
Hardware Support for Real-Time Embedded
Multiprocessor System-on-a-Chip Memory Management

Mohamed Shalan
Georgia Institute of Technology

School of Electrical and Computer Engineering
801 Atlantic Drive

Atlanta, GA 30332-0250
(404) 894-0966

shalan@ece.gatech.edu

Vincent J. Mooney III
Georgia Institute of Technology

School of Electrical and Computer Engineering
801 Atlantic Drive

Atlanta, GA 30332-0250
(404) 385-0437

mooney@ece gatech.edu

ABSTRACT
The aggressive evolution of the semiconductor industry - -
smaller process geometries, higher densities, and greater chip
complexity - - has provided design engineers the means to create
complex, high-performance Systems-on-a-Chip (SoC) designs.
Such SoC designs typically have more than one processor and
huge memory, all on the same chip. Dealing with the global on-
chip memory allocation/de-allocation in a dynamic yet
deterministic way is an important issue for the upcoming billion
transistor multiprocessor SoC designs. To achieve this, we
propose a memory management hierarchy we call Two-Level
Memory Management. To implement this memory management
scheme - - which presents a paradigm shift in the way designers
look at on-chip dynamic memory allocation - - we present a
System-on-a-Chip Dynamic Memory Management Unit
(SoCDMMU) for allocation of the global on-chip memory, which
we refer to as Level Two memory management (Level One is the
operating system management of memory allocated to a particular
on-chip Processing Element). In this way, processing elements
(heterogeneous or non-heterogeneous hardware or software) in an
SoC can request and be granted portions of the global memory in
a fast and deterministic time (for an example of a four processing
element SoC, the dynamic memory allocation of the global on-
chip memory takes sixteen cycles per allocation/deallocation in
the worst case). In this paper, we show how to modify an existing
Real-Time Operating System (RTOS) to support the new
proposed SoCDMMU. Our example shows a multiprocessor SoC
that utilizes the SoCDMMU has 440% overall speedup of the
application transition time over fully shared memory that does not
utilize the SoCDMMU.

Keywords
System-on-a-Chip, dynamic memory management, real-time
systems, embedded systems, SoCDMMU, two-level memory
management, Atalanta, real-time operating systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES'02. May 6-8, 2002, Estes Park, Colorado, USA.
Copyright 2002 ACM 1-58113-542-4/02/0005...$5.00.

1. INTRODUCTION
In few years integrated circuits will have close to one billion
transistors on a single chip [25]. Such chips will no longer be
individual components to a system but "silicon boards." Given
that current computers waste much time transferring data between
compute and storage units, it is appealing to combine significant
processing power and a large amount of memory in the same chip.
A typical System-on-a-Chip (SoC), as shown in Figure l, will
consist of multiple Processing Elements (PEs) of various types
(i.e., general purpose processors, domain-specific CPUs such as
DSPs, and custom hardware), configurable logic, large memory,
analog components and digital interfaces [l], [2], [20].
Architecture such as this will be suitable for embedded real-time
applications. Such applications - - especially multimedia
require great processing power and large volume data
management [13], [19].

Analog Interface I Network Interface

DSP 1

RISC 1

L1 Cache

Custom Logic

SoCDMMU

DSP 2

L1 Cache

RISC 2

L1 Cache

Global Memory !
(DRAM/SRAM)

Figure 1. Example of A Billion-Transistor SoC.

Designers of multiprocessor SoC with heterogeneous processing
elements and significant on-chip memory must pay careful
attention to the management of the on-chip memory. They have
to decide whether the allocation will be static (i.e., determined at
compile time) or dynamic (decided at run-time and capable of
being changed from one moment to another during operation)?
Most previous research in the memory management for embedded
systems has focused on static allocation and how to synthesize
memory hierarchies for an SoC [3], [5], [17], [19]. The static
allocation of memory makes the on-chip memory utilization
inefficient especially for applications whose memory requirements
change significantly during run-time. Moreover, it makes system
modification after implementation very difficult. On the other
hand, dealing with memory allocation between the PEs in a

79

dynamic way can make the memory utilization more efficient.
Also, the memory allocation will be programmable and can. be
changed at any moment depending on the system load. From the
general-purpose end of the spectrum, there has been significant
research in shared memory multiprocessing [22]. However, in
shared memory multiprocessing, dynamic memory allocation is
not deterministic; moreover, it typically requires hundreds or
thousands of clock cycles in the worst case [14], which makes
satisfaction of real-time constraints on such shared memory
architectures difficult if not impossible.

We proposed a novel approach for memory allocation/de-
allocation between PEs in an SoC that is suitable for real-time
applications [I1]. Such systems require behavior that is
deterministic and fast in all cases, unlike general-purpose
computer systems, which have memory management that may be
neither fast nor deterministic. Our approach focuses on
implementing a special hardware SoC Dynamic Memory
Management Unit (SoCDMMU) to dynamically allocate the large
global on-chip memory between the PEs. Note that after the
SoCDMMU allocates a portion of the large global on-chip
memory to a particular PE, the PE itself manages the use of this
memory by its processes/threads. The SoCDMMU allows fast
and deterministic dynamic memory allocation/de-allocation of
large global on-chip memory between the PEs.

In this paper, we show how a Real-Time Operating System
(RTOS) might be modified to support the SoCDMMU. Also, we
present simulation results that show a multiprocessor SoC that
utilizes the SoCDMMU performs far better than an equivalent
system that does not utilize the SoCDMMU.

This paper is organized as follows. First, Section 2 gives an
overview of the work done to implement the memory management
in hardware. To make the paper self-contained, Section 3 briefly
describes the SoCDMMU architecture. Section 4 shows Real-
Time Operating System (RTOS) support for the SoCDMMU.
Section 5 gives some experimental results, and finally Section 6
concludes the paper.

2. RELATED WORK
The dynamic management of memory has beeD an important topic
in computer systems for a long time. Dynamic memory
management can consume a great amount of a program's
execution time - - especially object-oriented applications.
Moreover, memory management routines often do not have
deterministic behavior. To reduce the execution time of dynamic
memory management routines (allocation, de-allocation, and
garbage collection) and/or make their execution times
deterministic, many researchers have proposed hardware
accelerators for dynamic memory management. The literature
shows that a hardware implementation of a simple buddy allocator
was first proposed by Puttkamer [5]. P.R. Wilson et al. mention a
possible implementation of a bitmap memory allocator in
hardware [14]. Chang and Gehringer propose a modified
hardware-based buddy system, which eliminates internal
fragmentation [8]. Chang et al. have implemented the mallocO,
reallocO, and freeO C-Language functions in hardware [18]. Also,
they propose a hardware extension to be a part of the future
microprocessors to accelerate the dynamic memory management
[7]. in the same way, Cam et al. propose a hardware buddy
allocator that detects any available free block of requested size
and eliminates the internal fragmentation [6]. The previous
research focuses only on the hardware implementation of specific
functionality (e.g., allocation or de-allocation) but does not

discuss in detail how these functionalities could be integrated into
a system nor present any system examples. Moreover, they focus
only on speeding up memory management rather than making it
deterministic, which means some of the previous implementations
are not suitable for real-time systems.

3. THE SoCDMMU
In this section we briefly give an overview of the
SoCDMMU [I 1]. The SoC Dynamic Memory Management Unit
(SoCDMMU) is a hardware unit, to be a part of the SoC, which
deals with the global on-chip memory allocation/de-allocation
between the PEs. The SoCDMMU allows a fast and deterministic
dynamic way to allocate/de-allocate the global memory (see
Figure 1) between the PEs.

The SoCDMMU resides between the PEs and the global on-chip
memory. Each PE's memory bus is connected to the SoCDMMU
to allow the SoCDMMU to control all of the global memory
accesses. This enables the SoCDMMU to convert the PE-address
to a physical address. The PE can map any allocated block to any
memory location inside the PE's address space. This feature
allows the allocation of non-contiguous memory blocks, so there
is no need for memory compaction of the global memory blocks
(memory compaction may be an issue within a particular block).

Table 1: Execut ion Times in Cycles

Command Number of Cycles
4 _ G_alloc_ex

G_alloc_rw 4
G_alloc_ro 3
G dealloc 4
Worst-Case Execution Time 4 x (the number of the PEs in

the SoC)

The SoCDMMU is mapped into a location in the I/O space of
each PE. This memory mapped address or I/O port to which the
SoCDMMU is mapped is used to send commands to the
SoCDMMU (write data to the port or memory-mapped location)
and to receive the status of the command execution (reading from
the port memory-mapped location). There are three types of
commands that the SoCDMMU can execute: G_Allocate
commands (exclusive, read-only, and read-write), G_deallocate
command, and Move command. The move command is used to
re-map allocated memory blocks to another location in the PE-
address space. This is useful because it allows PE address space
compaction. Table 1 summarizes the execution time of each of the
SoCDMMU commands in cycles.

4. RTOS SUPPORT FOR THE SoCDMMU
Conventional memory allocation algorithms (e.g., buddy-heap)
are not suitable for Real-Time systems because they are not
deterministic and/or have a quite high Worst Case Execution
Time (WCET). A deterrmnistic execution time is a very desirable
trait for real-time applications. Currently, software approaches to
automatic dynamic memory management often fail to yield
predictable execution time [7]. The most often used software
approach in maintaining allocation status is sequential fit or
segregated fit. These two approaches utilize a linked-list to keep
the occupied chunks or free chunks. With a linked-list, the
turnaround time often relates to the length of the list. As the
linked-list becomes longer, the sequential search time grows

80

longer as well [14]. Similarly, the software approaches to garbage
collection also yield unpredictable turnaround time. Two of the
most common approaches for garbage collection are mark-sweep
and copying collector. In both instances, the execution time is not
deterministic [7], [14].

The fastest and most deterministic approach to memory
management is to disallow dynamic memory allocation and to
make the programmer allocate all memory statically. However,
such an approach has obvious problems dealing with dynamically
changing workloads, e.g., as would be introduced by downloading
new code onto a PDA. Another approach is to allow dynamic
memory allocation but to not support dynamic memory allocation
in the kernel [12]. In this case, the kernel is fast and deterministic,
but any dynamic memory allocation falls outside of the scope of
the kernel and thus is the responsibility of the user!

Yet another approach to "dynamic" memory allocation is to
statically assign partitions with fixed block sizes (e.g., partitions
of size 1KB with blocks of 32B) used to satisfy "dynamic"
memory allocations [9], [23], [24], [26]. In this case, each request
can only be for a single block which has the advantage of short
and predictable execution time due to the fact that only one
pointer needs to be changed [9]. However, the disadvantage
occurs in allocating multiple blocks: the allocation time is linear
in the number of blocks allocated!

A more fully dynamic memory allocation involves the use of
mallocO, free(), and their equivalents. Our hardware/software
multiprocessor RTOS implementation uses a different approach to
support this fully dynamic case (allocation of memory using
mallocO, free() and their equivalents). In the following section
we give an overview of a way to support dynamic memory
management of partitions by extending the Atalanta open-source
RTOS developed at Georgia Tech [4] to support the SoCDMMU
introduced previously [11].

4.1 Atalanta Memory Management
An RTOS usually divides the memory into fixed-sized allocation
units and any task can allocate only One unit at a time [9], [23],
[24], [26]. However, we present in this section a way to support
real-time (see Table 6 and Table 7) dynamic allocation of
partitions using Atalanta for the RTOS software and the
SoCDMMU for part of the RTOS functionality in hardware.
Atalanta is an open source RTOS developed at the Georgia
Institute of Technology to be used for SoC [4]. We adapted
Atalanta to support the SoCDMMU. As an RTOS, Atalanta
manages memory in a deterministic way; tasks can dynamically
allocate fixed-size blocks by using memory partitions as shown in
Figure 2.

Partition Start

Partition [~ / ~ / ~ ~ ~:::k

I
Figure 2: Memory partition in Atalanta.

Partitioned memory is allocated and returned in fixed-size blocks.
One advantage of partitioned memory is that allocation and de-
allocation of blocks can be done in constant time. Since all
memory blocks in a partition are the same size, the external
fragmentation that sometimes results from dynamic memory
allocation does not occur. Consequently, memory compaction is
not required. During RTOS initialization the partitions should be
created as static arrays. Atalanta provides only four Application
Programming Interface (API) functions to manage the memory.
These functions are summarized in Table 2.

Table 2. Atalanta Memory Management System Calls.

Function Name I Description

asc_partition_gain I Get free memory block from a
partition (non-blocking)

ascpartition_seek Get free memory block from a
partition (blocking)

ascpartition..free Free a memory block.

ascpartition_reference Get partition information.

4.2 Atalanta Support for SoCDMMU
We modified the Atalanta RTOS memory management to support
the SoCDMMU and to allow the Atalanta RTOS to work in a
multiprocessor SoC environment. While modifying the Atalanta
memory management system we kept on mind the following
issues. First, we add dynamic memory management for the global
on chip memory. Second, we use the same memory management
API functions of Atalanta. Third, we keep the memory
management deterministic. Also, the following facts governed our
modifications:

• The SoCDMMU needs to know where the allocated
physical memory will be placed in the PE address space.
This is required by the SoCDMMU allocation
commands [11].

• The PE address space is much larger than the available
on chip memory (a typical figure would be 64 MB of
global on chip memory vs. 4GB address space for a
typical 32°bit processor). This fact can be used to
develop an alternative solution for the PE address space
fragmentation explained earlier in Section 3.

Table 3. New API memory management Functions introduced
to the Atalanta RTOS.

Function Name i Description
ascpartition_create i Create a partition by requesting

memory allocation from the
SoCDMMU if necessary.

asc partition delete Delete a partition and de-allocate
i memory block if required.

We added new API functions to Atalanta both to create partitions
at run-time when required and to delete the partitions later when
no longer required (as opposed to creating the partitions as static
arrays not modifiable at run-time). Table 3 explains these two new
functions. The asc_partition_create function creates a partition in

81

the memory allocated to the PE. If there is not enough memory or
the available memory has a different mode (read only, exclusive)
than that of the requested partition, asc_partirion_create requests
memory from the SoCDMMU. The asc_partition_delete function
deletes a partition when it is not required anymore;
asc_partition_delete will request memory de-allocation from the
SoCDMMU if the entire physical block corresponding to the
partition is not in use anymore.

Table 4. asc_memory_find Function.

Function Name Description
asc_memory_find Find a place in the PE address

space to which to map the allocated
memory.

Recalling that the SoCDMMU G_allocate commands require a
place in the PE address space into which the physical memory
blocks can be mapped, we need a function that finds an empty
space in the PE address space into which to map the physical
blocks. This function is called ascmemory_find. Table 4 gives a
description of this function. The asc_memory_find function works
in a way that minimizes the PE address space fragmentation; to
achieve this, the PE address space is divided into pools (a pool is
an address range in the PE's address space). Each pool has the
same size of the total on-chip memory. Each pool can be used to
map pages of the same size (1 block, 2 blocks, etc.,). The page
size of each pool is selected to be one of the commonly used page
sizes. If the commonly used page sizes are large in number, a pool
can be used to allocate pages of any arbitrary size; and the
SoCDMMU move command is utilized to perform address space
compaction. For example, if the total on-chip memory is 64MB
and the PE address space is 4GB then we have 64 pools each of
64MB. The first pool may be used to place l-block pages, the
second pool for 2-block pages, etc., as illustrated in Figure 3.

4 GB

Pool 0
(for 1-block pages)

Pool 1
(for 2-block pages)

Pool 2
(for 3-block pages)

Pool 63
(for any size pages)

• MB

Figure 3: The PE's address space divided into pools.

FiFO I I Mem°ry Buffer I I Mem°ry Buffer

Figure 4: OFDM Sub-System

Example 1 Consider a multiprocessor SoC whose
functionality is dynamically changed to include OFDM
communication. The SoC has two DSP processors and a
global on-chip memory. The two DSP processors utilize
Atalanta as the RTOS. The first DSP reads the incoming
data from the FIFO buffer and performs a 1024-point FFT
for each received symbol to find the original transmitted
spectrum and then stores the results into a memory buffer
that is shared with the second DSP. The phase angle of
each transmission carrier is then evaluated and converted
back to data words by demodulating the received phase.
The demodulation is performed by DSP2. The operation is
outlined in Figure 4. DSP1 allocates the shared memory
buffer as read/write and DSP1 allocates it as read only.
Figure 5 shows the code snippets for DSP1 and DSP2 that
performs the dynamic memory allocations.

DSP1
#define BUFi 0xl0

SYS_ERROR e;
SYS PARTITION pl;

SYSMEM ml;

pl=asc_partition_create(2,l,DMMU_RW,BUFl,&e);

ml= asc_partition_gain(pl,&e);

asc_loartition_free(pl,ml,&e);

DSP2

#define BUFI 0xl0

#define BUF2 0x20

SYS_ERROR e;

SYS_PARTITION pl;

SYS~EMml;
;YS_PARTITION p2;

;YS_MEMm2;

pl=asc_partition_create(2,l,DMMU_RO,BUFl,&e);

ml = asc_partition_gain(pl,&e);

p2=asc_partition_create(3,l,DMMU_EX,BUF2,&e)

ml= asc_ .pa r t i t i on_ga in (p2 ,&e) ;

lasc partition freelp2,m2,&e);

Figure 5: Code snippets for the OFDM System in Example 1.

82

5. E X P E R I M E N T S

5.1 C o m p a r i s o n t o a Ful ly S h a r e d - M e m o r y
Mul t iproeessor S y s t e m
In this experiment we compare (i) a system that utilizes the
SoCDMMU and uses the memory sharing scheme implied by
using the SoCDMMU [I1] to (ii) a fully shared-memory
multiprocessor system. The simulation is carried out using the
Mentor Graphics Seamless Co-simulation environment and the
ARM Software Development Tools (SDT) v2.5 [21]. The
simulated system shown in Figure 6 consists of four ARM9TDMI
cores each of which has a Level one (LI) cache of 64Kbytes. All
four PEs share a global bus. A shared memory of 16 Mbytes of
RAM is connected to the same bus. We assume it takes five cycles
to get the first word from the global memory in Figure 6. A bus
arbiter controls the access of the cache controllers to the memory.
The system (including the SoCDMMU) is clocked at 100MHz.
The SoCDMMU has the size of 41,500 equivalent gates using the
AMI 0.5-micron Logic library [11].

° [. °

: SoCDMMU

. i I

I Global Memory [
Figure 6: Four-PE SoC with SoCDMMU.

I Bus I Arbiter

This SoC is used for a handheld device that can be used for
communication as well as other personal applications (e,g., Video
Player) like the example that is described in [16]. The device also
uses OFDM. Table 5 shows the memory requirements for the
MPEG-2 video player [15] and the OFDM receiver [10]. We
assume that other applications take up 13.9 Mbytes leaving 2.1
Mbytes available for the OFDM receiver or the MPEG player
(depending on which is running). Table 6 compares the execution
time of the raallocO function in cycles to that of the
asc partition_createO and the asc_partition gainO functions that
utilize the SoCDMMU. Table 7 compares the execution time of
thefreeO function in cycles to that of the ascpartition_freeO that
utilizes the SoCDMMU.Table 8 shows the number of cycles
required to free the memory used by the MPEG-2 player and
allocate the memory required by the OFDM receiver when the
switching takes place. From the results, we can see that using the
SoCDMMU yields more than 440% speedup (4.4x as shown in
Table 6). Note that in the fully-shared memory multiprocessor, the
mallocO and free() functions used for the comparison are
optimized for speed for embedded applications; normal malloc()
andfreeO implementations (e.g., gclib) may have larger execution
times. Further, note that the execution time given for mallocO and
free() was done assuming the other applications are not also
requesting memory; if they were, the execution time for mallocO
andfreeO would be longer. Finally, also note that the fully shared
memory system is exactly the same as Figure 6 without the

SoCDMMU (note that the SoCDMMU area is roughly equivalent
to 64KB of DRAM area or 8KB of SRAM area).

Table 5: Required Memory Allocations

MPEG-2 Player
2 Kbytes
500 Kbytes
5 Kb~es
1500 Kbytes
1.5 Kbytes
0.5 Kbytes

OFDM Receiver
34 Kbytes
32 Kbytes
1 Kbytes
1.5 Kbytes
32 Kbytes /
8 Kbytes
32 Kbytes

Table 6: Execution Times of maUocO and the SoCDMMU
allocation.

Execution Time
mallocO 106 cycles
SoCDMMU allocation 28 cycles
Speed up 3.78x

Table 7: Execution Times offreeO and the SoCDMMU
de-allocation.

Execution Time
I free() 83 cycles
I SocDMMU de-allocation 14 cycles
I Speed up 5.9x

Table 8: Execution Times

Using the SOCDMMU Using SDT malloc 0 and free 0
280 cycles 1240 cycles
Speedup 4.4x

6. C O N C L U S I O N

In this paper, we described an approach to handle on-chip
memory allocation between PEs in an SoC. Our approach is based
on hardware SoCDMMU that provides a dynamic, fast way to
allocate/de-allocate the global on-chip memory. Moreover, the
SoCDMMU allocation/de-allocation of the memory blocks is
completely deterministic, which makes it suitable for real-time
SoC applications. We showed how an RTOS might be adapted to
support the SoCDMMU. Also, we showed an example where our
approach gives a 440% overall speedup in application transition
time when compared to a fully shared memory system with the
same memory organization and number of processors.

7 , A C K N O L W L E D G M E N T S
This research is funded by NSF under INT-9973120, CCR-
9984808 and CCR-0082164. We also acknowledge donations
received from Denali, Hewlett-Packard, Intel, LEDA, Mentor
Graphics, Sun and Synopsys.

8 3

8. R E F E R E N C E S
[1] B. Ackland et al., "'A Single-Chip 1.6 Billion 16-b MAC/s

Multiprocessor DSP," IEEE Journal of Solid-State Circuits,
vol. 35, no. 3, pp. 412 -424, March 2000.

[2] C. E. Kozyrakis et al., "Scalable Processors in the Billion-
Transistor Era: IRAM," IEEE Computer, vol. 30, no. 9, pp.
75-78, September 1997.

[3] D. Verkest et al., "CoWare - - A Design Environment for
Heterogeneous Hardware/Software Systems," in Proceedings
of the EURO-DAC '96 European Design Automation
Conference with EURO-VHDL '96, October 1996,
pp. 357-86.

[4] D. Sun, D. M. Blough, and V. J. Mooney, "Atalanta: A New
Multiprocessor RTOS Kernel for System-on-a-Chip
Applications," Georgia Institute of Technology, Atlanta,
Georgia, Technical Report GIT-CC-02-19, 2002,
http://www.cc.gatech.edu/tech_reports/

[5] E. V. Puttkamer, "A simple hardware buddy system memory
allocator," IEEE Transaction on Computers, vol. 24, no. 10,
pp. 953-957, October 1975.

[6] H. Cam et al., "A high-performance hardware-efficient
memory allocation technique and design," International
Conference on Computer Design, October 1999,
pp. 274-276.

[7] J. M. Chang et al., "Introduction to DMMX (Dynamic
Memory Management Extension)", ICCD Workshop on
Hardware Support for Objects and Micro architectures for
Java, October 1999, pp. 11-14.

[8] J. M. Chang and E. F. Gehringer, "A High-Performance
Memory Allocator for Object-Oriented Systems," IEEE
Transactions on Computers, vol. 45, no. 3, pp. 357-366,
March 1996.

[9] J. Labrosse, MicroC/OS-ll, the Real-Time Kernel. Lawrence,
KS: R&D Books, 1998.

[10]K. Ryu, E. Shin and V. Mooney,'"A Comparison of Five
Different Multiprocessor SoC Bus Architectures," in
Proceedings of the EUROMICRO Symposium on Digital
Systems Design, Sept. 2001, pp. 202-209.

[I I]M. A. Shalan and V. Mooney, "A Dynamic Memory
Management Unit for Embedded Real-Time System-on-a-
Chip," International Conference on Compilers, Architecture
and Synthesis for Embedded Systems, November 2000,
pp. 180-186.

[12]M. F. Kornarinski and J. Godoy, "Real-Time and
Embedded HOWTO," http://www.mech.kuleuven.ac.be
/-bruyninc/rthowto/rtHOWTO/memory-management.html.

[13] P. R. Panda et al., "Memory Data Organization for Improved
Cache Performance In Embedded Processor Applications,"
ACM Transactions on Design Automation of Electronic
Systems, vol. 2, no. 4, pp. 384-409, October, 1997.

[14]P. R. Wilson et al., "Dynamic Storage Allocation: A
Survey and Critical Review," International Workshop
on Memory Management, September 1995, pp. 1-78.

[15]P. Soderquist, "Memory Traffic and Data Cache
Behavior of an MPEG-2 Software Decoder,
"Proceedings of the International Conference on
Computer Design (ICCD '97), October 1997.

[16] S. Morgan, "Jini to the rescue," IEEE Spectrum, vol. 37,
no. 4, pp. 44-49, April 2000.

[17] S. Wuytack et al., "Memory Management for
Embedded Network Applications," IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, vol. 18, no. 5, pp. 533, May 1999.

[18]W. Srisa-an, C. D. Lo, and J. M. Chang, "A Hardware
Implementation of Realloc Function," Proceedings of
WVLSI'99 IEEE Annual Workshop on VILSL April 1999,
pp. 106-111.

[19]Y. Li and W.H. Wolf, "Hardware/Software Co-Synthesis
with Memory Hierarchies," IEEE Transaction Computer-
Aided Design of Integrated Circuits and Systems, vol. 18, no.
10, pp. 1405-1417, October 1999.

[20]Virtex-II Pro Platform FPGAs, http://www.xilinx.com/
virtex2pro/.

[21] ARM Software Development Products, http://www.arm.
corn/devtools/soft_dev_tools?OpenDocument.

[22] Proceedings of IEEE, Special Issue on Distributed Shared
Memory Systems, vol. 87, no. 3, pp. 397-'532, March 1999.

[23] eCos Reference Manual, redhat, September 2000.

[24]pSOS System Concept, Integrated Systems, 1996.

[25] Semiconductor Industry Association, "International
Technology Roadmap for Semiconductors (ITRS),'"
November 2001, http://www.semichips.org.

[26]VRTXsa Real-Time Kernel [Programmer's Guide and
Reference], Microtec Research, 1996.

84

