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Abstract

This paper presents a survey on modeling issues of programmable architectures using the machine
description language LISA. Various architectures presenting diverse architectural characteristics
will be presented and the feasibility of automatically generating simulator, assembler, linker and
graphical debugger frontend will be discussed. The presented approach is not limited to a fized
abstraction level — case studies of the Texas Instruments C62x and CHjz, the Analog Devices
ADSP2101 as well as the ARM?7 will show the applicability of the methodology from cycle/phase
to instruction accurate models.

1 Introduction

Designers of today’s telecommunication products such as cellular phones, modems, and network-
ing devices are facing a rapidly growing system complexity. Driven by the advances in semicon-
ductor technology and the need for new applications like digital video broadcast and wireless
broadband communications, the amount of system functionality that is realized on a single chip
is growing enormously. Due to the complexity and time-to-market constraints, the designer’s
productivity has become a vital factor for successful products. For this reason, programmable
architectures like off-the-shelfs digital signal processors (DSPs) or application-specific instruction-
set processors (ASIPs) are increasingly employed into systems and a growing amount of system
functions is implemented in software rather than in hardware. The programmability helps to raise
the designer’s productivity and the flexibility of software allows late design changes and provides
a high grade of re-usability, thus shortening the design cycles.

All embedded processors like Digital Signal Processors (DSP) and micro-controllers (xC) need a
complete tool set consisting of code-generation and simulation tools. However, building simulator,
assembler, linker and graphical debugger frontend manually for new architectures is extremely
error-prone and tedious. The lengthy process of matching the simulator to an abstract model
of the processor architecture might be performed several times within the development of a
programmable System-On-Chip (SOC) design. Moreover, co-simulation of hardware and software
puts specific requirements on the simulation accuracy on the programmable side, while simulator
performance is still an important factor. Hence, processor models on different levels of abstraction
are demanded to provide increased simulation accuracy as well as outstanding fast simulation
performance.

The efforts of writing software development tools can be reduced significantly by using a retar-
getable approach based on a machine description. The Language for Instruction Set Architectures
(LISA) [1] was developed for the automatic generation of 100% consistent development tools. The
LISA language is designed for the formalized description of programmable architectures, their pe-
ripherals, and interfaces. A LISA processor description covers the instruction-set, the behavioral



and the timing model of the underlying hardware, thus providing all essential information for
the generation of a complete set of development tools including compiler, assembler, linker and
simulator. Changes in the hardware are easily transferred to the LISA model and are automati-
cally applied to the generated tools. Moreover, the speed and the functionality of the generated
tools allow usage after the product development has been finished. Therefore there is no need to
rewrite the tools to upgrade them to production quality standard.

2 Related Work

Hardware description languages (HDLs) like VHDL or Verilog are widely used to model and
simulate processors, but mainly with the goal of developing hardware. Using these models for
instruction-level processor simulation has a number of disadvantages. They cover hardware im-
plementation details which are not needed for performance evaluation and software verification.
Moreover, the description of detailed hardware structures has a significant impact on simulation
speed [2]. Another problem is that the extraction of the instruction set is a highly complex,
manual task and instruction set information, like e.g. assembly syntax cannot be obtained from
HDL descriptions.

The machine description language nML was developed at TU Berlin [3] and adopted in several
projects [4]. While retargetable assemblers and disassemblers can be generated for some DSP
processors, it is not possible to produce cycle-accurate simulators for pipelined processor archi-
tectures. The main reason is the simple underlying instruction sequencer which does not support
pipeline operations like e.g. flushes.

These restrictions also apply to the approach of ISDL [5] which is very similar to nML. The
approach based on the language EXPRESSION [6] incorporates particular mechanisms for the
description of memory hierarchies and focuses on retargeting high level language compilers. How-
ever, no results are published that indicate the applicability for cycle-accurate simulation pur-
poses.

The language RADL [7] is derived from earlier work on LISA [8] and extended to support multiple
pipelines. But no results are provided on automatically generated tools based on this language.
To summarize the review, none of the approaches above does support modeling of cycle/phase-
accurate architectures including pipelines or the generation of very fast, production quality tools.

3 Software development tools

The LISA tool-suite is a set of development tools, which is automatically generated from LISA
machine descriptions. It includes assembler, linker, simulation compiler and simulator as well as a
graphical debugger frontend. Providing these tools, a complete software development environment
is available which ranges from the assembly source file up to simulation within a comfortable
graphical debugger frontend. Figure 3.1 shows the components of the LISA tool-suite.

Figure 3.1 Automatic tool-chain generation.
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LISA Simulator and Simulation Compiler The LISA simulator utilizes the technique
of compiled simulation for outstanding simulation performance [9]. Compiled simulators are
application-specific simulators, which are generated out of the target application file by inserting
a translation step before the simulation is run. The translation of the application is performed
by a tool called simulation compiler.

A major task in compiled processor simulation is to determine the temporal order of executed
operations — in particular for pipelined architectures. The simulation compiler utilizes three
scheduling principles to generate the most efficient simulator for the underlying architecture
model: dynamic scheduling, static scheduling, and instruction-based code translation. While the
former two techniques are used for pipelined processor models, the latter is a technique that may
be applied to instruction-set accurate models and cycle accurate models without an instruction
pipeline, resulting in an enormous increase in simulation speed. Principles and implementation
aspects of these simulation techniques are discussed in [10] and [11].

LISA Assembler The LISA assembler translates meaningful text-based instructions into ob-
ject code for the respective programmable architecture. Symbolic names for opcodes, memory-
contents and branch addresses simplify the programming enormously. Beside the processor spe-
cific instruction-set, the LISA assembler provides a set of pseudo-instructions to control the
assembling process (directives). This concerns data initialization, reasonable separation of the
program into sections, handling of symbolic identifiers for numeric values and branch addresses.
The retargetability of the LISA assembler requires support for unrestricted instruction word-sizes
and the handling of complex assembly syntax.

The linking process is controlled by a linker command file which keeps a detailed model of the
target memory environment and an assignment table of the module sections to their respective
target memories.

Graphical debugger frontend The LISA debugger frontend is a generic GUI for the generated
LISA simulator (see figure 3.2). It visualizes the internal state of the simulation process. Both
the C-source code and the disassembly of the application as well as all configured memories and
(pipeline) registers are displayed. All contents can be changed in the frontend at runtime of the
application. The process of the simulator can be controlled by stepping and running through the
application and setting breakpoints.

Figure 3.2 Graphical debugger frontend
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4 Considered Architectures

To examine and analyze the modeling abilities of LISA as well as the feasibility of generating
software development tools, four different architectures have been considered. The architectures
were carefully chosen to cover a broad range of architectural characteristics and are widely used
in the field of digital signal processing (DSP) and micro-controllers (4 C). Moreover, the abstrac-
tion level of the models ranges from phase accuracy (TMS320C62x) to instruction-set accuracy
(ARMY).

e ARMT The ARMYT core is a 32 bit micro-controller of Advanced RISC Machines Ltd. The
realization of a LISA model of the ARM7 uC at instruction-set accuracy took approx. two
weeks. The model comprises 2000 lines of LISA-code and covers the architecture’s core
without thumb-extension.

¢ ADSP2101 The Analog Devices ADSP2101 is a 16 bit fixed-point DSP with 20 bit
instruction-word width. The realization of the LISA model of the ADSP2101 at cycle
accuracy took approx. 3 weeks and comprises 4500 lines of LISA-code. The architecture
does not contain an instruction pipeline.

e TMS320C54x The Texas Instruments TMS320C54x is a high performance 16 bit fixed-
point DSP with a five stage instruction pipeline. The complex model comprises 16000 lines
of LISA-code and covers the complete architecture including peripherals. The realization
of the model at cycle accuracy (including pipeline behavior) took approx. 8 weeks.

e TMS320C62x The Texas Instruments TMS320C62x is a general-purpose fixed-point DSP
based on a very long instruction-word (VLIW) architecture containing an eleven stage
pipeline. Two seperate pipelines are employed — one for fetching the 256bit wide macro-
instruction word and one executing the 32bit micro istructions. The architecture schedules
superscalar by dynamically dispatching between one and eight instructions in parallel into its
execution pipeline. The model comprises 10000 lines of LISA-code and covers the complete
architecture including memory-interface. The realization of the model at phase accuracy
(including pipeline behavior) took approx. 6 weeks.

The characteristics of the LISA description (coding, syntax, behavior) of these architectures is
discussed in the next chapter. Besides, it will be shown that the generated tools are working
accurately and with a satisfactory level of speed.

5 Architectural characteristics

Every architecture has its characteristics particularly with regard to the instruction-set or the
structure. However, even for complex architectures the high modeling efficiency of LISA allows
to realize a model of the chosen architecture in a reasonable amount of time. This section focuses
on the modeling of specific aspects for each presented architecture.

5.1 VLIW

The C62x DSP of Texas Instruments is a VLIW architecture with 256 bit instruction word
width. The instruction word is fetched as a whole from memory and then partitioned in eight
micro instructions which are dispatched into the execution pipeline.

For the modeling of word-sizes greater then the maximum word size of the simulating host, LISA
provides a dedicated type bit which is parameterized by the resources bit-width.



RESOURCE
{

unsigned bit[256] insn_register;

is an excerpt of the resource-declaration of the C6x LISA model showing the declaration of the
instruction register. The bit data type in LISA contains a set of overloaded operators and can
thus be used in the behavior code of the LISA model as any other C-type can. For easy modeling
of signed and unsigned operations on the processor resources, the bit data-type can be attributed
with a signed or unsigned keyword.

Figure 5.1 Coding-root of the TMS320C62x DSP
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Once the VLIW instruction-word is in the dispatcher it is split into eight micro-instructions which
are all of the same type, i.e. are processed by identical decoders in hardware. To prevent writing
separate LISA-code for all eight instructions, they are merged onto the same coding-tree (see
figure 5.1). Example 1 shows the respective LISA-code taken from the C62x model. The logical
OR between the micro-instruction indicates parallel execution.

OPERATION Dispatch IN pipe.DP
{

DECLARE

{

GROUP mico_insn_1, micro_insn_2, micro_insn_3,
micro_insn_4, micro_insn_5, micro_insn_6,
micro_insn_7, micro_insn_8 =
{ decode_instruction };

}
CODING
{
insn_register ==
(micro_insn_1) || (micro_insn_2)
Il (micro_insn_3) || (micro_insn_4)
|l (micro_insn_5) || (micro_insn_6)
Il (micro_insn_7) || (micro_insn_8)
}

Example 1: Formal expression of parallel instructions

5.2 Non-orthogonal Coding Fields

In LISA, non-orthogonal coding is expressed by additional conditional statements that can be used
to structure the processor model [9]. The purpose of these conditional statements is to express
the coding dependencies between different operations. Following the syntax of programming
languages, they have the form of IF-ELSE and SWITCH-CASE statements.

Figure 5.2 displays the coding of an instruction word taken from the C62x LISA model. There
are three instructions add, sub, and mul whose execution is also controlled by the coding field



Figure 5.2 Non-orthogonal coding fields.
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mode which selects between short and long operands and their specific arithmetic. However, the
other instructions 1d and sto use the mode field for a different purpose. LISA code for the add
instruction in the C62x model is shown in example 2.

Here, the IF-THEN-ELSE statement encloses two alternative sections with their respective be-
havioral description of the operation add. This formal representation lets the simulation compiler
distinguish these two cases and generate specific simulation code.

OPERATION Add IN pipe.EX
{
DECLARE
{
REFERENCE mode;
}
IF (mode == short)
{
BEHAVIOR { dest_lo = srcl_lo + src2_lo; }
}
ELSE
{
BEHAVIOR
{
dest_lo = srcl_lo + src2_lo;
carry = dest_lo >> 16;
dest_lo &= OxFFFF;
dest_hi = srcl_hi + src2_hi + carry;
}
¥
}

Example 2: Formal expression of non-orthogonality.

5.3 Multiple instruction words

Frequently, architectures are employed which utilize instructions made up of multiple instruction
words. The TMS320C54x DSP contains instructions that can be composed of either one, two or
even three instruction words. The second/third instruction word mostly carries immediate values
or operands but can also be part of the opcode of the instruction.

Figure 5.3 Multiple instruction-words in the C54x DSP
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The correlation between the different instruction types and the decoders is established in the LISA
coding-root. Figure 5.3 shows the mapping of each instruction type described in the coding root



of the LISA description onto the respective coding/syntax trees. Decode, Fetch and Prefetch
are thereby processor resources carrying the instruction words whereas Typel, Type2 and Type3
represent the three coding trees for the respective instruction type. The corresponding LISA code
is displayed in example 3.

OPERATION Decode IN pipe.DC
{
DECLARE
{
ENUM InsnType = { Typel, Type2, Type3 };
}
SWITCH (InsnType)
{
CASE Typel: /* 16 bit instruction */
{
CODING { Decode == Decode_16 }
}
/* 16 bit instruction with trailing 16 bit address */
CASE Type2:
{
CODING { (Decode == Decode_32)
&% (Fetch == Operand) }
}
/* 32 bit instruction with trailing 16 bit address */
CASE Type3:
{
CODING { (Decode == Decode_48)
&& (Fetch == QOperandl)
&% (Prefetch == Operand2) }
}
}
}

Example 3: Formal expression of multiple insn-words

The branching into the three coding trees is controlled by a SWITCH-CASE statement which is
part of the LISA control structure. The selection of the appropriate coding root is based on an
enumeration type with the effect that all coding trees are searched until the currently processed
instruction word is identified.

5.4 Non-coherent coding elements

Especially in low-power architectures an optimal usage of the instruction word is required. Here,
coherent coding-fields are split into multiple pieces spread over the instruction word. In the
ARMT pC, this is the case for the operand in ALU-instructions.

Figure 5.4 Non-coherent coding in the ARM7 pC

2l et et plalt plat pla 12,

Data_Processing_ALU \
‘00‘ OperandZ‘OpCodﬁetcond‘ Src1 ‘ Dest ‘0perand2

2 s

Operand2
H
. 13 Bits »

The coding of Operand? is distributed over the coding of the operation Data Processing ALU.
Example 4 shows how the merging of the coding tree is modeled in LISA. The distributed coding
element is attributed with the position in the coding of the LISA operation the element is referring
to.



OPERATION Data_Processing_ALU

{
CODING
{
00b Operand2=[12..12] OpCode Setcond
Srcl Dest Operand2=[0..11]
}
}

OPERATION Operand2
{
DECLARE { LABEL value; }
CODING { value=0bx[13] }
}

Example 4: Modeling non-coherent coding in LISA

5.5 Algebraic instruction syntax

Sometimes, architectures programmed primarily in assembly use a C like assembly instruction
syntax to ease programming. The Analog Devices ADSP2101 features such an algebraic
programming syntax. This means that the instruction syntax is not fragmented into a mnemonic
and a list of operands but formulated as an algebraic expression. An example for an algebraic
instruction would be :

ADD Y, X,Z — X=Y+7Z

The LISA control-flow syntax can be used to express the syntax dependency on the coding of the
instruction-word. Example 5 shows an excerpt of the model of the ADSP2101.

Here, depending on the Opcode of the instruction word the respective syntax is chosen via the
SWITCH-CASE control structure.

OPERATION ALU_Instructions

{
DECLARE {
REFERENCE Destination, Xoperand, Yoperand;
GROUP Opcode = { ADD || SUB || AND };
}

CODING { 0011b Opcode }

SWITCH(Opcode) {

CASE ADD:

{ SYNTAX { Destination "=" Xoperand "+" Yoperand } }
CASE SUB:

{ SYNTAX { Destination "=" Xoperand "-" Yoperand 1} }
CASE AND:

{ SYNTAX { Destination "=" Xoperand "&" Yoperand } }
¥

Example 5: Algebraic instruction syntax in LISA

6 Efficiency of generated tools

To evaluate the applicability and efficiency of the generated tools, we compared them to the
commercially available tools provided by the semiconductor vendors. Measurements took place
on a AMD Athlon system with a clock frequency of 800 MHz. The system is equipped with 256
MB of RAM and is part of the networking system. It runs under the operating system Linux,
kernel version 2.2.14. Tool compilation was performed with GNU gcc, version 2.92.



The generation of the complete tool-suite (simulator, assembler, linker and debugger fron-
tend) takes, depending on the complexity of the considered model, between 12 sec (ARM7 uC
instruction-set accurate) and 67 sec (C6x DSP phase accurate).

6.1 Performance of generated simulator

Figures 6.1 and 6.2 show the speed of the generated simulators in instructions per second/cycles
per second respectively. Simulation speed was quantified by running an application on the respec-
tive simulator and counting the number of prcocessed cycles. The simulated application on all
architectures is an ADPCM G.721 (Adaptive Differential Pulse Code Modulation) coder/decoder.

Figure 6.1 Simulation speed of ARM7 and ADSP2101
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As expected, the compiled simulation technique applied by the generated LISA simulators out-
performs the vendor simulators by one to two orders in magnitude.

For the ARM7, ADSP2101 and the Cb4x, static scheduling was applied which is the highest
possible grade of prediction in compiled simulation. Considering an ARM7 pC running at a
frequency of 25 MHz, the software simulator running at 31 MIPS even outperforms the real
hardware. This makes application development suitable before the actual silicon is at hand.
Due to its superscalar instruction dispatching mechanism the simulator for the C62x DSP uses
compiled simulation with dynamic scheduling.

Figure 6.2 Simulation speed of C6x and C54x
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6.2 Performance of generated assembler and linker

The generated assembler and linker are not as time critical as the simulator is. It shall be
mentioned though that the performance (i.e. the number of assembled/linked instructions per
second) of the automatically generated tools is comparable to that of the vendor tools.



7 Conclusion and Future Work

In this paper, we presented a modeling issues for programmable architectures using the machine
description language LISA.

In case studies models were realized and tools successfully generated for the ARM7 uC, the
Analog Devices ADSP2101, the Texas Instruments C62x and the Texas Instruments C54x on
instruction-set/cycle/phase accuracy respectively. Due to the usage of the compiled simulation
principle, the generated simulators run by one to two orders in magnitude faster than the vendor
simulators. Moreover, the generated assembler and linker can compete well in speed with the
vendor tools.

Our future work will focus on modeling further real-life processor architectures. Another issue
is the integration of software simulators into HW /SW co-simulation environments. Furthermore,
the goal of the ongoing language design is to address VHDL-code synthesis for the control-path
and the instruction decoder of the modeled architecture.
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