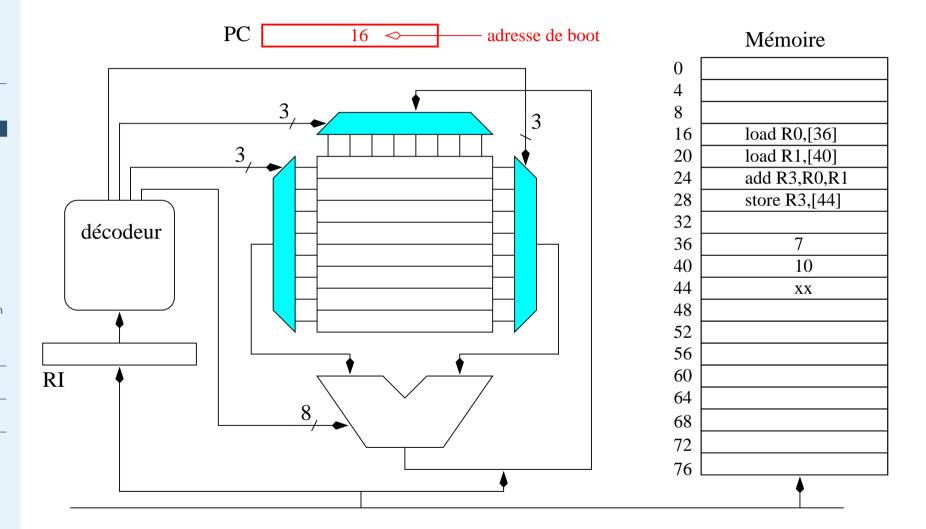
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Master 2004
- Plan

Architecture


- Présentation
- Compilation et interprétation

• Processeur - Mémoire

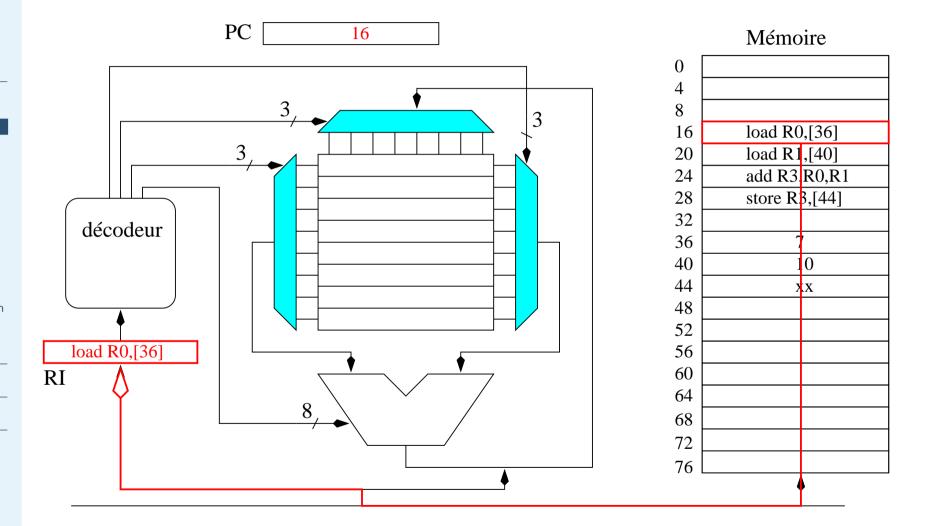
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Master 2004
- Plan

Architecture


- Présentation
- Compilation et interprétation

● Processeur - Mémoire

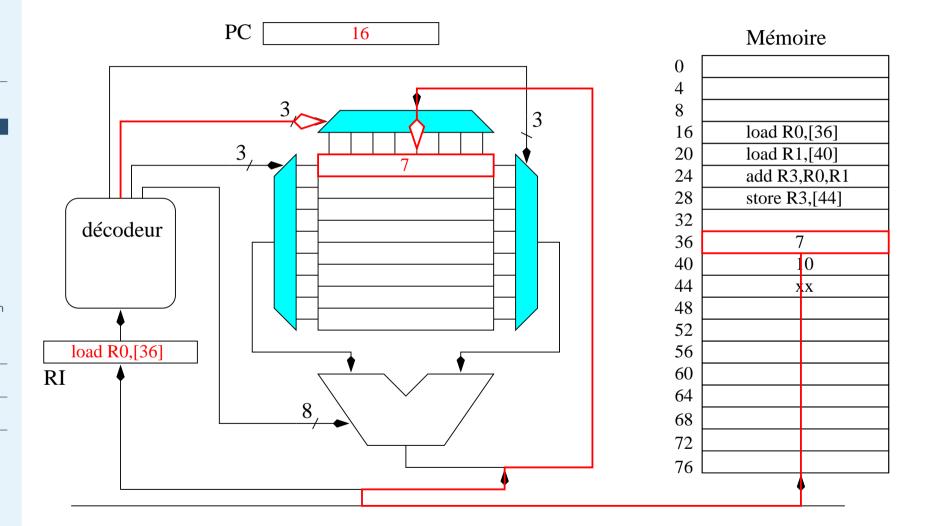
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Master 2004
- Plan

Architecture


- Présentation
- Compilation et interprétation

● Processeur - Mémoire

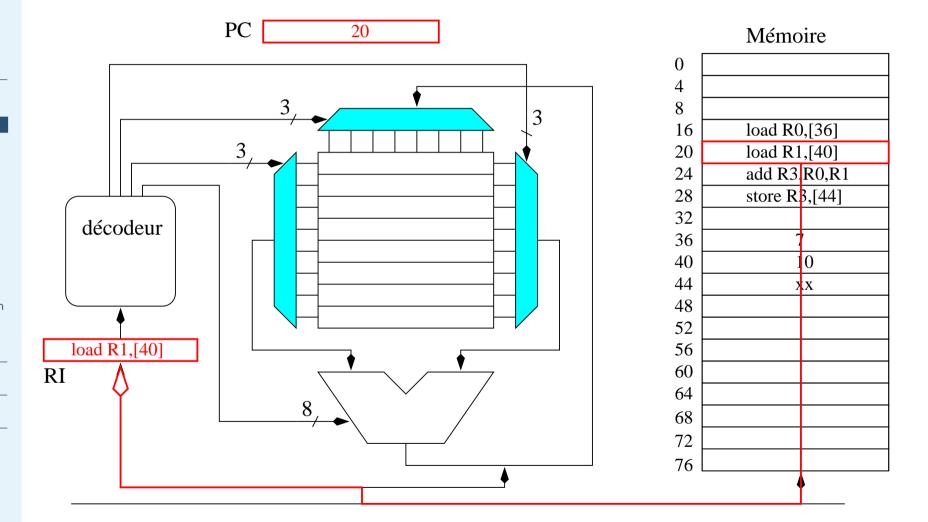
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Master 2004
- Plan

Architecture


- Présentation
- Compilation et interprétation

● Processeur - Mémoire

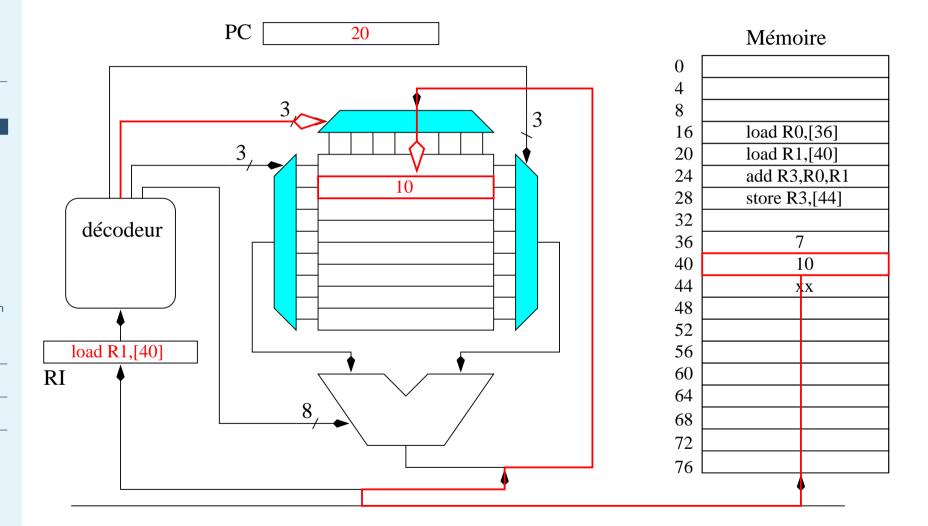
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Master 2004
- Plan

Architecture


- Présentation
- Compilation et interprétation

• Processeur - Mémoire

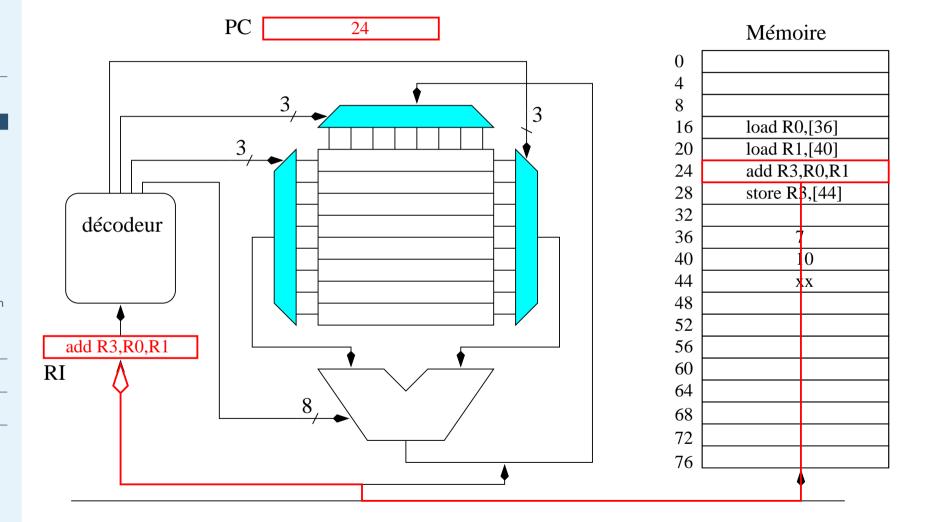
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Master 2004
- Plan

Architecture


- Présentation
- Compilation et interprétation

● Processeur - Mémoire

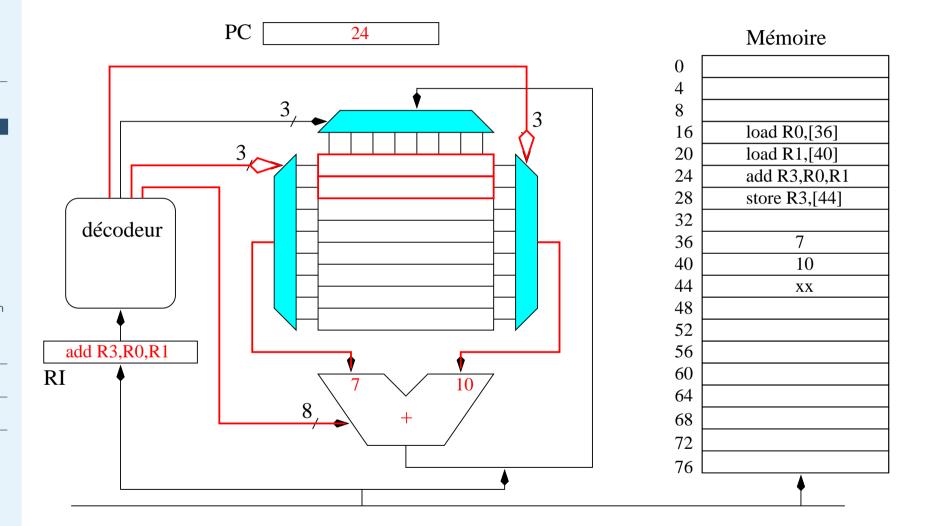
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Master 2004
- Plan

Architecture


- Présentation
- Compilation et interprétation

• Processeur - Mémoire

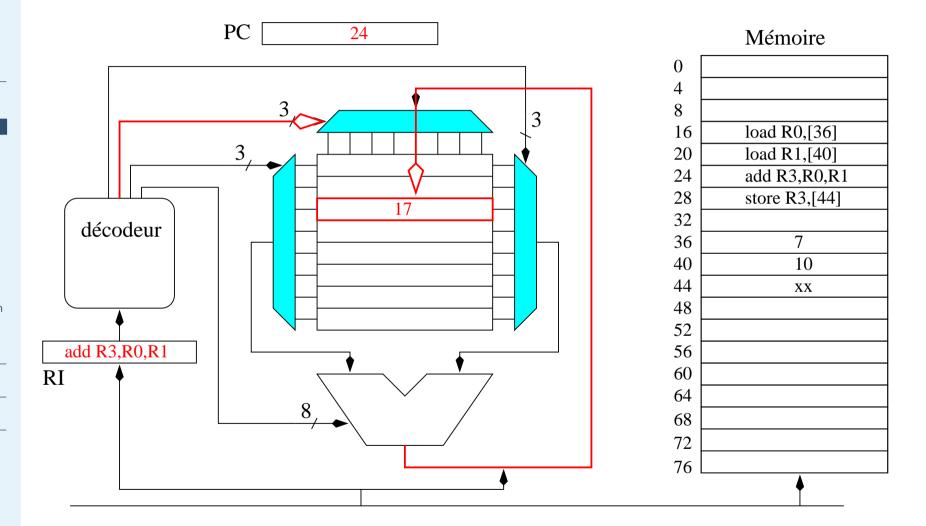
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Master 2004
- Plan

Architecture


- Présentation
- Compilation et interprétation

• Processeur - Mémoire

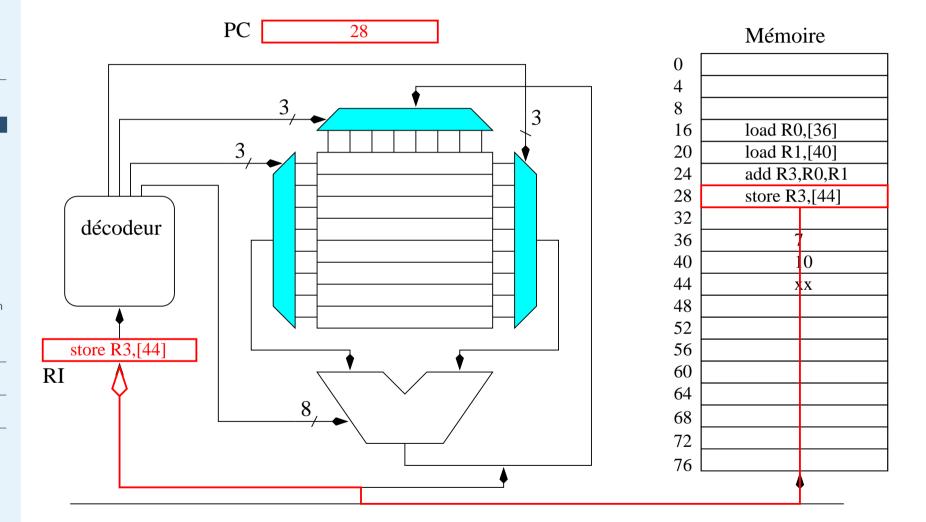
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Master 2004
- Plan

Architecture


- Présentation
- Compilation et interprétation

● Processeur - Mémoire

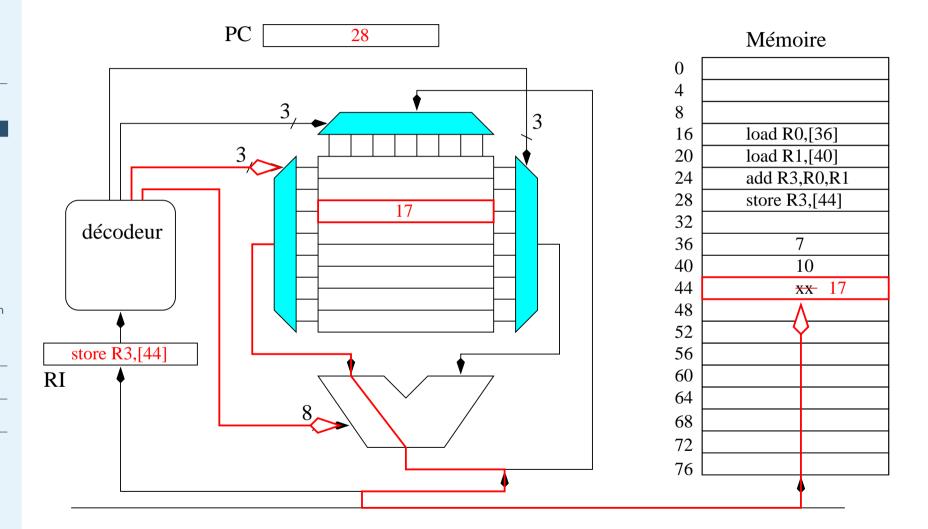
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Master 2004
- Plan

Architecture


- Présentation
- Compilation et interprétation

• Processeur - Mémoire

- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

Processeur

- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation

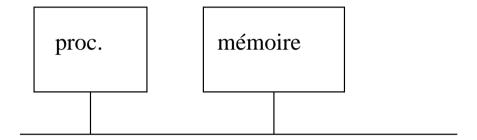
Processeur - Mémoire

- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- L'adresse de démarrage (boot) d'un processeur est fixée matériellement
- Le processeur accède directement à la mémoire
- La mémoire contient le code et les données
- La suite des instructions est interprétée depuis la mémoire
- Les systèmes embarqués fonctionnent souvent avec des mémoires non volatiles (re-)programmables.
 - mémoire flash
 - eeprom
 - **•** . . .
- Cette mémoire peut être reprogrammé en téléchargeant une nouvelle version du logiciel depuis une autre machine.

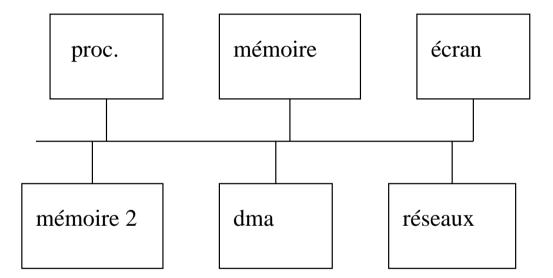

- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées /
 Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception


- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées /
 Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

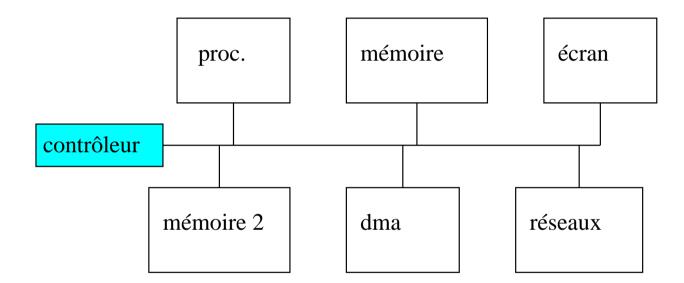
Organisation Logicielle

Méthodes de conception

SocLib

Choix architecturaux:

- Instructions d'E/S
 - Instructions spéciales (in, out)
 - Espace d'adressage séparé de la mémoire de données
 - ◆ Exemple : intel x86
- E/S mappées en mémoire
 - Une tranche d'adresse est allouée à chaque périphérique
 - Utilisation des instructions de lecture, écriture
 - Cas le plus souvent rencontré

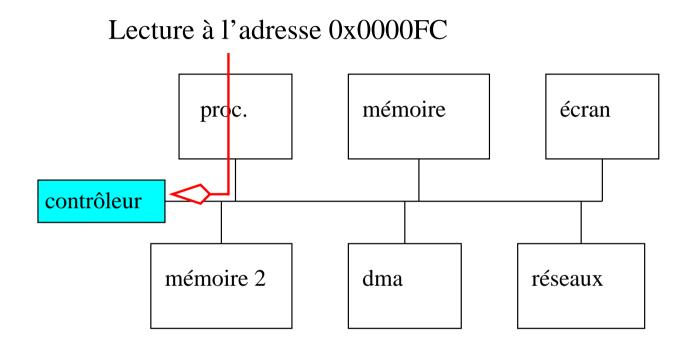

- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

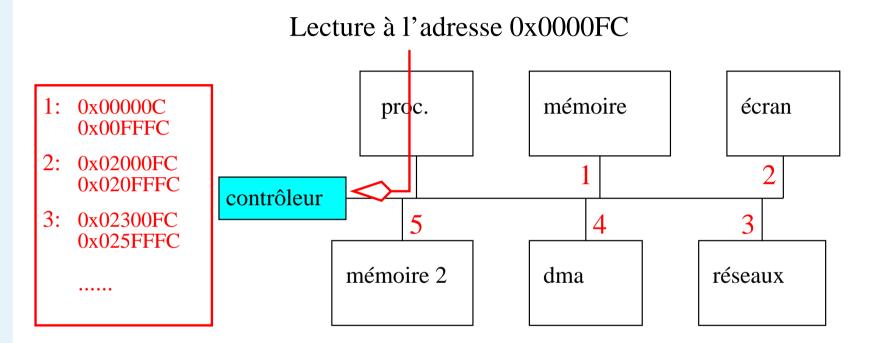

- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées /
 Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

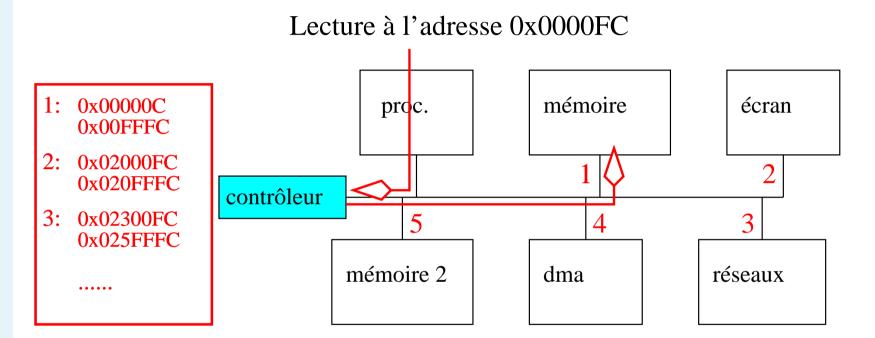

- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

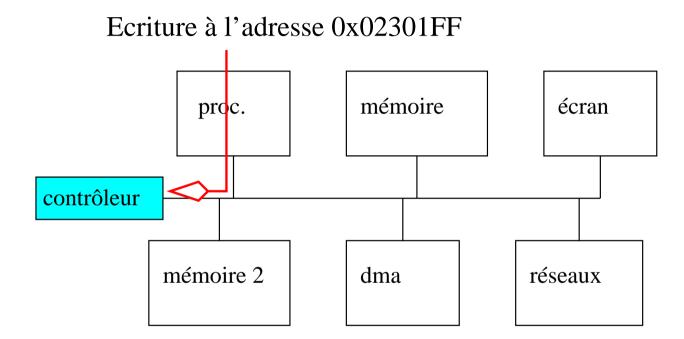

- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

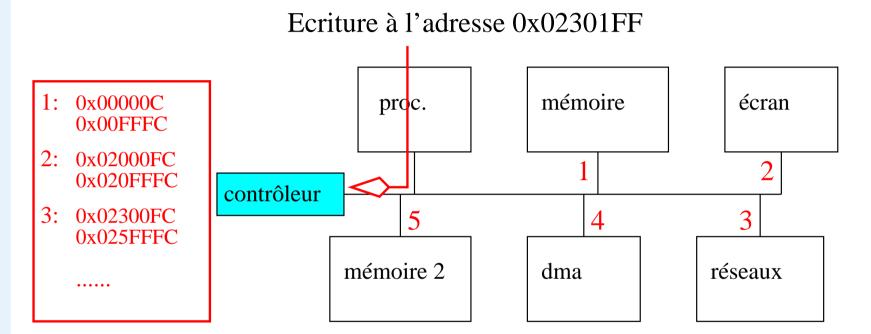

- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

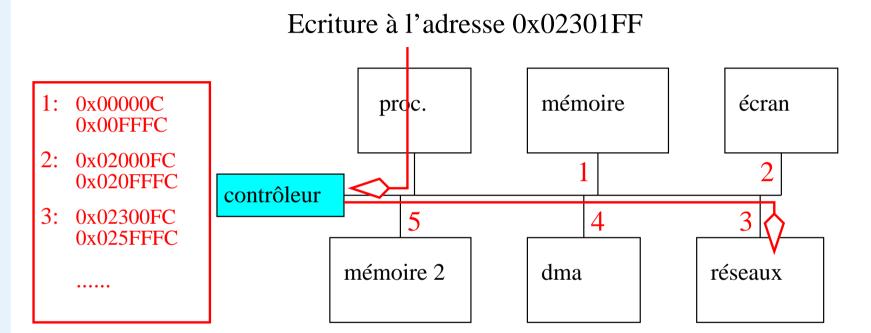

- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception


- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

SocLib

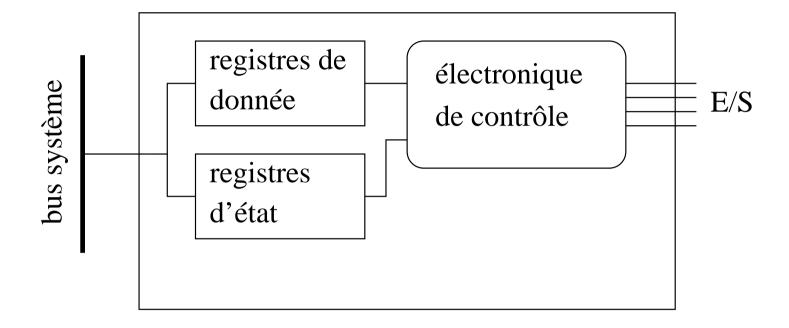
Rôle de l'arbitre de bus (contrôleur) :

- Gérer les accès si plusieurs composants veulent écrire simultanément sur le bus
- Gérer la destination des écriture en fonction des adresses
 - Le contrôleur connaît donc la cartographie mémoire (mapping) distribuée entre les composants
 - Cette carte mémoire est définie lors de la conception du système
- Le logiciel doit connaître ces adresses pour accéder aux périphériques et les contrôler

Périphériques

- Master 2004
- Plan

Architecture


- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties

Périphériques

- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

Périphériques

- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties

Périphériques

- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Un périphérique est un bloc pouvant être manipulé par l'intermédiaire de ses registres de contrôle et de données.
- Il existe différents type de périphériques
 - maîtres : peuvent initier une communication sur le bus
 - esclave : ne peuvent que répondre à une requête de lecture et/ou d'écriture
 - certains composants peuvent avoir les deux interfaces (DMA par exemple)

Écriture de pilotes de périphériques

- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Un pilote (driver) est la partie logicielle permettant de faire fonctionner un périphérique
- Les pilotes sont spécifiques aux périphériques
 - Adresses mémoires (décalage par rapport à une base) : ports de communications et registres
 - Connaissances des mécanismes de communications : automates de fonctionnement
- Les pilotes sont également liés au système d'exploitation

Écriture de pilotes de périphériques

- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

SocLib

Les communications avec les périphériques nécessitent un accès aux adresses mémoires réelles.

```
#define ALPHA IN
                         0 \times 40000000
                         0x41000000
#define ALPHA OUT
static inline void write(int v)
  *ALPHA IN = v;
static inline int read()
  return *ALPHA OUT;
```


- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

SocLib

Scrutation, attente active

- le processeur est en boucle de lecture sur un registre d'état
- la valeur de ce registre indique si le périphérique peut accepter une nouvelle lecture ou écriture

- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Les communications par scrutation sont simples à programmer
- Le débit de transfert des E/S est limité par la vitesse du processeur
- La latence de traitement dépend de la période de scrutation du périphérique
- Le processeur prend en charge tout le transfert

- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

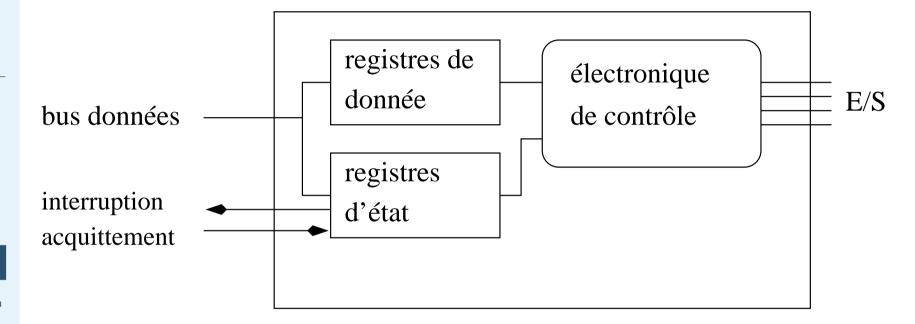
Organisation Logicielle

Méthodes de conception

SocLib

Mécanisme d'interruptions

- Le périphérique peut signaler au processeur qu'il a fini une action
- Nécessite un cablâge supplémentaire pour la signalisation
- Une interruption peut arriver à n'importe quel moment dans le déroulement du programme s'exécutant sur le processeur
- Changements de contextes
 - 1. Terminaison de l'instruction en cours
 - 2. Sauvegarde de l'état du processeur
 - 3. Exécution du gestionnaire d'interruption
 - 4. Restauration de l'état précédent
 - 5. Reprise du fonctionnement normal


- Master 2004
- Plan

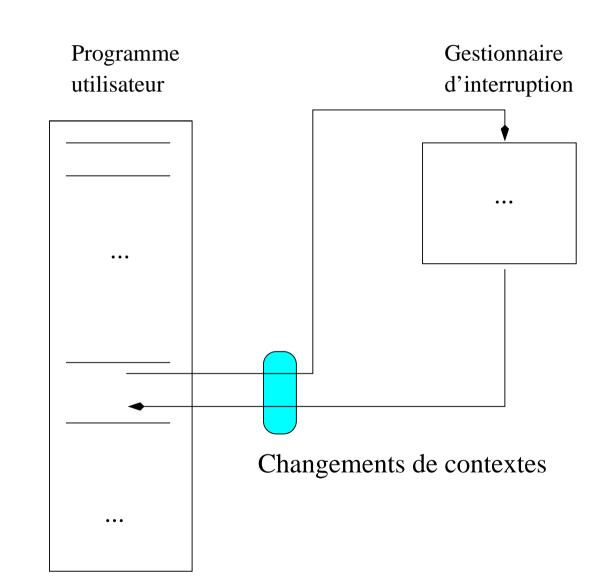
Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Master 2004
- Plan


Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

SocLib

arrivée interruption

Changement de contexte

- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

SocLib

La gestion des interruptions nécessite un **support** du processeur.

- Le processeur empile son registre PC et son registre d'état dans une pile d'exécution à l'adresse [base] et [base+4]
- Le registre CP est modifié pour pointer sur une adresse prédéfinie : le **gestionnaire d'interruption**
- Le code ainsi appelé commence par sauvegarder les registres du processeur dans la mémoire

```
store r0, [base+8]
store r1, [base+12]
...
store r31, [base+132]
```


Changement de contexte

- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Le gestionnaire d'interruption peut alors appeler la fonction prévue pour traiter l'interruption.
- Lorsque le traitement est terminé, on restaure le contenu des registres sauvegardés dans la pile
- La dernière action à effectuer est la restauration du registre d'état suivie d'un saut à l'adresse [base].

- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Les changements de contextes ont un coût non négligeable en nombre de cycles. Il est parfois plus avantageux, pour les petits transferts de données, de faire de la scrutation.
- Les interruptions permettent de libérer le processeurs en attendant qu'un périphérique ne se signale
- Il faut une ligne d'interruption par périphérique
- Ces lignes sont connectées sur un contrôleur d'interruption
 - mise en place de priorités
 - vectorisation des interruptions : le processeur demande au contrôleur quelle est le périphérique qui a généré l'interruption

Communications efficaces: DMA

- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

SocLib

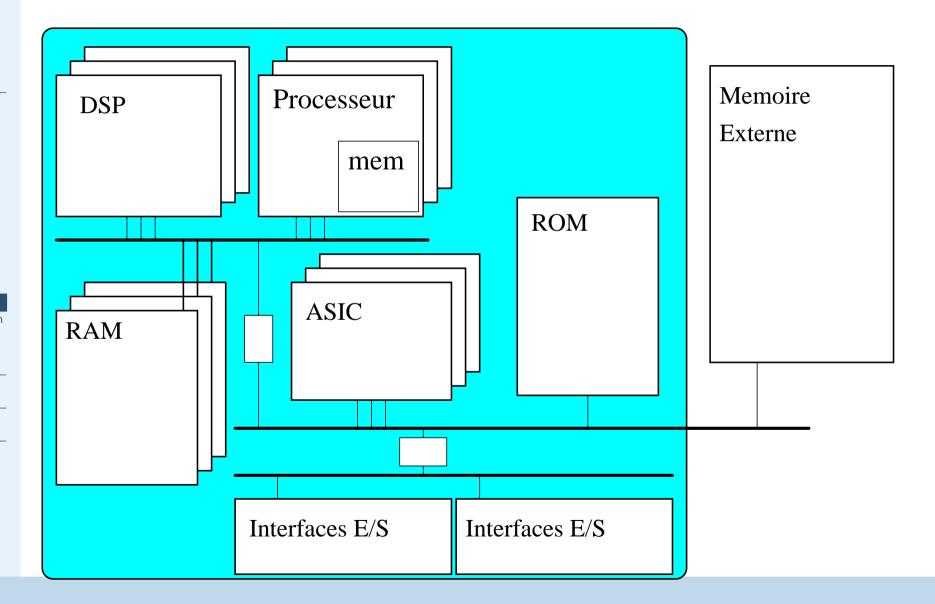
Pour les transfers de gros volumes, il faut de préférence utiliser un DMA (*Direct Memory Access*).

- 1. Le processeur configure le DMA (adresses et taille de transfert)
- 2. Le DMA prend la main sur le bus et déplace les données
- 3. Une interruption est générée à la fin du transfert

Architectures complexes

- Master 2004
- Plan

Architecture


- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques

Architectures complexes

Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

Architectures complexes

- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques

Architectures complexes

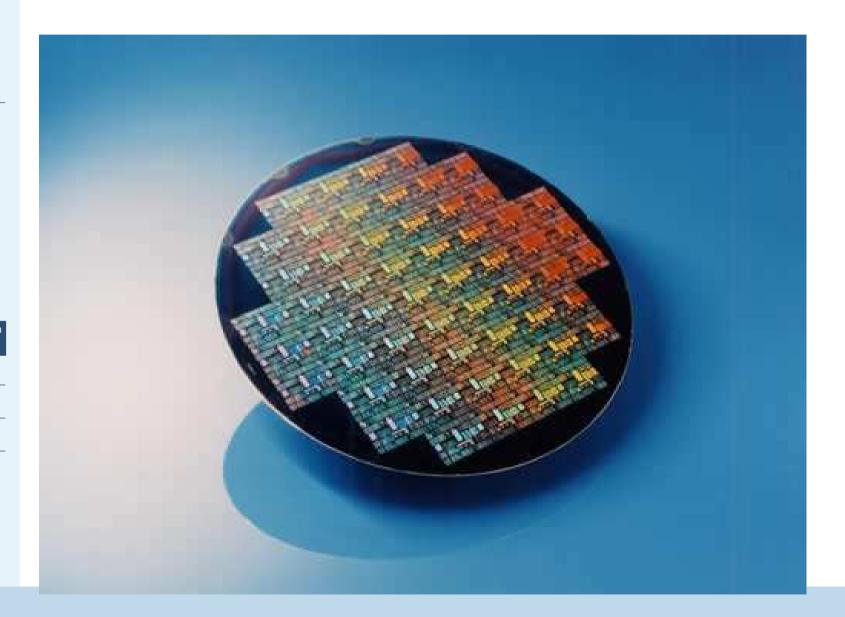
Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

- Architecture hiérarchique : connexion de bus
- Nombre de composants importants
- Mémoire distribuée sur plusieurs modules
- Pas de limite en complexité

Technologie cible: System on Chip


- Master 2004
- Plan

Architecture

- Présentation
- Compilation et interprétation
- Processeur Mémoire
- Interconnexion des Entrées / Sorties
- Périphériques
- Écriture de pilotes de périphériques
- Communication avec les périphériques
- Communication avec les périphériques
- Architectures complexes
- Technologie cible : System on Chip

Organisation Logicielle

Méthodes de conception

Organisaiton logicielle

- Master 2004
- Plan

Architecture

Organisation Logicielle

- Organisaiton logicielle
- Contraintes des logiciels
- Systèmes d'exploitation

Méthodes de conception

- Gestion des ressources
- Utilisation de la mémoire
- Utilisation des périphériques

Contraintes des logiciels

- Master 2004
- Plan

Architecture

Organisation Logicielle

- Organisaiton logicielle
- Contraintes des logiciels
- Systèmes d'exploitation

Méthodes de conception

- Les sytèmes n'intégrent en général pas de protection mémoire
 - Tout l'espace d'adressage est accessible depuis l'applicatif
 - Nécessiter d'avoir un programme fiable et "sans bug"
- La programmation en assembleur reste présente au moins pour les pilotes et les couches basses
- Le reste peut être écrit en langage de haut niveau et compilé
- Une part importante du temps de conception est passée dans la mise au point du logiciel et du matériel

Systèmes d'exploitation

- Master 2004
- Plan

Architecture

Organisation Logicielle

- Organisaiton logicielle
- Contraintes des logiciels
- Systèmes d'exploitation

Méthodes de conception

SocLib

Système d'exploitations pour l'embarqué:

- Windows CE
- Wind River VxWorks
- Symbian
- Qnx
- Linux, μ cLinux, RTLinux . . .
- OS propriétaires

Systèmes d'exploitation

- Master 2004
- Plan

Architecture

Organisation Logicielle

- Organisaiton logicielle
- Contraintes des logiciels
- Systèmes d'exploitation

Méthodes de conception

- Système applicatifs : API de manipulation de matériel, une seule application
- Systèmes à commutation de tâches : temps partagé entre plusieurs programmes
 - coopératif, préemptif
 - tables des tâches statique / dynamique
 - gestion de priorité / temps réél
- Ajout d'une interface homme-machine
 - Prise en compte des interactions, interruptions
- Ajout d'un système de fichier / support de stockage
 - Possibilité de rajouter des programmes (et de les charger)
- Ajout d'une topographie mémoire (segmentation / pagination)
 - mémoire virtuelle
 - protection mémoire entre applications
 - → Unix

Systèmes multitâches

- Master 2004
- Plan

Architecture

Organisation Logicielle

- Organisaiton logicielle
- Contraintes des logiciels
- Systèmes d'exploitation

Méthodes de conception

- Coopératif
 - L'application "rend la main"
 - Appels système bloquants (mutex par exemple)
 - Demande explicite
- Préemptif
 - Un timer matériel génère une interruption périodique
 - ◆ Le rôle du gestionnaire d'interruption est de choisir le prochain processus à être exécuté
 - Gestions de priorité
 - Notions de temps réel

Contraintes des systèmes

- Master 2004
- Plan

Architecture

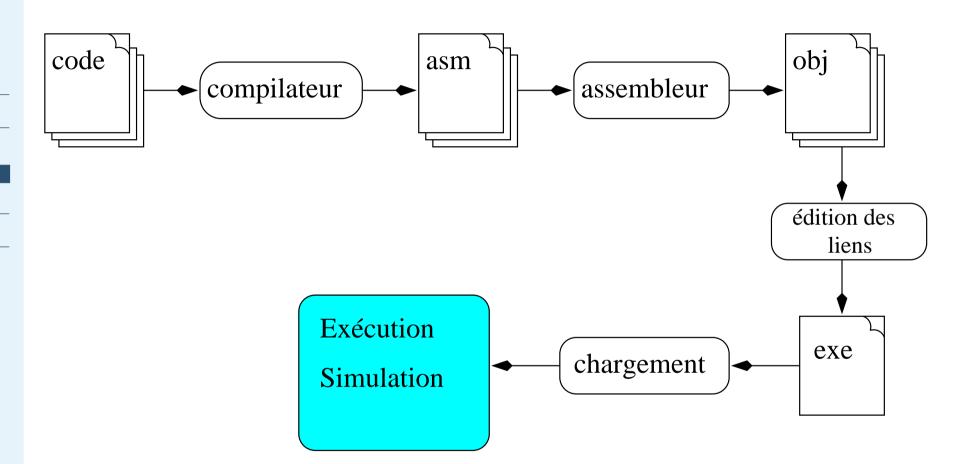
Organisation Logicielle

- Organisaiton logicielle
- Contraintes des logiciels
- Systèmes d'exploitation

Méthodes de conception

- Empreinte mémoire minimale
- Commutation de contexte rapide (latence)
- Gestion des tâches (ordonnancement)
- Gestion multiprocesseur (synchronisation)
- API de communication entre les applications souple
- Possibilité de communiquer facilement entre matériel et logiciel

Chaîne logicielle


- Master 2004
- Plan

Architecture

Organisation Logicielle

- Organisaiton logicielle
- Contraintes des logiciels
- Systèmes d'exploitation

Méthodes de conception

Chaîne logicielle

- Master 2004
- Plan

Architecture

Organisation Logicielle

- Organisaiton logicielle
- Contraintes des logiciels
- Systèmes d'exploitation

Méthodes de conception

SocLib

Les étapes de compilation de l'application dépendent de la nature du système cible

- Cross compilation classique pour les gros systèmes : l'application peut-être ajoutée dynamiquement au système
- Intégration du système à l'édition des liens : le chargement remplace tout à chaque fois

Conception de système

Master 2004

Plan

Architecture

Organisation Logicielle

Méthodes de conception

Conception de système

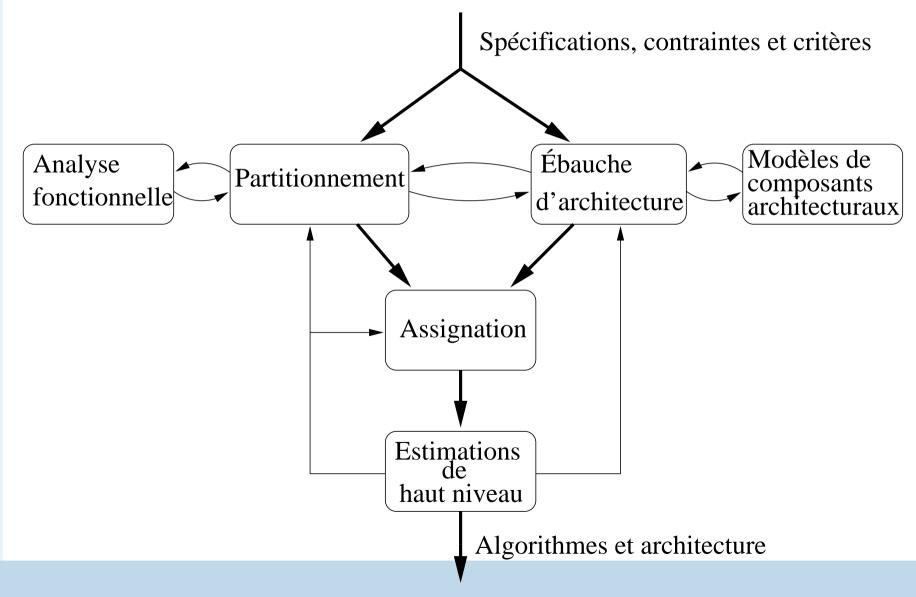
- Méthodologie de conception
- Méthodologie de conception

SocLib

Le matériel et le logiciel peuvent être séparés, il faut les prendre en compte dans un processus de **codesign**.

- Modélisations du système complet
 - Étude des fonctionnalités et des tâches concurrentes
- Partitionnement Matériel / Logiciel
 - Hypothèses architecturales
 - Choix du processeur
 - Choix de l'interface
 - Estimation des contraintes physiques et économiques
- Modélisation Matérielle/Logicielle, Validation
 - Analyser la fonctionnalité en fonction des choix
 - Validation de fonctionnement et du respect des contraintes

Méthodologie de conception


- Master 2004
- Plan

Architecture

Organisation Logicielle

Méthodes de conception

- Conception de système
- Méthodologie de conception
- Méthodologie de conception

Méthodologie de conception

- Master 2004
- Plan

Architecture

Organisation Logicielle

Méthodes de conception

- Conception de système
- Méthodologie de conception
- Méthodologie de conception

SocLib

Intérêts du «codesign»

- Conception rapide de SoC : time to market
 - Cycle de conception de haut niveau pour réduire les temps d'estimations des solutions
- Réduire la difficulté de validation et déboguage
 - Réutilisation d'IP
 - Modules reconfigurables
- Converger vers une solution optimale en fonction des contraintes de départ

Méthodologie de conception

- Master 2004
- Plan

Architecture

Organisation Logicielle

Méthodes de conception

- Conception de système
- Méthodologie de conception
- Méthodologie de conception

- La conception nécessite d'avoir une modélisation complète
- Approche logicielle
 - les objets migrent vers le HW jusqu'à ce que les contraintes de performances soit atteintes (pour un coût minimum)
- Approche matérielle
 - les objets migrent en SW tant que les contraintes de performances restent atteintes (pour un coût minimum)
- Le meilleur partitionnement nécessite en général l'expertise d'un concepteur.

SocLib

- Master 2004
- Plan

Architecture

Organisation Logicielle

Méthodes de conception

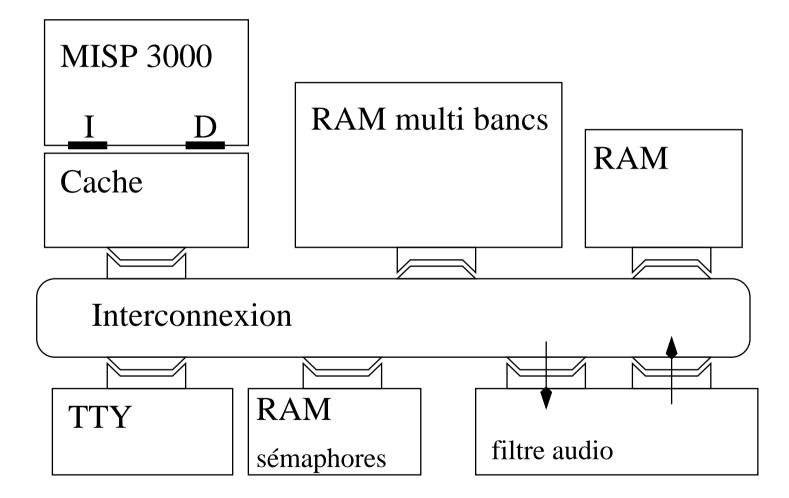
SocLib

- SocLib
- Architecture de la démonstration
- Organisation logicielle
- Utilisation de l'ensemble

http://soclib.lip6.fr/

- Environnement de conception et de simulation gratuit et open source
- Utilise des modèles de composants écrits en SystemC
 - processeur
 - interconnexion
 - périphériques
 - **♦** ...
- Utilisation d'une chaîne de compilation standard (GNU)

Architecture de la démonstration


- Master 2004
- Plan

Architecture

Organisation Logicielle

Méthodes de conception

- SocLib
- Architecture de la démonstration
- Organisation logicielle
- Utilisation de l'ensemble

Organisation logicielle

- Master 2004
- Plan

Architecture

Organisation Logicielle

Méthodes de conception

- SocLib
- Architecture de la
- démonstration
- Organisation logicielle
- Utilisation de l'ensemble

- Système d'exploitation multithread : Mutek
 - Gestion de l'API de thread Posix
 - Gestion des interruptions
 - Commutation de contexte rapide
- Logiciel cross-compilé avec gcc
- Intégration du système avec l'applicatif à l'édition des liens

Utilisation de l'ensemble

- Master 2004
- Plan

Architecture

Organisation Logicielle

Méthodes de conception

SocLib

- SocLib
- Architecture de la démonstration
- Organisation logicielle
- Utilisation de l'ensemble

démonstration