Conception et systèmes embarqués complexes *Master 2004*

Antoine Fraboulet, Tanguy Risset antoine.fraboulet@insa-lyon.fr, tanguy.risset@ens-lyon.fr Lab CITI, INSA de Lyon, Lab LIP, ENS de Lyon

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

Conclusion

Processeurs embarqués

Part de marché

Processeurs embarqués

Introduction

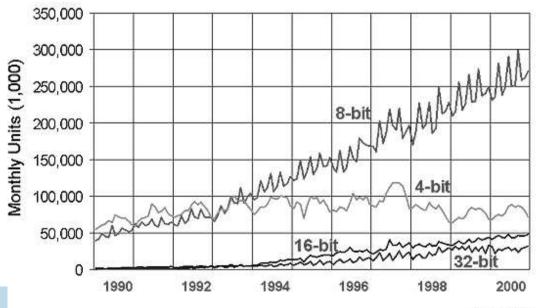
Part de marché

- Contradiction ?
- Variété des processeurs embarqués

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués


Exemple de l'appareil photo numérique

Conclusion

- Quel est le le microprocesseur le plus vendu ?
 - ◆ Réponse classique: "Le Pentium: 92% du marché"
- Faux!.....
 - ◆ En fait les Pentium ne représentent que 2% des microprocesseurs vendus dans le monde.

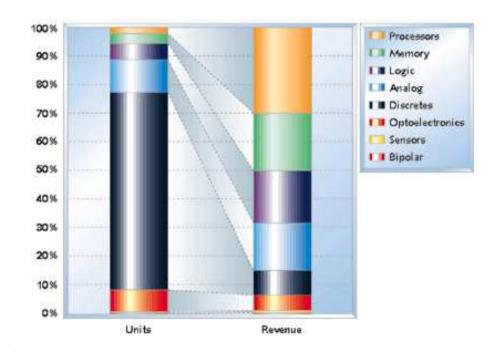
Microprocessor Unit Sales

All types, all markets worldwide

Contradiction?

- Processeurs embarqués
- Introduction
- Part de marché
- Contradiction ?
- Variété des processeurs embarqués

Architecture des processeurs


Différents types de processeurs embarqués

Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

Conclusion

- Alors d'ou vient la position d'Intel (16% du marché des semi-conducteurs) ?
- processeurs: 2% du silicium, 30% des revenus

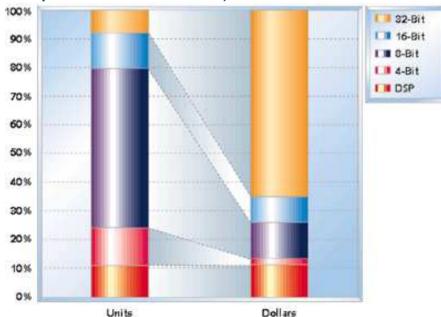
Et au sein des processeurs

- Processeurs embarqués
- Introduction
- Part de marché

Contradiction ?

 Variété des processeurs embarqués

Architecture des processeurs


Différents types de processeurs embarqués

Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

Conclusion

- 3 milliards de processeurs 8 bits vendus par an (8051, 6805 etc.)
- 32 bits (Pentium, Athlon, mais aussi PowerPC, 68000, MIPS, ARM etc.)
- La plupart (98%) sont embarqués (3 fois plus d'ARM vendus que de Pentium)

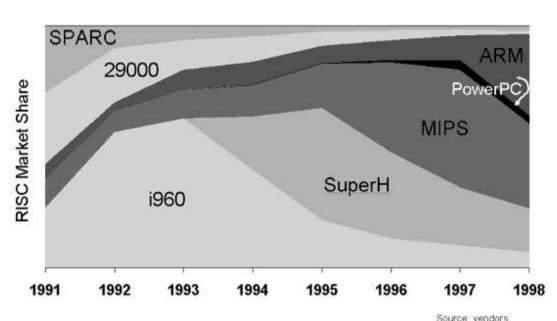
Variété des processeurs embarqués

Processeurs embarqués

Introduction

- Part de marché
- Contradiction ?
- Variété des processeurs embarqués

Architecture des processeurs


Différents types de processeurs embarqués

Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

Conclusion

Embedded RISC Lead Swings Constantly

- Les applications sont plus variées que pour les ordinateurs
- Beaucoup de processeurs embarqués sont des processeurs de bureau qui n'ont pas percés (MIPS, 68K, SPARC, ARM, PowerPC)

Processeurs embarqués

Introduction

Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

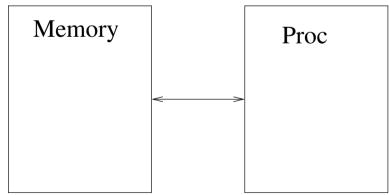
Différents types de processeurs embarqués

Compilation pour processeurs

Architecture des processeurs

Architecture "Von Neuman" ou "Princeton"

Processeurs embarqués


Introduction

Architecture des processeurs

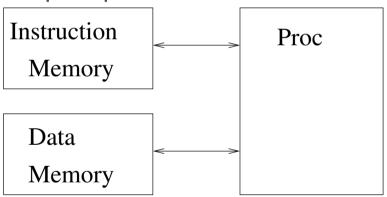
- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

Différents types de processeurs embarqués

- La mémoire contient les données et les instructions
- L'unité centrale (CPU) charge les instructions depuis la mémoire.
- Un ensemble de registres aide le CPU:
 - Compteur d'instructions (Program counter: PC),
 - Registre d'instruction (Instruction register: IR)
 - Pointeur de pile (stack pointer: SP)
 - ◆ Registres à usage général (Accumulateur: A)

Architecture Harvard

Processeurs embarqués


Introduction

Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

Différents types de processeurs embarqués

- Données et instructions dans des mémoires séparées
- Autorise deux accès simultanés à la mémoire.
- Utilisé pour la plupart des DSP
 - meilleure bande passante
 - Performances plus prédictibles

Le jeu d'instruction

Processeurs embarqués

Introduction

Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard

• Le jeu d'instruction

- CISC: Complex Instruction Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

Différents types de processeurs embarqués

- Le *jeu d'instruction* (Instruction Set Architecture: ISA) a une importance capitale
 - Il détermine les instructions élémentaires exécutées par le CPU.
 - C'est un équilibre entre la complexité matérielle du CPU et la facilité d'exprimer les actions requises
 - On le représente de manière symbolique (ex: ARM, code sur 32 bits):

```
LDR r0, [r8]; commentaire lab: ADD r4, r0, r1;
```

- Deux classes de jeux d'instructions:
 - ◆ CISC: Complex Instruction Set Computer
 - ◆ RISC: Reduce Instruction Set Computer

CISC: Complex Instruction Set Computer

Processeurs embarqués

Introduction

Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

Différents types de processeurs embarqués

Compilation pour processeurs

 Une instruction peut designer plusieurs opérations élémentaires.

Ex: un load, une opération arithmétique et un store,

Ex: calculer une interpolation linéaire de plusieurs valeurs en mémoire.

- Accélération par des mécanismes matériels complexes
- Grandes variation de taille et de temps d'exécution pour les instructions
- Résulte en un code compact mais complexe à générer.
- Vax, Motorola 68000, Intel x86/Pentium

Exemple: instructions de l'ISA du Pentium

Processeurs embarqués

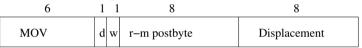
Introduction

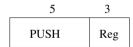
Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

Différents types de processeurs embarqués

Compilation pour processeurs




Call

Mov \$EBX, [EDI+displacement]

Push ESI

Add \$EAX, Immediate

Test \$EDX. Immediate

7	1	8	32
TEST	w	PostByte	Immediate

RISC: Reduced Instruction Set Computer

Processeurs embarqués

Introduction

Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

Différents types de processeurs embarqués

- Petites instructions simples, toutes de même taille, ayant toutes (presque) le même temps d'exécution
- Pas d'instruction complexe
- Accélération en pipelinant l'exécution (entre 3 et 7 étages de pipeline pour une instruction) ⇒ augmentation de la vitesse d'horloge
- Code plus simple à générer, mais moins compact
- Tous les microprocesseurs modernes utilisent ce paradigme: SPARC, MIPS, ARM, PowerPC, etc.

Exemple: instructions de l'ISA du MIPS

Processeurs embarqués

Introduction

Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

Différents types de processeurs embarqués

Compilation pour processeurs

I TYPE (Immediate)

J TYPE (Jump)

R TYPE (Register)

op	rs	rt	rd	sa	funct
					1

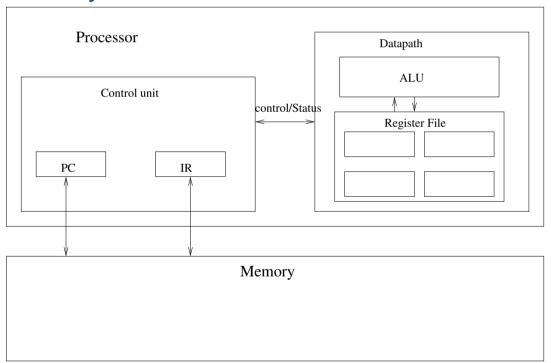
- I-Type: LW rt, offset(base)
- J-Type: JUMP target
- R-Type: ADD rd,rt,rs

Le CPU

Processeurs embarqués

Introduction

Architecture des processeurs


- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le ieu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS

● Le CPU

- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

Différents types de processeurs embarqués

- L'unité de contrôle configure le chemin de donnée suivant l'instruction à exécuter.
- L'exécution d'une instruction est décomposée en plusieurs phases d'un cycle.

Le pipeline RISC: exemple du MIPS

Processeurs embarqués

Introduction

Architecture des processeurs


- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU

● Le pipeline RISC: exemple du MIPS

- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

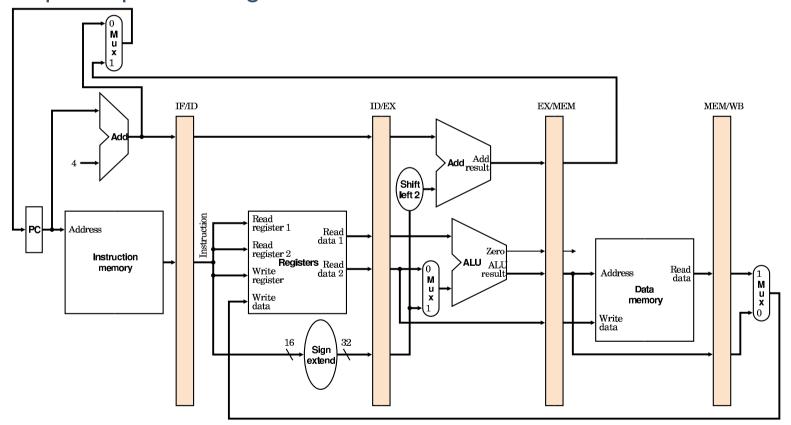
Différents types de processeurs embarqués

- Le pipeline dépend de l'architecture, pour le MIPS:
 - Instruction Fetch (IF, Fetch): charge l'instruction dans l'IR
 - Instruction Decode (ID, Decode): décode l'instruction et met en place le contrôle du chemin de donnée
 - Execute (Ex): exécute le calcul dans le chemin de donnée.
 - Memory access (Mem): accède la mémoire
 - Write Back (WB): écrit dans le banc de registre

Le pipeline RISC: exemple du MIPS

Processeurs embarqués

Introduction


Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- ◆ Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

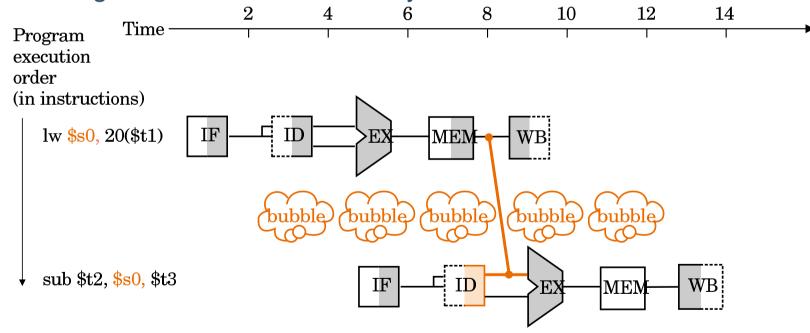
Différents types de processeurs embarqués

Compilation pour processeurs

Physiquement, l'architecture du processeur est organisée en calculs combinatoires pour chaque étape de pipeline, séparés par des registres.

Le pipeline RISC: exemple du MIPS

Processeurs embarqués


Introduction

Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

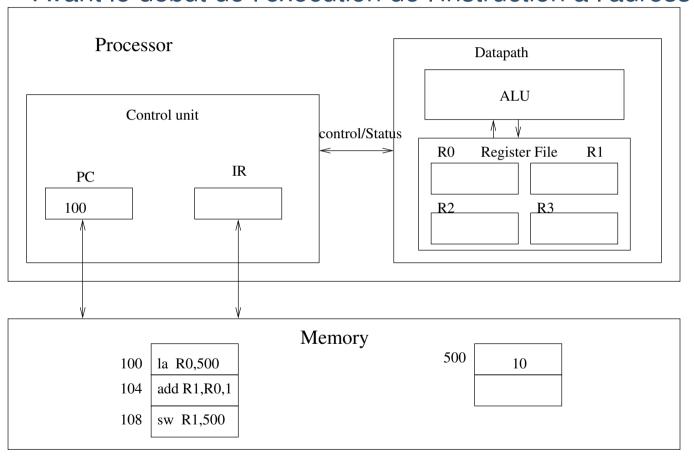
Différents types de processeurs embarqués

- Lorsque l'instruction suivante ne peut pas être exécutée tout de suite, cela crée une "bulle".
- Par exemple une addition utilisant un registre qui vient d'être chargé doit être retardé d'un cycle.

Exemple d'exécution sans pipeline

Processeurs embarqués

Introduction


Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

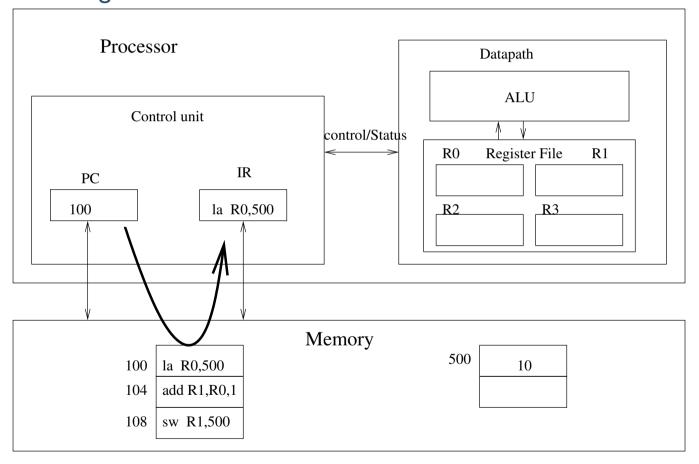
Différents types de processeurs embarqués

Compilation pour processeurs

■ Avant le début de l'exécution de l'instruction à l'adresse 100

Processeurs embarqués

Introduction


Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

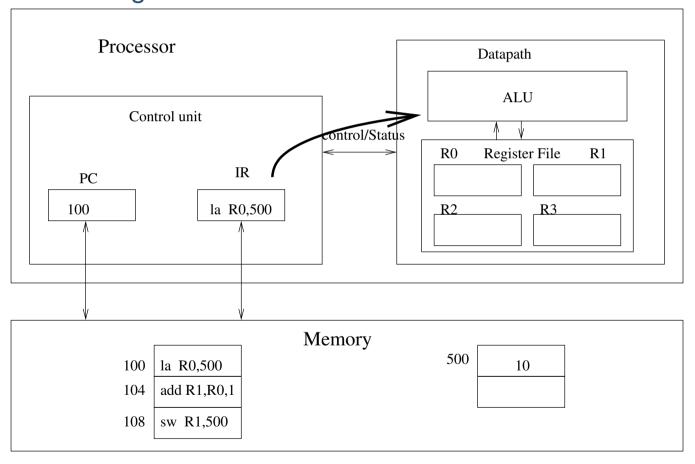
Différents types de processeurs embarqués

Compilation pour processeurs

■ Chargement de l'instruction

Processeurs embarqués

Introduction


Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

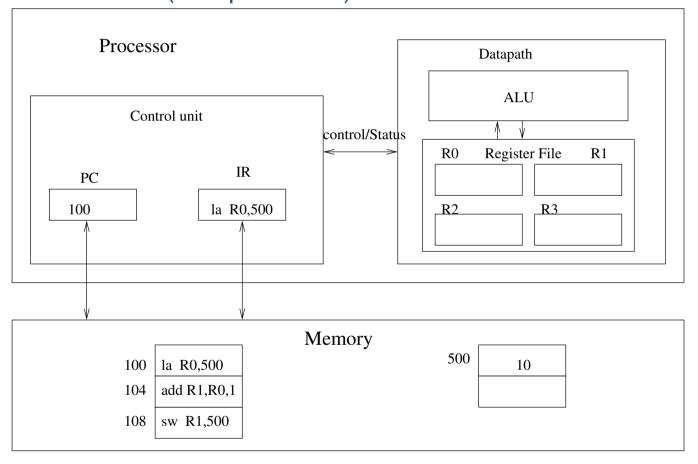
Différents types de processeurs embarqués

Compilation pour processeurs

■ Décodage de l'instruction

Processeurs embarqués

Introduction


Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

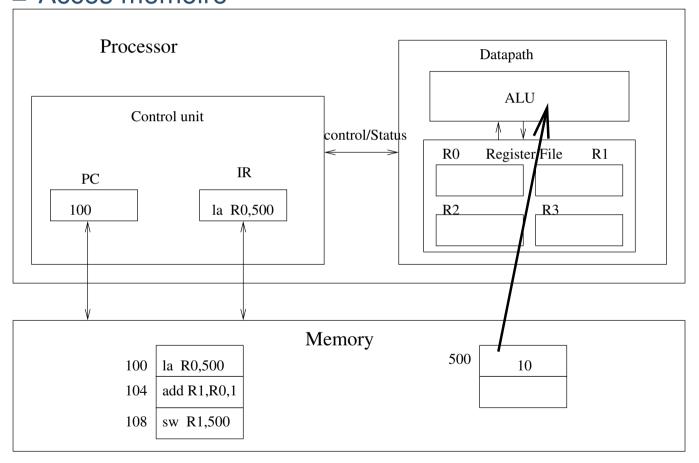
Différents types de processeurs embarqués

Compilation pour processeurs

Exécution (rien pour load)

Processeurs embarqués

Introduction


Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

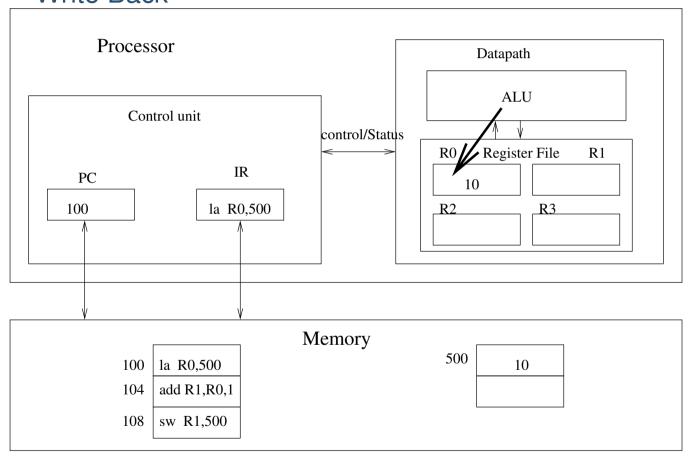
Différents types de processeurs embarqués

Compilation pour processeurs

■ Accès mémoire

Processeurs embarqués

Introduction


Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

Différents types de processeurs embarqués

Compilation pour processeurs

■ Write Back

Bilan architecture pipelinée

Processeurs embarqués

Introduction

Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

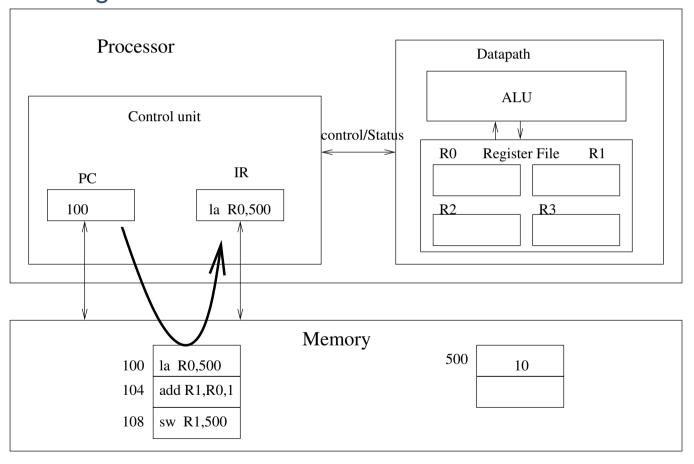
Différents types de processeurs embarqués

- Exécution non pipelinée:
 - ◆ 5 cycles pour exécuter une instruction
 - ◆ ⇒ 15 cycles pour 3 instructions.

Exemple d'exécution avec pipeline

Processeurs embarqués

Introduction


Architecture des processeurs

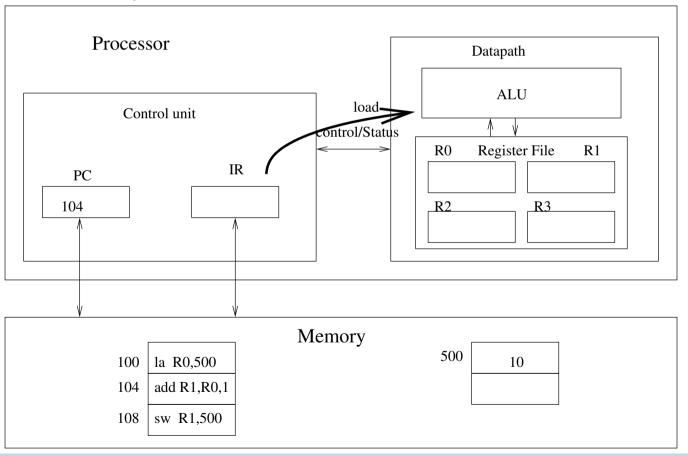
- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

Différents types de processeurs embarqués

Compilation pour processeurs

Chargement de l'instruction load

Processeurs embarqués


Introduction

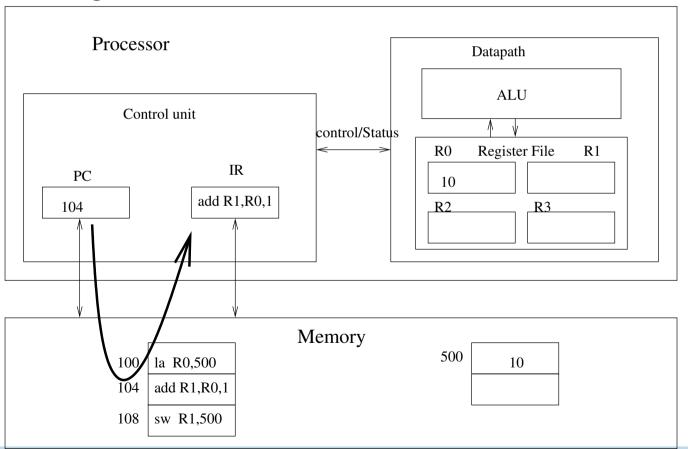
Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le ieu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

Différents types de processeurs embarqués

- Décodage de l'instruction load
- et Chargement de Rien (bulle car l'instruction suivante retardée)

Processeurs embarqués


Introduction

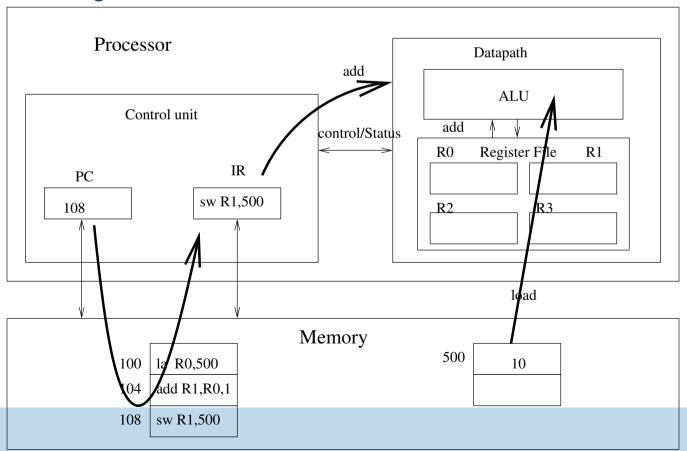
Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

Différents types de processeurs embarqués

- Exécution de l'instruction load (rien)
- Décodage de rien
- Chargement de l'instruction add

Processeurs embarqués


Introduction

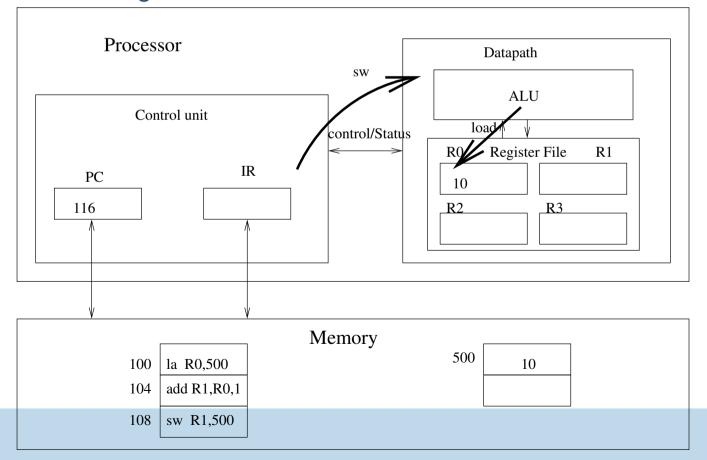
Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

Différents types de processeurs embarqués

- Accès mémoire de l'instruction load
- Exécution de rien
- Décodage de l'instruction add
- Chargement de l'instruction store

Processeurs embarqués


Introduction

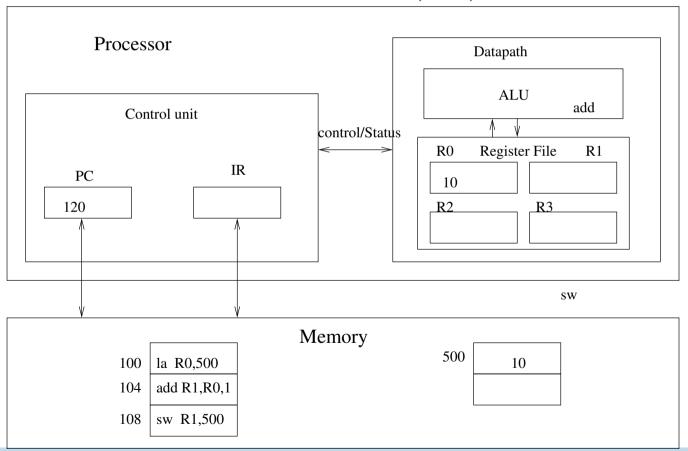
Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

Différents types de processeurs embarqués

- Write Back de l'instruction load
- Accès mémoire de rien
- Exécution de l'instruction add (bypass)
- Décodage de l'instruction store

Processeurs embarqués


Introduction

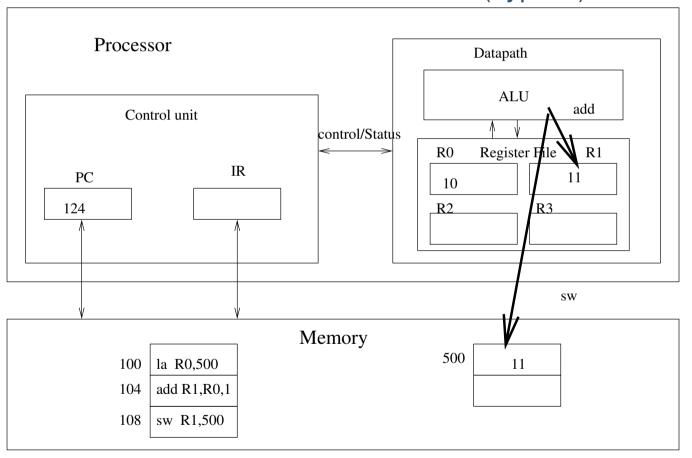
Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le ieu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

Différents types de processeurs embarqués

- Write Back de rien
- Accès mémoire de l'instruction add (rien)
- Exécution de l'instruction store (rien)

Processeurs embarqués


Introduction

Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

Différents types de processeurs embarqués

- Write Back de l'instruction add
- Accès mémoire de l'instruction store (bypass)

Bilan architecture non pipelinée

Processeurs embarqués

Introduction

Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

Différents types de processeurs embarqués

- Exécution non pipelinée:
 - ◆ 5 cycles pour exécuter une instruction
 - ◆ ⇒ 15 cycles pour 3 instructions.
- Exécution pipelinée:
 - 5 cycles pour exécuter une instruction
 - ◆ 8 cycles pour 3 instructions.
 - ◆ ⇒ sans branchement, une instruction par cycle
 - ◆ Un branchement (conditionnel ou pas) interrompt le pipeline car il faut attendre de décoder l'adresse de branchement pour charger l'instruction suivante ⇒ quelques cycles d'inactivité (pipeline stall)
 - ◆ Lors d'un branchement, certain ISA autorisent l'utilisation de ces delai slots: une ou deux instructions après le branchement sont exécutées, que le branchement soit pris ou pas (comme si elles étaint écrites avant le branchement).

Parallélisme au sein du processeur

Processeurs embarqués

Introduction

Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

Différents types de processeurs embarqués

Compilation pour processeurs

Indépendamment du pipeline, Deux paradigmes dominants:

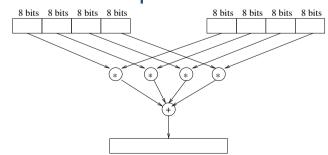
- Super Scalaire
 - Duplication des unités,
 - Répartition au vol des instructions sur les unités disponibles (re-ordonnancement des instructions: out of order execution)
 - ◆ Exemple: le PowerPC 970 (4 ALU, 2 FPU)
 - Efficace mais complexifie l'unité de contrôle (problème des interruptions)
- Very Large Instruction Word (VLIW)
 - Duplication des unités,
 - ◆ L'ordonnancement des instructions est fixé à la compilation (tout se passe comme si les instructions pouvait être regroupe sur 64 bits, 128 bits etc.)
 - ◆ Inventé par Josh Fisher (Yale) à partir du trace scheduling
 - ◆ Les processeurs VLIW sont tous basés sur les architecures RISC, avec entre 4 et 8 unités.
 - ◆ Exemple: TriMedia (Philips), Itanium IA64 (Intel).

Parallélisme au sein du processeur

Processeurs embarqués

Introduction

Architecture des processeurs


- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur
- Mémoire

Différents types de processeurs embarqués

Compilation pour processeurs

Une autre approche possible: instructions SIMD.

- Modification du data-path pour proposer des opérations parallèles sur 16 ou 8 bits
- Exemple: Sun Visual Instruction Set, Intel Pentium MMX, Philips TriMedia
- Gains importants sur certains traitements mais très peu utilisé en pratique (difficile à inférer par le compilateur)
 - Librairies écrites en assembleur (programmes non portables)
 - Fonction C représentant les instructions assembleurs (compiler instrisic)
 - ◆ Exemple: instruction ifir8ii R1, R2, R3 du Trimedia:

Mémoire

Processeurs embarqués

Introduction

Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction
 Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction
 Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur

Mémoire

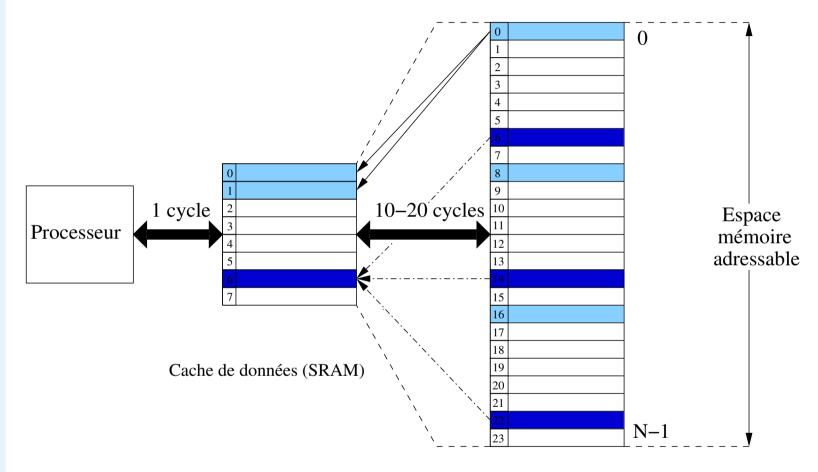
Différents types de processeurs embarqués

- Plusieurs technologies pour les mémoires:
 - Mémoires statiques (SRAM): petites, rapides, consommatrices, peu denses (chères).
 - Mémoires dynamiques (DRAM): grandes, lentes, très denses, transactions chères
- De plus en plus de place On-Chip pour la mémoire (dans ce cas elles sont moins efficaces que les chips mémoire).
- Ne pas oublier que le code aussi réside en mémoire
- Tous les systèmes ont des caches pour cacher les temps de latence lors de l'accès à la mémoire, en général plusieurs niveaux de caches: hiérarchie mémoire.

Principe du Cache

Processeurs embarqués

Introduction


Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur

Mémoire

Différents types de processeurs embarqués

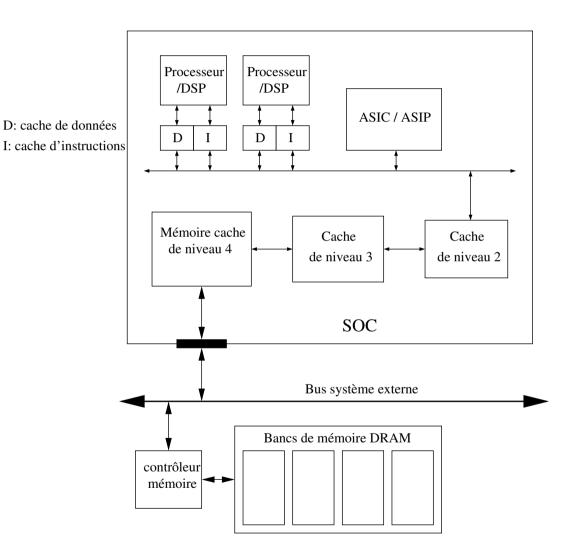
Compilation pour processeurs

Mémoire principale (DRAM)

Hiérarchie Mémoire

Processeurs embarqués

Introduction


Architecture des processeurs

- Architecture "Von Neuman" ou "Princeton"
- Architecture Harvard
- Le jeu d'instruction
- CISC: Complex Instruction Set Computer
- Exemple: instructions de l'ISA du Pentium
- RISC: Reduced Instruction Set Computer
- Exemple: instructions de l'ISA du MIPS
- Le CPU
- Le pipeline RISC: exemple du MIPS
- Exemple d'exécution sans pipeline
- Exemple d'exécution avec pipeline
- Parallélisme au sein du processeur
- Parallélisme au sein du processeur

Mémoire

Différents types de processeurs embarqués

Compilation pour processeurs

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

- Différents types de processeurs embarqués
- 68000, x86
- SPARC, 29000 et i960
- MIPS, ARM, SuperH et PowerPC
- Et les autres....
- Micro-contrôleurs
- DSP: Digital Signal Processing
- Quelques mécanismes matériels utiles
- Quelques mots sur la consommation

Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

Conclusion

Différents types de processeurs embarqués

Différents types de processeurs embarqués

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

- Différents types de processeurs embarqués
- 68000, x86
- SPARC, 29000 et i960
- MIPS, ARM, SuperH et PowerPC
- Et les autres....
- Micro-contrôleurs
- DSP: Digital Signal Processing
- Quelques mécanismes matériels utiles
- Quelques mots sur la consommation

Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

- Beaucoup de Processeurs à usage général ayant une ou deux générations
- 4, 8, 16 ou 32 bits (taille des mots)
- RISC et CISC
- DSP: Digital Signal Processor
- ASIP: Application Specific Integrated Processor

68000, x86

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

 Différents types de processeurs embarqués

● 68000, x86

- SPARC, 29000 et i960
- MIPS, ARM, SuperH et PowerPC
- Et les autres....
- Micro-contrôleurs
- DSP: Digital Signal Processing
- Quelques mécanismes matériels utiles
- Quelques mots sur la consommation

Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

- Famille des Motorola 68000
 - Un des plus vieux processeur embarqué (ex Sun, Mac)
 - Architecture CISC
 - ISA propre et les meilleurs outils de développement, beaucoup d'utilisateurs
- Famille des x86
 - ◆ Démarre au 8086 (Intel) puis 80286, 386, 486, Pentium, et Athlon (AMD)
 - En processeurs embarqués: 5 fois moins que MIPS, ARM ou 68000.
 - architecture CISC, compatible avec le code du 8086
 - compatibilité mais mauvaises performances

SPARC, 29000 et i960

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

- Différents types de processeurs embarqués
- 68000, x86

● SPARC, 29000 et i960

- MIPS, ARM, SuperH et PowerPC
- Et les autres....
- Micro-contrôleurs
- DSP: Digital Signal Processing
- Quelques mécanismes matériels utiles
- Quelques mots sur la consommation

Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

Conclusion

SPARC

- Un des premier RISC à avoir été embarqué (pratiquement plus aujourd'hui)
- SPARC est une architecture brevetée (soft core, Intellectuel Property: IP), plusieurs compagnies fabriquent des SPARC
- 29000 (AMD)
 - ◆ Le 29000 a eu beaucoup de succès (imprimante laser Apple) grâce à ces 192 registres
 - AMD a arrêté la production car le développement des outils coûtait trop cher.
- i960 (intel)
 - ◆ Le i960 a été le plus vendu des processeurs embarqués au milieu des années 90 (router réseau et HP Laserjet).

MIPS, ARM, SuperH et PowerPC

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

- Différents types de processeurs embarqués
- 68000, x86
- SPARC, 29000 et i960

MIPS, ARM, SuperH et PowerPC

- Et les autres....
- Micro-contrôleurs
- DSP: Digital Signal Processing
- Quelques mécanismes matériels utiles
- Quelques mots sur la consommation

Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

- MIPS (microprocessor without interlocked pipeline stages)
 - Originellement pour les stations puissantes (SGI)
 - Puis, marché des consoles de jeux (Nitendo N64)
 - ◆ Famille très étendue: du plus gros (MIPS 20Kc, 64 bit) au plus petit (SmartMIPS, 32 bit pour carte à puce)
- ARM (Advanced RISC Machines, ex Acorn)
 - Un des 32 bits embarqués les plus populaires : téléphones portables
 - Faible consommation
 - Le successeur: StrongArm est commercialisé par Intel sous le nom de XScale
- SuperH (ou SH: Hitachi) Utilisé dans les stationsxs Sega et les PDA
- PowerPC autant utilisé en embarqué qu'en ordinateur

Et les autres....

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

- Différents types de processeurs embarqués
- 68000, x86
- SPARC, 29000 et i960
- MIPS, ARM, SuperH et PowerPC
- Et les autres....
- Micro-contrôleurs
- DSP: Digital Signal Processing
- Quelques mécanismes matériels utiles
- Quelques mots sur la consommation

Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

- Plus de 100 processeurs embarqués 32 bits sur le marché
- Les constructeurs de FPGA proposent des soft-processeurs pour configurer les FPGA: Nios (Altera), MicroBlaze (Xilinx)
- Certain processeurs RISC (Crusoe de Transmetta) peuvent exécuter du code CISC (Intel)
 - Principe: recompilation du code à l'exécution (runtime compilation)
 - Gain obtenus par un mécanisme de cache, d'optimisation poussée des portion de code répétées (boucle), et grâce au parallélisme de niveau instruction
 - Réduction drastique de la consommation pour des performances équivalentes

Micro-contrôleurs

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

- Différents types de processeurs embarqués
- 68000, x86
- SPARC, 29000 et i960
- MIPS, ARM, SuperH et PowerPC
- Et les autres....

Micro-contrôleurs

- DSP: Digital Signal Processing
- Quelques mécanismes matériels utiles
- Quelques mots sur la consommation

Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

- Utilisé pour le contrôle embarqué
 - Censeur, contrôleurs simples
 - Manipule des événements, quelques données mais en faible quantité
 - ◆ Exemple: camescope, disque dur, appareil photo numérique, machine à laver, four à micro-onde
- Quelques caractéristiques fréquentes
 - Périphériques présents sur le circuit (timer, convertisseur analogique numérique, interface de communication), accessible directement grâce aux registres
 - Programme et données intégrées au circuit
 - Accès direct du programmeur à de nombreuses broches du circuit
 - Instructions spécialisées pour les manipulation de bits.

DSP: Digital Signal Processing

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

- Différents types de processeurs embarqués
- 68000, x86
- SPARC, 29000 et i960
- MIPS, ARM, SuperH et PowerPC
- Et les autres....
- Micro-contrôleurs

DSP: Digital Signal Processing

- Quelques mécanismes matériels utiles
- Quelques mots sur la consommation

Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

- Utilisés pour les applications de traitement du signal
 - Grande quantités de données numérisées, souvent organisées en flux
 - Filtre numérique sur téléphone, TV numérique, synthétiseur de sons
- Relativement proche des GPP, mais quelques caractéristiques en plus:
 - Bande passante élevée (deux bus)
 - Instructions dédiées pour les calculs de traitement du signal: multiplication accumulation,
 - Arithmétique spécifique (mode d'arrondi)
 - Registres dédiés pour certains opérateurs.
 - Constructeurs: Texas Instrument, puis Analog Devices, Motorola

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

- Différents types de processeurs embarqués
- 68000, x86
- SPARC, 29000 et i960
- MIPS, ARM, SuperH et PowerPC
- Et les autres....
- Micro-contrôleurs
- DSP: Digital Signal Processing
- Quelques mécanismes matériels utiles
- Quelques mots sur la consommation

Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

- Densité de code:
 - ◆ La taille du code est importante pour les codes embarqués car elle influe sur la taille de la mémoire utilisée
 - ◆ Un programme C compilé pour SPARC prendra deux fois plus de place en mémoire que le même programme compilé pour le 68030.
 - ◆ En général les code RISC sont deux fois moins dense que les codes CISC (ex: instruction TBLS du 68300: table lookup and interpolate)
 - les options de compilation doivent être utilisée avec précaution.
 - Le code est quelquefois stocké compressé et decompressé au vol par du matériel spécifique.

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

- Différents types de processeurs embarqués
- 68000, x86
- SPARC, 29000 et i960
- MIPS, ARM, SuperH et PowerPC
- Et les autres....
- Micro-contrôleurs
- DSP: Digital Signal Processing
- Quelques mécanismes matériels utiles
- Quelques mots sur la consommation

Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

- Manipulations au niveau bit:
 - Utilisé pour les algorithmes de cryptage mais surtout pour les pilotes de périphériques.
 - La plupart des périphériques indiquent leur état au processeur en mettant un certain bit à 1 dans un certain registre.
 - Un processeur RISC standard doit rapatrier le mot de 32 bit, masquer et tester à 0
 - ◆ L'instruction BTST (bit test) du Motorola 68000 permet de faire tout cela en une instruction

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

- Différents types de processeurs embarqués
- 68000, x86
- SPARC, 29000 et i960
- MIPS, ARM, SuperH et PowerPC
- Et les autres....
- Micro-contrôleurs
- DSP: Digital Signal Processing
- Quelques mécanismes matériels utiles
- Quelques mots sur la consommation

Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

- Données non-alignés
 - ◆ De nombreux traitements manipulent des données de taille non-multiple de 32 (paquets TCP/IP, video streams, clés d'encryption, 20 bits, 56 bits)
 - ◆ Les processeurs RISC savent uniquement transférer des mots (32 bits) alignés (calés sur une adresse multiple de 32 bits).
 - ◆ La plupart des architectures CISC (68k, x86) peuvent faire des chargements non alignés

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

- Différents types de processeurs embarqués
- 68000, x86
- SPARC, 29000 et i960
- MIPS, ARM, SuperH et PowerPC
- Et les autres....
- Micro-contrôleurs
- DSP: Digital Signal Processing
- Quelques mécanismes matériels utiles
- Quelques mots sur la consommation

Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

- Gestion spécifique du cache
 - ◆ Les caches améliorent les performances mais introduisent du non-déterminisme.
 - Les contraintes spécifiques des systèmes embarqués ont entraîné des mécanismes particuliers pour les cache
 - On peut vouloir bloquer le cache (cache locking): forcer certaines données ou instruction à se charger et rester dans le cache (on parle aussi de mémoire scratch-pad memory ou de software controlled cache).
 - ◆ La plupart des caches utilisent une politique de Write-Back: une donnée modifiée dans le cache n'est pas forcément immédiatement recopiée en memoire. Dans le cas de périphériques mappés en mémoire, il est indispensable de recopier immédiatement (politique write-through)

Quelques mots sur la consommation

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

- Différents types de processeurs embarqués
- 68000. x86
- SPARC, 29000 et i960
- MIPS, ARM, SuperH et PowerPC
- Et les autres....
- Micro-contrôleurs
- DSP: Digital Signal Processing
- Quelques mécanismes matériels utiles
- Quelques mots sur la consommation

Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

- Trois composantes de la consommation d'une porte logique (inverseur)
 - Consommation dynamique : $P_{dyn} = C.V_{CC}^2$ (C capacité de la porte)
 - ♦ Consommation statique : $P_{static} = V_{CC}.I_{leak}$ (V_{CC} : tension d'alimentation, I_{leak} intensité des courants de fuite)
 - Consommation de court-circuit $P_{cs} = K.\tau.(V_{CC} 2V_{Th})^3$. (K:constante technologique ; V_{Th} :tension seuil ; τ :temps de montée descente du signal)
- Aujourd'hui (2004) $P_{dyn} \gg P_{static} \gg P_{cs}$
- Demain (2006) $P_{dyn} \approx P_{static} \gg P_{cs}$

Consommation d'un circuit CMOS

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

- Différents types de processeurs embarqués
- 68000, x86
- SPARC, 29000 et i960
- MIPS, ARM, SuperH et PowerPC
- Et les autres....
- Micro-contrôleurs
- DSP: Digital Signal Processing
- Quelques mécanismes matériels utiles
- Quelques mots sur la consommation

Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

- Généralisation naïve en prenant en compte une activité moyenne α (nombre moyen de portes commutant)
 - Consommation dynamique : $P_{dyn} = C.V_{CC}^2.\alpha.f$ (f: fréquence du circuit)
 - ♦ Consommation statique : $P_{static} = V_{CC}.I_{leak}.N.k_{design}$ (N: nombre de portes, k_{design} constante dépendant du design)
- Cette modélisation est très imprécise pour un circuit dont le comportement n'est pas stationnaire (ex: processeur)

Réduction statique de la consommation

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

- Différents types de processeurs embarqués
- 68000, x86
- SPARC, 29000 et i960
- MIPS, ARM, SuperH et PowerPC
- Et les autres....
- Micro-contrôleurs
- DSP: Digital Signal Processing
- Quelques mécanismes matériels utiles
- Quelques mots sur la consommation

Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

- Le facteur le plus important est la tension d'alimentation (V_{CC}) d'abord 3.3 V puis 2.5 V. Les versions récentes de Xscale (strong ARM, Intel) et les puces smartCard fonctionnent a 0.65 V
- On peut différentier les tensions en fonction du bloc du chip:
 1.5 V pour le processeur, 3.3 pour l'interface du bus et les pattes d'entrée/sortie (ex: Strong ARM de Digital)
- Plus la technologie est intégrée, moins elle consomme (capacité diminuée).
- Fréquence d'horloge peu élevée compensée par le parallélisme
- Complexité réduite des différents composants (moins de registres, architectures RISC)

Réduction dynamique de la consommation

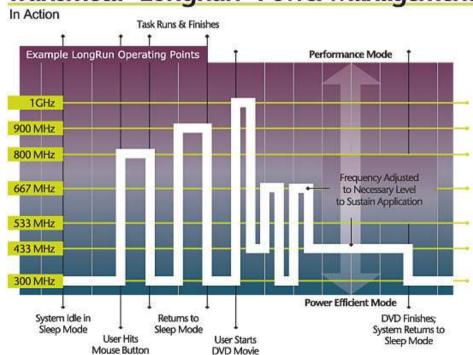
Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

- Différents types de processeurs embarqués
- 68000, x86
- SPARC, 29000 et i960
- MIPS, ARM, SuperH et PowerPC
- Et les autres....
- Micro-contrôleurs
- DSP: Digital Signal Processing
- Quelques mécanismes matériels utiles
- Quelques mots sur la consommation


Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

Conclusion

- Gestion dynamique de la fréquence d'horloge
- Exemple: processeur Crusoe (Transmetta)
 Suppression de l'horloge sur un bloc (*Dynamic clock gating*)
- Gestion dynamique de l'alimentation (pas encore réalisé)

Transmeta™ LongRun™ Power Management

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

Conclusion

Compilation pour processeurs embarqués

Compilation: biblio

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

 Compilation pour processeurs embarqués

Compilation: biblio

- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

Conclusion

Dragon book:

- Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. "Compilers: Principles, Techniques and Tools." Addison-Wesley, 1988.
- ◆ La bible, un peu dépassé sur certains sujets, mais beaucoup n'ont pas changé depuis.
- Cooper/Torczon:
 - Keith D. Cooper and Linda Torczon. Engineering a Compiler. Morgan-Kaufmann, 2003.
 - récent, survol assez complet.

Compilation: Principes généraux

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

Conclusion

■ Définition:

- Un compilateur est un programme qui prend en entrée un programme exécutable et produit en sortie un autre programme exécutable.
- Les principes fondamentaux de la compilation sont:
 - Le compilateur doit conserver le sens du programme compilé
 - Le compilateur doit améliorer le code
- Les propriétés importantes d'un compilateur sont:
 - 1. Code produit efficace (rapidité, mémoire).
 - 2. Informations retournées en cas d'erreurs, debboging
 - 3. Rapidité de la compilation
- Pour un système embarqué les points 1 et 3 sont différents

Compilation: Contraintes supplémentaires

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

- Définition d'un "bon" compilateur
 - Contraintes temps-réel
 - Plutôt résolu par langages dédié (langages synchrone, e.g. Esterel) et des OS spécialisés que par le compilateur.
 - Consommation
 - Organisation mémoire
 - accès mémoire (cache miss)
 - Taille de code
 - Performances
- Temps de compilation peu critique
- Architecture variées: DSP, instructions multi-média etc.
- Relation avec le système d'exploitation peu standardisé
 - Actuellement: petit OS ou pas d'OS
 - Prochainement: OS léger pour multi-threads

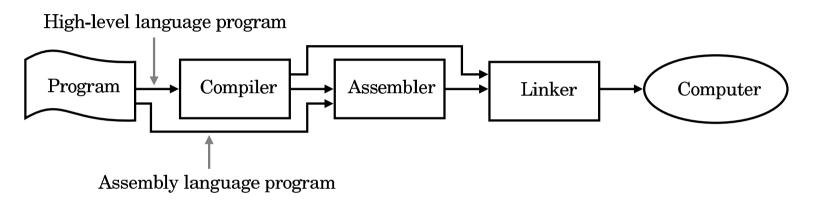
Compilation: Le flot général

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués


Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

Conclusion

■ Le flot complet de compilation est le suivant:

 La programmation d'un système embarqué nécessite souvent d'écrire explicitement des parties en assembleur (pilotes de périphériques et d'accélérateurs matériels).

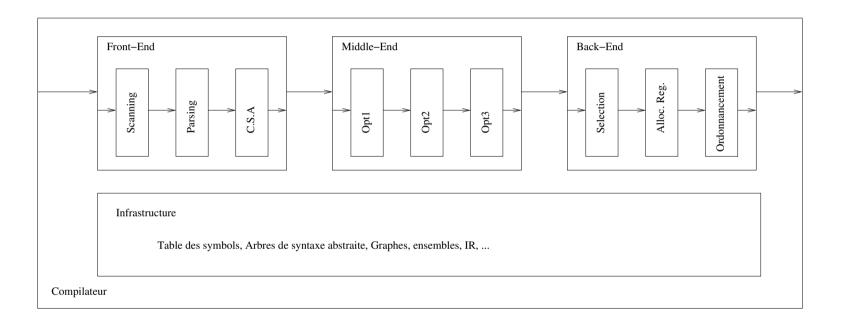
Compilation: Le flot détaillé

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués


Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

Conclusion

■ le flot détaillé est le suivant:

Compilation: Représentation intermédiaires (1)

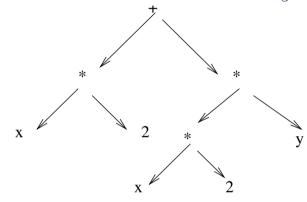
Processeurs embarqués

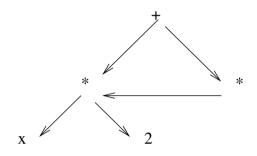
Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués


- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC


Exemple de l'appareil photo numérique

Conclusion

■ Arbre: Abstract Syntax Tree (AST), Graphe acyclique (DAG)

 \blacksquare ex: $x \times 2 + x \times 2 \times y$

DAG

AST

Compilation: Représentation intermédiaires (2)

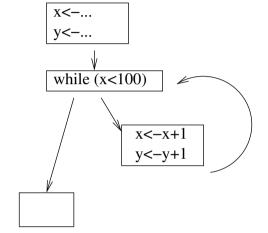
Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués


- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

Conclusion

CDFG: Control and Data-flow graph

$$\begin{array}{c} x \leftarrow \dots \\ y \leftarrow \dots \\ \text{while } (x < 100) \\ x \leftarrow x + 1 \\ y \leftarrow y + x \\ \text{end} \end{array}$$

■ Représentation intermédiaire linéaire (proche de l'assembleur). Pour $x \times 2 + x \times 2 \times y$:

Compilation: Représentation intermédiaires (3)

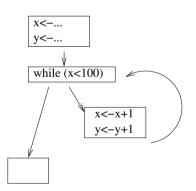
Processeurs embarqués

Introduction

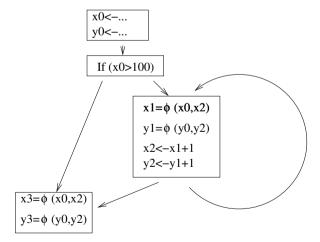
Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués


- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique


Conclusion

■ SSA: static single assignement

$$\begin{array}{c} x \leftarrow \dots \\ y \leftarrow \dots \\ \text{while } (x < 100) \\ x \leftarrow x + 1 \\ y \leftarrow y + x \\ \text{end} \end{array}$$


```
x_0 \leftarrow \dots y_0 \leftarrow \dots if (x_0 \geq 100) goto next loop: x_1 \leftarrow \phi(x_0, x_2) y_1 \leftarrow \phi(y_0, y_2) x_2 \leftarrow x_1 + 1 y_2 \leftarrow y_1 + x_2 if (x_2 < 100) goto loop next: x_3 \leftarrow \phi(x_0, x_2) y_3 \leftarrow \phi(y_0, y_2)
```


Compilation: Le front-end

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

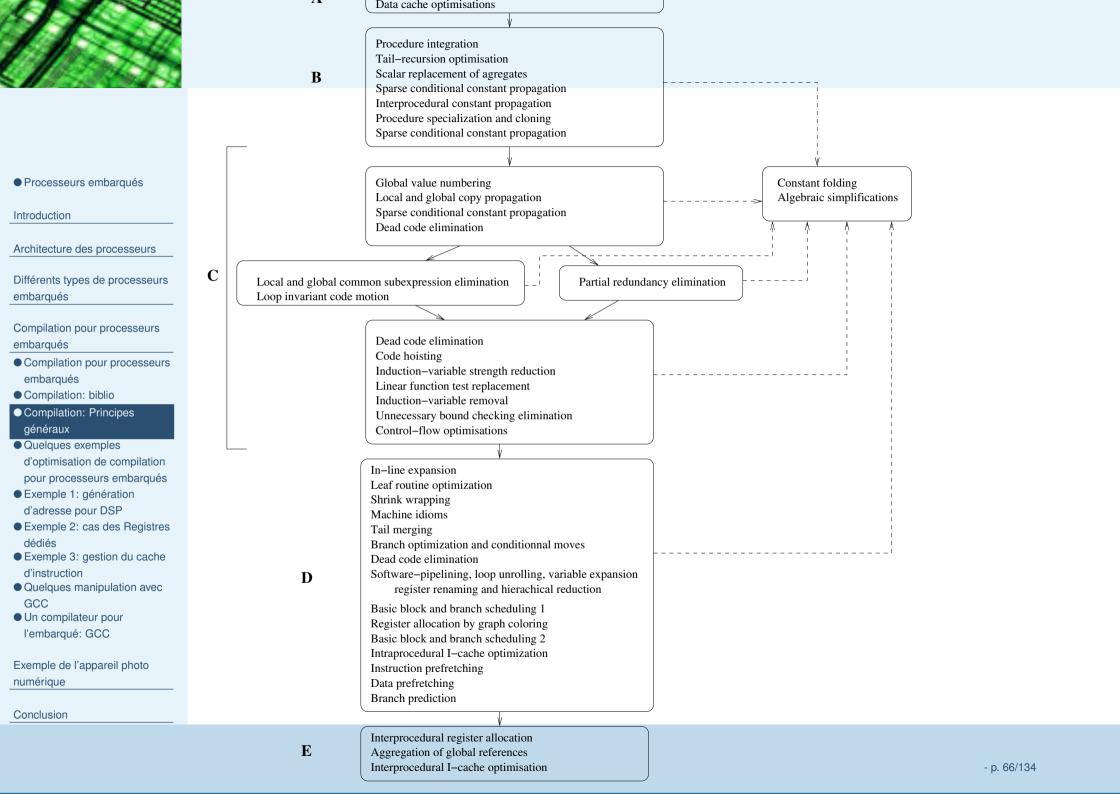
- Le front-end d'un compilateur pour code embarqué utilise les mêmes techniques que les compilateurs traditionnels (on peut vouloir inclure des partie d'assembleur directement)
- Parsing LR(1): Le parseur est généré à partir de la grammaire du langage.
- Flex et bison: outils GNU

Compilation: Le middle-end

Processeurs embarqués

Introduction

Architecture des processeurs


Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

- Certaines phases d'optimisations sont ajoutées, elles peuvent être très calculatoires
- Quelques exemples de transformation indépendantes de la machine:
 - Élimination d'expressions redondantes
 - Élimination de code mort
 - Propagation de constantes

Compilation: Le back-end

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

- La phase de génération de code est dédiée à l'architecture cible. Les techniques de compilation reciblable sont utilisées pour des familles d'architectures.
- Les étapes les plus importantes sont
 - Selection de code
 - Allocation de registre
 - Ordonnancement d'instructions

Exemple de code généré: MIPS

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

Conclusion

gcc -S fib.c

```
int fib (int i) {
  if (i<=1) return(1);
  else return(fib(i-1)+fib(i-2));
}
int main (int argc, char *argv[]) {
  fib(2);
}</pre>
```

```
2
        .align
       .globl
                     main
        .ent.
                   main
main:
        .frame
                     $fp,24,$ra
        .mask
                    0xc0000000,-4
        .fmask
                     0x00000000,0
       subu
                   $sp,$sp,24
                                   # SP<-SP-24 :AR de 24 octet (6 mots)
                 $ra,20($sp)
                                   # stocke adresse retour SP+20
       SW
                 $fp,16($sp)
                                   # stocke ARP appelant SP+16
       SW
                   $fp,$sp
                                   # ARP <- SP
       move
                                   # stocke Arg1 dans la pile (ARP+24)
                 $a0,24($fp)
       SW
                                   # stocke Arg2 dans la pile (ARP+48)
                 $5,28($fp)
       SW
       li
                 $a0,2
                                   # $a0 <- 2 ($a0: Arg1)
                                   # jump and link fib($ra<-next instr)</pre>
       jal
                  fib
                   $sp,$fp
                                   # SP <- ARP
       move
       l w
                 $ra,20($sp)
                                   # $ra <- adresse retour
       lw
                 $fp,16($sp)
                                   # ARP <- ARP appelant
       addu
                   $sp, $sp, 24
                                   # SP->SP+24
       İ
                $ra
                                   # jump adresse retour
        .end
                   main
```

gcc -S fib.c Processeurs embarqués Introduction Architecture des processeurs Différents types de processeurs embarqués Compilation pour processeurs embarqués int fib (int i) { Compilation pour processeurs if (i<=1) return(1); embarqués else return(fib(i-1)+fib(i-2)); Compilation: biblio Compilation: Principes \$L2: généraux Quelques exemples int main (int argc, char *argv[]) { d'optimisation de compilation fib(2);pour processeurs embarqués Exemple 1: génération d'adresse pour DSP Exemple 2: cas des Registres Exemple 3: gestion du cache d'instruction Quelques manipulation avec **GCC** Un compilateur pour l'embarqué: GCC Exemple de l'appareil photo numérique Conclusion

```
.text
                     2
       .aliqn
                     fib
       .qlobl
       .ent.
                   fib
fib:
       .frame
                     $fp,40,$ra
                                        # vars= 8, regs= 3/0, args= 16, ex
       .mask
                    0xc0010000,-8
       .fmask
                     0x00000000,0
       subu
                   $sp,$sp,40
                                      # SP <- SP-40 :AR de 40 octet (10 m
                 $ra,32($sp)
                                       # stocke adresse retour SP+32
       SW
                 $fp,28($sp)
                                      # stocke ARP appelant SP+28
       SW
                                      # sauvegarde registre $s0
                 $s0,24($sp)
       SW
                   $fp,$sp
                                       # ARP <- SP
       move
                 $a0,40($fp)
                                       # stocke Arg1 dans la pile (ARP+40)
       SW
                                       # charge Arg1 dans $v0
       lw
                 $v0,40($fp)
       slt
                 $v0,$v0,2
                                       # $v0 <- 1 si $v0<2 0 sinon
                                       # branch L2 si $v0==0
       beq
                  $v0,$0,$L2
                                       \# $v0 <- 0x1 ($v0 sera le registre
       li
                 $v0,1
                 $v0,16($fp)
                                       # stocke le resultat dans la pile
       SW
                $L1
                                       # saute à L1
       j
       l w
                 $v0,40($fp)
                                       # charge Arg1 dans $v0
       addu
                   $v0,$v0,-1
                                      # retranche 1
                                      # $a0 <- $v0 ($a0 contient Arg1 pou
                   $a0,$v0
       move
                  fib
                                        # jump and link fib ($ra<-next ins</pre>
       jal
                                       # $s0 <- $v0 ($v0: res appel fib)
                   $s0,$v0
       move
       lw
                 $v0,40($fp)
                                        # charge Arg1 dans $v0
                   $v0,$v0,-2
       addu
                                        # retranche 2
                                        # $a0 <- $v0 ($a0: contient Arg1 p
       move
                   $a0,$v0
                  fib
                                        # jump and link fib ($ra<-next ins</pre>
       jal
                                       # $s0 <- $s0+$v0 ($v0: res appel f
       addu
                   $s0,$s0,$v0
                 $s0,16($fp)
                                        # stocke le resultat dans la pile
       SW
$L1:
                                       # $v0 <- resultat
       lw
                 $v0,16($fp)
                   $sp,$fp
                                      # SP <- ARP
       move
       lw
                 $ra,32($sp)
                                      # $ra <- adresse retour
       lw
                 $fp,28($sp)
                                       # ARP <- ARP appelant
       lw
                 $s0,24($sp)
                                       # restaure $s0
                                                          - p. 69/134
       addu
                   $sp,$sp,40
                                       # SP->SP+40
```

.file

1 "fib.c"

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

Conclusion

Quelques exemples d'optimisation de compilation pour processeurs embarqués

Exemple 1: génération d'adresse pour DSP

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

- Les petits DSP possèdent souvent peu de registres et les calculs se font directement entre un registre par défaut *REG* et la mémoire.
- Minimiser les accès mémoire augmente beaucoup les performances.
- Pour cela, les assembleurs sont pourvus d'un registre d'adresse AR et de plusieurs mode d'adressage: adressage indirect $(REG \leftarrow Mem[reg_1])$ et indirect indexé $(REG \leftarrow Mem[reg_1 + const_1])$.
- ils possèdent généralement des versions avec auto-incrément (ou auto-décrement) des instructions standard: *load*, *store*.

Exemple: addressage avec auto incrément

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

- Auto-incrément à chaque load, store le registre d'adresse AR est incrémenté ou décrémenté de 1 (éventuellement d'une constante c)
- Auto-modify à chaque *load*, *store* le registre d'adresse *AR* est incrémenté ou décrémenté de la valeur d'un registre *MR* (*modify register*)
- Exemple de jeu d'instruction (assembleur TMS320C25):

instruction	effet
$LDAR\ AR,\ val$	$AR \leftarrow val$ //chargement du registre d'adresse AR avec une valeur
LOAD * (AR)	$REG \leftarrow mem(AR)$ //AR est le registre d'adresse
LOAD * (AR)+	$REG \leftarrow mem(AR); AR \leftarrow AR + 4$ //version avec auto incrément
LOAD * (AR)-	$REG \leftarrow mem(AR); AR \leftarrow AR - 4$ //version avec auto decrement
STOR * (AR)	$mem(AR) \leftarrow REG$ //AR est le registre d'adresse
STOR * (AR) +	$mem(AR) \leftarrow REG; AR \leftarrow AR + 4$ //version avec auto incrément
STOR * (AR)-	$mem(AR) \leftarrow REG; AR \leftarrow AR - 4$ //version avec auto decrement
ADD * (AR) +	$REG \leftarrow REG + mem(AR); AR \leftarrow AR + 4$ //
etc	

Exemple 1: addressage avec auto incrément

Processeurs embarqués

Introduction

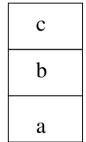
Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique


Conclusion

Avec ce jeu d'instruction, le chargement d'une variable locale d'une procédure se fait en deux instructions:

$$LDAR AR, @a$$

 $LOAD * (AR)$

■ Mais l'addition de trois variables rangées consécutivement dans la pile: a + b + c peut se faire en quatre instructions:

$$LDAR AR, @a$$

 $LOAD * (AR) +$
 $ADD * (AR) +$
 $ADD * (AR)$

Optimisation de l'adressage

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

Conclusion

Considérons le code suivant extrait d'une procédure:

$$c = a + b$$

$$f = d + e$$

$$a = a + d$$

$$c = d + a$$

$$b = d + f + a$$

■ Le compilateur choisi d'accéder les variables dans un certain ordre, par exemple celui-ci:

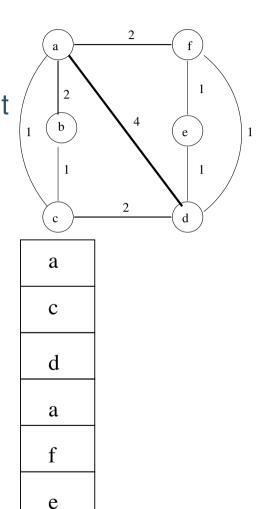
Quelle est l'arrangement de ces différentes variables qui minimise la taille du code généré (et donc le temps d'exécution)?

Solution

Processeurs embarqués

Introduction

Architecture des processeurs


Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

- On construit un graphe d'accès dont les noeuds représentent les variables et les poids sur les arcs représentent le nombre de fois ou les variables sont accédées consécutivement dans le code:
- On cherche un chemin hamiltonien dans ce graphe qui maximise le poids (problème NP-complet).
- solution: 10 accès avec la solution suivante:

Unité de génération d'adresse

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

Conclusion

- Pour les DSP plus gros, le problème est plus compliqué
- Ils possèdent souvent une unité de génération d'adresse hors du data-path (address generation unit, AGU) qui possède:
 - k registres d'adresse (AR_0, \dots, AR_k)
 - m registres de modification (MR_0, \ldots, MR_m)
 - Un décalage cablé borné par une petite constante
 - ainsi que la possibilité d'entrer une constante pour le décalage ou pour modifier les AR ou les MR.

Quelques exemple d'unité de génération d'adresses (Leupers [?])

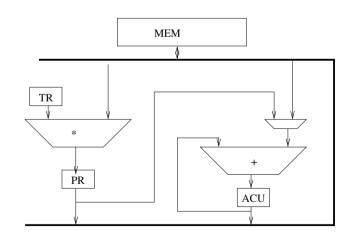
	TI C25	Motorola 56xxx	ADSP-210x	AMS Gepar
k	8	4	4	8
m	1	4	4	8
r	1	1	0	7

Exemple 2: cas des Registres dédiés

Processeurs embarqués

Introduction

Architecture des processeurs


Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

- De nombreux DSP ont des registres dédié dans le data-path qui permettent:
 - Un mini-pipeline à l'intérieur du data-path
 - ◆ De limiter les lectures/ecritures sur le fichier de registre
 - De réduire la taille du code (les registres sont adressé implicitement)
- exemple: le chemin de donnée et le jeu d'instruction associé du C25 de Texas Instrument.

instruction	effet	
lac	ACU ← MEM	
addk	ACU← ACCU+Constant	
add	ACU← ACCU+MEM	
pac	ACU ← PR	
apac	ACU← ACCU+PR	
mpy	PR← PR*MEM	
lt	TR← MEM	
sacl	MEM← ACU	
spl	MEM←PR	

Registre dédiés

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

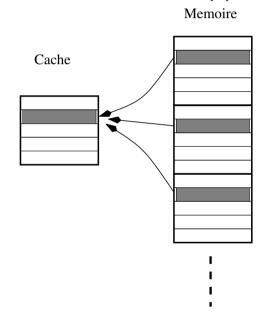
- Dans les compilateurs standards, il y a une phase de sélection de code suivie d'une phase d'allocation de registres
- Il devient difficile de séparer la phase d'allocation de registres et la phase de sélection de code.
- Trouver le meilleur code pour une séquence d'instructions donnée devient quasiment impossible/
- La solution passe par des algorithmes d'optimisation de type heuristique ou aléatoire (algorithmes génétique, recuit simulé, etc.)

Exemple 3: gestion du cache d'instruction

Processeurs embarqués

Introduction

Architecture des processeurs


Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

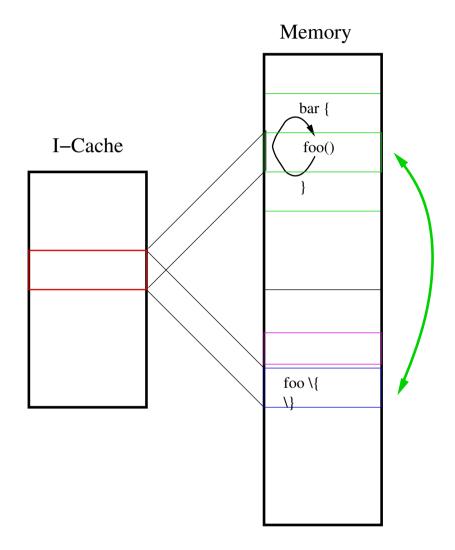
- Exemple du ST200: DSP VLIW pour telephone portables
- Le cache d'instructions est "direct-mapped"

- Taille du cache d'instructions: 32K
- Taille d'une ligne de cache 64 bytes: 512 lignes.
- Coût d'un "cache-miss": 150 cycles.
- Pour un placement de code aléatoire les performances varient avec un rapport de 3!

Conflits de cache d'instruction

Processeurs embarqués

Introduction


Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

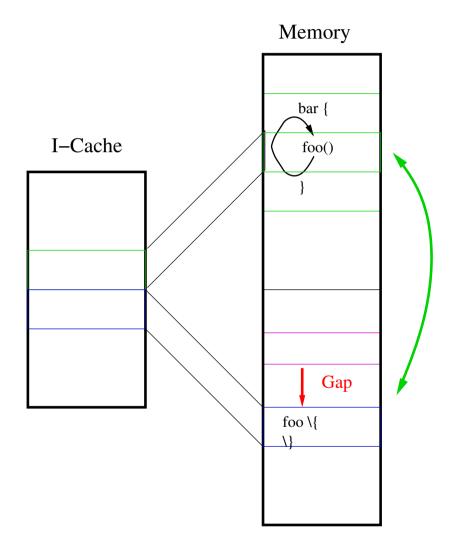
- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

Pas de Conflits de cache d'instruction

Processeurs embarqués

Introduction


Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

Optimisation proposée

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

Conclusion

- Placement explicite des fonctions en mémoire pour limiter les conflits du cache d'instrution (au moment de l'édition de liens)
- Ces conflits dépendent du flot d'exécution, on optimise donc pour une trace données:
- Analyse de la trace: quelles fonctions sont appelées ensembles
- Déduction d'un placement optimal en mémoire des différentes fonctions (pour cette trace là).
- Plusieurs approche existe:

Basée sur un graphe d'appel Basée sur un graphe conflit

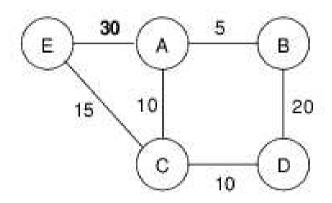
Utilisation du graphe d'appel

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués


Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

Conclusion

- Construction d'un graphe où les sommets sont des fonctions et les arêtes les fréquences d'appel.
- Deux fonctions souvent appelées doivent avoir une place différente dans le cache. C'est assuré si on les place cote à cote dans la mémoire.
- L'algorithme est glouton sur le graphe: il fusionne les sommets reliés par l'arête de poids max.

(a) Combine E and A; merge edges(E,C) and (A,C) into (EA,C).

(c) Combine B and D; merge edges (B,CEA) and (D,CEA).

150

Utilisation du graphe des conflits

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

Conclusion

- Construction d'un graphe (GC) où les sommets sont des fonctions (ou des morceaux de code) et les arêtes sont les conflits constatés sur ne trace particulière
- If y a conflit entre A et B si la trace contient le pattern suivant: $A \dots B \dots A$ ou $B \dots A \dots B$.
- Exemple:

ABCBABABABA

7 conflits entre A et B, 1 conflit entre A et C 1 conflit entre B et C

⇒ On place en priorité A et B consecutivement en mémoire

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avecGCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

Conclusion

Quelques manipulation avec GCC

Un compilateur pour l'embarqué: GCC

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

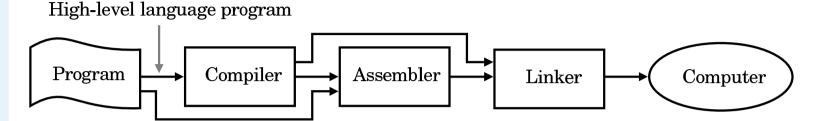
- GCC: Gnu C Compiler ou Gun Compiler Collection
- http://gcc.gnu.org/
- Outil développé par la communauté mondiale, développement rapide.
- De plus en plus utilisé pour le calcul embarqué car il est reciblable.
- Exemple d'utilisation
 - Créer un compilateur pour le Mips sur votre Pentium
 - Insérer une routine d'interruption dans votre programme
 - Répartir les différentes section de votre code dans différentes mémoire.

compilateur, éditeur de liens, binutils

Processeurs embarqués

Introduction

Architecture des processeurs


Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

Conclusion

Assembly language program

- gcc: ftp://ftp.gnu.org/gnu/gcc/gcc-3.3.tar.gz
- Assembleur, éditeur de lien et utilitaire de manipulation de binaire (objdump, etc..) ftp://ftp.gnu.org/gnu/binutils/binutils-2.9.1.tar.gz
- Run-time library (printf, malloc, etc.): newlib (ou qlibc)

ftp://sourceware.cygnus.com/pub/newlib/newlib-1.8.1.tax

Installation pour le Mips

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

- tar zxf gcc-3.3.tar.gz
- tar zxfbinutils-2.9.1.tar.gz
- cd binutils-2.9.1
 configure
 -target=mipsel
 make all install
- Même chose pour gcc
- Voir le fichier configure.sub pour les plate-formes cibles possibles
- On peut aussi compiler gcc sur une machine pour l'utiliser sur une autre machine (ou il produira du code pour une troisième machine): GCC est un Cross-compiler

Assembleur dans le code C

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

Conclusion

On peut include directement des instruction assembleur dans le code C: fonction ___asm___

```
void set_imask_to_6( void )
{
   printf( "switching to interrupt
   mask level 6.\n" );
   __asm__( " andi #0xf8, sr" );
   __asm__( " ori #6, sr" );
   printf( "Interrupt mask level
   is now 6.\n" );
}
```

■ Permet d'écrire des pilotes de périphériques, de contrôler la gestion des interruptions sans système d'expoitation

Assembleur dans le code C

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

- On peut aussi mettre explicitement des variables dans des registres sans connaître l'allocation de registres faite par le processeur
- Exemple: utilisation de la fonction fsinx du 68881:
 __asm__("fsinx %1,%0" : "=f" (result) : "f" (angle));
- %0 et %1 représente le résultat et l'opérande de la fonction qui vont correspondre aux variables result et angle du programme C
- "t" est une directive indiquant à gcc qu'il doit utiliser des registres flottants

Contrôler les section du programme

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

- Le code contient différentes sections. Par exemple avec GCC
 - ◆ La section .text contient les instructions du programme
 - ◆ La section .data contient des données statiques etc.
- Le concepteur de logiciel embarqué veut souvent contrôler explicitement la répartition des variables globales dans les sections (à la compilation): pour distinguer les variables des constantes par exemple.
- Il peut vouloir aussi contrôler la répartition des sections dans les composants matériels (à l'édition de lien et au chargement du programme)
- Utilisation de la directive ___attibute___

```
const int put_this_in_rom
    __attribute___((section("myconst")));
const int put_this_in_flash
    __attribute___((section("myflash")));
```


Gestionnaire d'interruption

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

- Beaucoup de périphériques dédiés communiquent avec le processeur par des interruptions
 - Problèmes (adresse mémoire invalide), erreur de transmission sur le bus
 - Fin de tache pour un accélérateur matériel
 - Détection de données pour un censeurs
- GCC ne peut pas généralement pas directement compiler un gestionnaire d'interruption (retour par rte: return from exception)
- on peut contourner ce problème en encapsulant la procédure de gestion de l'interruption

```
/* code C de gestion de l'interruption */
void isr_C( void ) {
 /* ISR: interupt service routine
    faire quelque chose en C */
/* code assembleur utilisé
   dans le code source */
asm ("
  .qlobal isr
 isr:
  /* Sauvegarde des registres
   * choisis
   * /
 push r0
 push r1
  /* appel du gestionnaire */
  jsr _isr_C
  /* restauration des registre
   * et retour
   * /
 pop r1
 pop r0
  rte
");
```


Le LD script

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

- L'éditeur de liens assemble les différents fichiers objets résultant de la compilation séparée des différents fichiers.
- C'est là que sont résolus les appels à des fonctions entre fichier ou à des fonctions de bibliothèque non fournies par l'utilisateur
- C'est aussi là que sont agencées les différentes sections mémoire dans l'espace d'adressage final

Exemple de LD script

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec
 GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

- Spécification de fichier de librairie
- Spécification du format de sortie
- 5 sections nommées

```
/* Une list de fichier à inclure (les autres sont
    spécifiés par la ligne de commande */
INPUT(libc.a libg.a libgcc.a libc.a libgcc.a)

/* Specification du format de sortie
(binaire :bin}, Intel Hex:
ihex, debug coff-\$target */
   OUTPUT_FORMAT("coff-sh")

/* list of our memory sections */
MEMORY {
   vect : ORIGIN = 0x00000000, LENGTH = 1k
   rom : ORIGIN = 0x00000400, LENGTH = 127k
   reset: ORIGIN = 0xBFC00000, LENGTH = 0x000000400
   ram : ORIGIN = 0x400000, LENGTH = 128k
   cache : ORIGIN = 0xfffff000, LENGTH = 4k
}
```


Exemple de LD script (suite)

Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

- Compilation pour processeurs embarqués
- Compilation: biblio
- Compilation: Principes généraux
- Quelques exemples d'optimisation de compilation pour processeurs embarqués
- Exemple 1: génération d'adresse pour DSP
- Exemple 2: cas des Registres dédiés
- Exemple 3: gestion du cache d'instruction
- Quelques manipulation avec GCC
- Un compilateur pour l'embarqué: GCC

Exemple de l'appareil photo numérique

- Description du placement de chaque section en mémoire
- Création d'un symbole au
 début de la section (ex:
 __text_start) et à la fin
 (__text_end)
- Placement des parties du code préfixé par la directive .text dans la section rom de la mémoire.
- Éventuellement insertion de code spécifiquement écrit directement dans la mémoire (.reset)

```
SECTIONS {
 /* the interrupt
   vector table */
 .vect :
  vect start = .;
 *(.vect);
  vect end = .;
 } > vect
 /* code and constants */
 .text :
  text start = .;
  *(.text)
  *(.strings)
   text_end = .;
} > rom
.reset : {
   ./libhandler.a(.reset)
  } > reset
```

```
/* uninitialized data */
hss .
  bss start = . ;
 *(.bss)
 * (COMMON)
  bss end = .;
} > ram
/* initialized data */
.init : AT ( text end)
 data start = .;
 *(.data)
 data end = .;
} > ram
/* application stack */
.stack:
  __stack_start = .;
 *(.stack)
  \__stack\_end = .;
} > ram
```


Processeurs embarqués

Introduction

Architecture des processeurs

Différents types de processeurs embarqués

Compilation pour processeurs embarqués

Exemple de l'appareil photo numérique

- Exemple de l'appareil photo numérique
- Le point de vue du concepteur
- Charge-coupled device (CCD)
- Discrete Cosine Transform:DCT
- Étape de quantization
- Encodage de Huffman
- Contrainte du système
- Spécification fonctionnelle
- Implémentation 1:

Microcontroller seul

Implémentation 2:
 Microcontroller et CCDPP

Microcontroller et GODI

Conclusion

Exemple de l'appareil photo numérique Tiré du cours de Franck Vahid: http://www.cs.ucr.edu/content/esd/