
Rapid System-Level Performance Evaluation
and Optimization for Application Mapping

onto SoC Architectures
Sumit Mohanty and Viktor K. Prasanna

Dept. of Electrical Engineering
University of Southern California

Los Angeles, CA 90089
{smohanty, prasanna}@usc.edu

Abstract– System-on-Chip (SoC) architectures inte-
grate several heterogeneous components onto a sin-
gle chip. These components provide various capabil-
ities such as dynamic voltage scaling, reconfiguration,
multiple power states, etc. that can be exploited for
performance optimization during application design.
We propose a Generic Model (GenM) which captures
the capabilities of a large class of SoC architectures
and facilitates evaluation and optimization of perfor-
mance during application design. GenM model is
used as an abstraction to identify various well-defined
optimization problems for application mapping onto
SoC architectures. Using GenM, we developed an in-
terpretive simulator, High-level Performance Estima-
tor (HiPerE). It integrates component specific perfor-
mance estimates to rapidly evaluate performance at
the system level. The MILAN framework enables hier-
archical simulation through the integration of HiPerE
and low-level component specific simulators into a uni-
fied environment. Hierarchical simulation facilitates
efficient design space exploration during application
mapping onto SoC architectures.

I. I

System-on-Chip (SoC) architectures integrate sev-
eral heterogeneous components [8] such as gen-
eral purpose processors, reconfigurable logic, DSPs,
ASICs, memory, among others. These components
provide several features such as dynamic voltage
variation, reconfigurability, multiple clock domains,
and multiple implementation alternatives that can
be exploited during the application design process to
achieve optimization [9]. However, these features in-
troduce a multitude of design challenges.
To address these challenges, high-level abstraction

and system-level performance estimation are neces-
sary to evaluate the overall effect of various compo-
nent specific design decisions and also to identify bot-

This work is supported by the DARPA Power Aware Com-
puting and Communication Program under contract F33615-
C-00-1633 monitored by Wright Patterson Air Force Base and
in part by the National Science Foundation under award No.
99000613.

tlenecks and optimization possibilities. System-level
performance estimation and efficient traversal of de-
sign space for SoC architectures are challenging due
to lack of high-level abstraction for SoC architectures,
time-consuming low-level (cycle-accurate or RT-level)
simulations, and lack of standard interface between
different component specific simulators.

Generic Model (GenM) provides an abstraction of
the SoC architectures that identifies the key archi-
tectural features that can be exploited for perfor-
mance optimization. GenM model can be used to
analyze latency and energy during application map-
ping onto SoC architectures. We can identify various
well-defined optimization problems based on GenM
specifically for SoC architectures. The rapid perfor-
mance estimation tool based on GenM, High-level
Performance Estimator (HiPerE), combines compo-
nent specific performance estimates to evaluate per-
formance at the system-level using interpretive sim-
ulation. Given a task graph with N nodes and Q
edges, the complexity of performance evaluation using
HiPerE is θ(N+Q). HiPerE also provides an activity
report that captures the state of each component dur-
ing application execution. In this paper, performance
refers to both latency and energy dissipation.

The work described in this paper is part of the MI-
LAN project. MILAN is a Model based Integrated
simuLAtioN framework for embedded system design
and optimization through integration of various sim-
ulators into a unified environment [1]. Using the
MILAN framework, a designer formally models the
target application and architecture. The information
captured in the models are used to drive various simu-
lators from a single interface. Hierarchical simulation
refers to performing simulation of a task or a set of
tasks at different levels of abstraction and implemen-
tation. Multiple levels of abstraction makes it possi-
ble to control the speed, required modeling effort, and



accuracy of the simulations. In MILAN, hierarchical
simulation is a two-level technique with HiPerE at the
top level and the component specific simulators at the
bottom level.
Hierarchical simulation is exploited to perform effi-

cient design space exploration (DSE) in MILAN. DSE
evaluates a design space (set of designs). In order to
obtain a design space, the designer can either choose
to evaluate all possible mappings (designs) of the ap-
plication onto the architecture or use an optimization
technique initially to identify a small set of candi-
date designs. Once the set of designs to be evaluated
are selected, HiPerE is used to evaluate these designs
and eliminate those that do not meet performance re-
quirements. Later, more detailed simulations (cycle-
accurate, RT-level, etc.) are used to evaluate the de-
signs selected by HiPerE to identify the final design.
This paper is organized as follows. The next section

discusses some related efforts. GenM is described in
Section III. System-level performance estimation us-
ing HiPerE is discussed in Section IV. Section V de-
scribes hierarchical simulation for rapid design evalu-
ation using MILAN. We conclude in Section VI.

II. R W

There have been several efforts to address applica-
tion design and optimization targeting embedded sys-
tems in general and also specific to SoC architectures.
Hybrid System Architecture Model (HySAM) model
was proposed for latency evaluation and optimization
of reconfigurable devices [3]. GenM model extends
HySAM to include a processor supporting DVS and
a memory with different power states. Givargis et al.
proposed a technique for cache and bus power estima-
tion based on sample simulations [5]. In this effort,
low-level simulation at some design points are per-
formed to derive a graph which is used to estimate
performance of all possible designs. This technique
cannot be scaled for heterogeneous SoC architecture
as it is not possible to derive well-behaved functions
based on sample simulation. Sinha et al. presented
power and time estimation based on instruction level
profiling [11]. This technique can only be applied to
the ISA-based processors. There also exists several
cycle-accurate simulators for processors to estimate
performance [2] [10]. However, these simulators are
time consuming and therefore cannot be used to tra-
verse a large design space. Our effort is complemen-
tary as these simulators provide the component spe-
cific performance estimates used by HiPerE and hier-
archical simulation.
There are several efforts for system-level estimation

in the hardware-software codesign community [6] [7].
Integration of various component specific simulators

using the Ptolemy framework was proposed by Lajolo
et al. [7]. For on-chip communication architectures,
an analysis methodology was presented by Lahiri et
al. [6]. These efforts focus only on specific architecture
such as RISC processor with cache and memory. Our
methodology based on GenM model addresses a large
class of SoC architectures.

SPADE is a hierarchical system-level simulation
methodology [8]. SPADE uses trace-driven simula-
tion and look-up tables of pre-computed estimates to
derive system-level estimations. The applications are
modeled using Kahn Process Network. Our method-
ology differs from SPADE in several aspects. Due
to MILAN, our methodology can choose between a
variety of application models to identify the one best-
suited for the target application. In addition to the
application model, we provide an explicit resource
model to capture the capabilities of the target archi-
tecture. This facilitates identification of well-defined
optimization problems. MILAN also provides a uni-
fied environment to integrate various simulators. This
capability enables automatic estimation of perfor-
mance of a task on a specific hardware to update the
initial estimates in order to obtain better system-level
estimates using HiPerE.

III. G M A M
S C A

Fig. 1. Components of the GenM Model

The Generic Model (GenM) models SoC architec-
tures to capture various capabilities that can be ex-
ploited for performance optimization during applica-
tion mapping onto SoC architectures. It consists of
three components: a processor, a reconfigurable logic
(RL), and a memory, all connected through an in-
terconnect (Figure 1). GenM models discrete dy-
namic voltage scaling (DVS) for the processor, power
states for the memory, and reconfiguration for the RL.
GenM model consists of the following parameters:



V : array of operating states of the
processor, [V0 . . . Vv−1], where
V0 represents the idle state

V̂ tij(V̂
e
ij) : time (energy) costs for voltage

variation from Vi to Vj
C : array of operating states of the RL,

[C0 . . . Cc−1], where C0 represents
the idle state

Ĉtij(Ĉ
e
ij) : time (energy) costs for

reconfiguration from Ci to Cj
ePid(e

R
id) : processor (RL) energy dissipation

in the idle state
M : array of memory

states, [M0 . . .Mm−1]
M̂t
ij(M̂

e
ij) : time (energy) costs for changing

memory state from Mi to Mj

αi : memory energy consumption per
time unit in state Mi

η (ζ) : unit data transfer time (energy)
between the processor/RL
and the memory

In order to model application mapping onto SoC
architectures, GenM model needs some additional pa-
rameters. These parameters capture few application
details and provide performance estimates for various
task to computing element mapping and are referred
to as Performance Parameters. These parameters are:

T : set of tasks, T1 . . . Tn
θiin(θ

i
out) : amount of data input (output) to

(from) task Ti from (to) memory
tij(eij) : time (energy) for executing task Ti

on the processor in operating
state Vj , j = 1, . . . , v − 1

t3ij(e3ij) : time (energy) for executing task Ti
on the RL in operating state Cj ,
j = 1, . . . , c− 1

Energy estimates (eij and e3ij) refer to average en-
ergy dissipated by the task evaluated by averaging
the estimates based on a set of input data. We also
assume that when there is no task to execute, the pro-
cessor is in the idle state. The idle state and the other
states of the processor determined by specific operat-
ing voltages are referred to as the operating states of
the processor. Similar assumption holds for the RL.
The idle state of the RL and other states determined
by specific configurations are referred to as the oper-
ating states of RL.

Let S denote the set of all possible system states.
Each system state s, s ∈ S, is represented by a tuple
(Iv(s), Ic(s), Im(s)), where Iv(s), Ic(s), and Im(s)

are integers and represent the operating states of the
processor, RL, and memory respectively. We have
0 ≤ Iv(s) ≤ v−1, 0 ≤ Ic(s) ≤ c−1, and 0 ≤ Im(s) ≤
m−1. Therefore, the total number of distinct states is
vcm. The transition between different system states
incurs certain time and energy costs which depend
on the source and destination states of the transition.
Let qij (rij) denote the energy (time) costs for the sys-
tem state for transition from si to sj . qij is calculated
as V̂ eIv(si),Iv(sj)+Ĉ

e
Ic(si),Ic(sj)

+M̂e
Im(si),Im(sj)

. rij can
also be calculated similarly. In the above formalism,
we have assumed communication between tasks is per-
formed via shared memory. However, this assumption
is a limitation of the model. It is not necessary to de-
fine the problems.
GenM can be used for (a) rapid estimation of per-

formance in terms of energy and latency, (b) develop-
ment of efficient application designs using a high-level
abstraction that ignores specific low-level details of
the target SoC architectures and applications, and (c)
development of optimization techniques for mapping
and scheduling applications onto SoC architecture.
In the following, we provide an example optimiza-

tion problem defined using GenM. This problem can
be solved using dynamic programming [12]. The prob-
lem is to find a mapping of a linear pipeline of tasks to
system states, such that the overall energy consump-
tion of the system is minimized. For the sake of il-
lustration of the model in formulating this problem,
we assume that there is only one memory state, M0,
available and there is only one instance of the pipeline
to be executed at any time.
We now provide a formal definition of the problem

based on the parameters of the GenM model. For a
linear pipeline of tasks, T1, . . . , Tn, let the tasks be
executed in linear order i.e. task Ti must be executed
before Ti+1, i = 1, 2, . . . , n − 1. Therefore, at any
time, only one task can be executed by the system,
either on the processor or RL. Consequently, for any
system state s, either Iv(s) = 0 or Ic(s) = 0, but
not both. Thus, the total number of possible system
states in this particular problem is v + c − 2. For a
given mapping, let xi denote the system state in which
task Ti is executed. Let Ei,xi denote the total energy
consumption for executing Ti. Ei,xi is the sum of the
energy consumed by:
1. data input from memory to the computing element
where Ti is mapped
2. execution of Ti on the processor or RL
3. the processor or RL in the idle state
4. the memory during the execution of Ti
5. data movement to memory to store the output of
Ti
The above five components can be calculated as



follows:
1. θiin · ζ
2. ei,Iv(xi) if I

v(xi) 9= 0, or e3i,Ic(xi), otherwise
3. ti,Iv(xi) ·eRid if Iv(xi) 9= 0, or t3i,Ic(xi) ·ePid, otherwise
4. ti,Iv(xi) ·α0 if Iv(xi) 9= 0, or t3i,Ic(xi) ·α0, otherwise
5. θiout · ζ
Let x0 denote the initial system state. The overall

system energy consumption is evaluated as:

Etotal =
n

i=1
(Ei,xi + qxi−1,xi)

Because transitions between system states consume
certain amount of time and energy that depend on the
specific source and destination states, a simple greedy
heuristic does not guarantee an optimal solution. On
the contrary, dynamic programming can be used to
find the optimal mapping in O((v + c− 2)2 · n) time.
Several interesting extensions to the above problem

can be defined using GenM for mapping applications
onto SoC architectures [12]:

• The total execution time of the pipeline is to be
minimized instead of the overall energy consumption
of the system.

• The overall system energy consumption is to
be minimized while the total execution time of the
pipeline is subject to some pre-specified upper-bound.

• Multiple instances of the pipeline can be con-
currently executed by the system. (This results in
parallel execution of tasks on both the processor and
RL.)
In the next section, we describe how we have ex-

ploited the GenM model to design the High-level Per-
formance Estimator (HiPerE).

IV. S -L P E

As discussed earlier, one of the major challenges in
system-level performance estimation is lack of stan-
dard interface among the component specific simula-
tors which makes it difficult to integrates the simula-
tors to simulate a SoC architecture. HiPerE addresses
this issue by combining component specific perfor-
mance estimates through interpretive simulation to
derive system-level performance values.
The GenM model describing the target SoC archi-

tecture is the primary input to HiPerE. In addition,
the performance parameters are also provided as an
input. In our methodology, various optimizations may
be performed before invoking HiPerE. In case an op-
timization is performed, a subset of designs identi-
fied by the optimization technique are evaluated by
HiPerE. A designer can also choose not to perform
any optimization and apply a brute force technique
to evaluate each possible design exploiting the rapid
estimation capability of HiPerE.

For performance estimation of a given design,
HiPerE needs the mapping (specified by the design).
Mapping identifies the computing element a task is
mapped to and provides the operating voltage (or
configuration) if the element is the processor (or the
RL). HiPerE uses the mapping information to iden-
tify the appropriate component specific estimates (tij
or t3ij for latency and eij or e

3
ij for energy). The de-

signer provides initial values for all the performance
parameters. Later, component specific performance
estimation is used to estimate more accurate values
for tij , t3ij , eij , and e

3
ij . In addition to these inputs,

the application task graph which captures dependency
among tasks is also provided. The task graph pro-
vides the order of execution (using topological sort)
for the tasks. For the memory component, the de-
signer provides a schedule of power states. Currently,
we support change of power state for the memory only
at the task boundaries.
The output of HiPerE is system-level energy and

latency estimates. Along with these estimations,
HiPerE also generates an activity report for each com-
ponent in the target architecture. An activity report
identifies various voltage settings, configurations, and
power states for the processor, RL, and the memory
component respectively during the course of execu-
tion. It also provides the duration of idle time (if
any) between execution of tasks for the processor and
the reconfigurable component.

A. Component Specific Performance Estimation

Fig. 2. Component Specific Performance Estimation using
MILAN

Component specific performance estimation refers
to the evaluation of performance parameters tij , eij ,
t3ij ,and e

3
ij specific to a task in a particular voltage

setting or configuration. There are several techniques
to estimate component specific performance values
such as Complexity Analysis, Graph Interpolation [5],
Trace Analysis [11] [8], and Cycle-accurate Simulation
[2] [10]. While complexity analysis does not require
a simulator, all the other techniques use a simulator



based on an architecture model at an appropriate level
of abstraction.
We exploit the isolated simulation feature of the

MILAN framework to perform component specific
simulation. This feature refers to the ability to sim-
ulate a single application task on a specific hardware
component. The resulting performance estimates are
used to automatically update the performance param-
eters. The MILAN framework features an application
model, a resource model, and a mapping model [9].
The resource model consists of all the parameters of
the GenM model and various additional parameters
that are used to drive simulators. The application
model captures the application details as a data flow
graph. Performance parameters, Ti, θ

i
in, and θiout are

also part of the application model. Other performance
parameters are part of the mapping model. The de-
signer also provides implementation of each task, for
example, in C or Java.
Once a task has been selected for isolated simula-

tion, based on the computing element it is mapped
to, MILAN generates an appropriate simulator-
configuration file and a source file (in a high-level lan-
guage) that implements the task. While modeling the
application, the designer provides source and destina-
tion scripts for each task that generate input for the
task and consume output from the task. These two
scripts are used by MILAN during the generation of
a program that implements the task. For example,
if FFT is a task mapped onto a MIPS processor and
SimpleScalar is the chosen simulator, MILAN gener-
ates a C code implementing FFT and a SimpleScalar
configuration file. After the simulation is performed,
the performance estimate is provided as a feedback
to MILAN which is used to update the initial perfor-
mance estimates provided by the designer.
Component specific performance estimation is used

to improve the accuracy of the initial estimates pro-
vided in the GenM model. We assume that when a
designer provides a GenM model for a specific prob-
lem the performance estimates (initial values) are also
provided.
Before moving to system-level performance estima-

tion, we derive composite performance estimate for
each task. Composite performance estimate includes
all the set-up cost for task execution including the cost
of execution. This estimate includes cost for execu-
tion, data access, memory activation, and reconfigu-
ration or voltage variation. For example, assume that
task Ti is mapped onto the RL with configuration Cj
and Ck be the previous configuration. If we assume
that no memory power state transition occurred, the
composite latency performance (ΓCi) can be evalu-
ated as:

ΓCi = t
3
ij + θiin + θiout · η + Ĉtjk

Similar composite estimates (ECi) is derived for
energy dissipation of task Ti. In the following subsec-
tion, the component specific performance estimate of
a task refers to the composite performance estimate
for that task.

B. System-Level Performance Estimation

Fig. 3. A Sample Task Graph

We employ the following technique to evaluate
system-level energy and latency and to generate the
activity report. Figure 3 shows a sample task graph
with tasks mapped on to either the processor or the
RL. Our technique is as follows:
Let MPi denote the mapping (given as input) for

task Ti, where MPi = 1 when Ti is mapped on the
processor, and MPi = 2 when Ti is mapped on the
RL. MPi can be obtained using the techniques in
[12]. However,MPi is provided as an input to system-
level performance estimation. Let α denote the list of
tasks, {Tπ1 , Tπ2 , · · · , Tπn} obtained by a topological
sort of the original task graph. Let A1 and A2 denote
the earliest available time for executing a task on the
processor and RL, respectively. InitiallyA1 = A2 = 0.
Let tπi denote the completion time of task Tπi . In the
following algorithm, the earliest start time is calcu-
lated for each task without violating the dependency
information provided in the application task graph. It
is also assumed that a non-preemptive scheduling pol-
icy is used by each computing element. The pseudo-
code for the algorithm is provided below.

for k ← 1 to n do
Let β be the set of immediate predecessors of Tπk
The earliest start time for Tπk is

τ = max{maxTi∈β{ti}, AMPπk
}

Set tπk = τ + ΓCπk and AMPπk
= tπk

As a result, max{A1,A2} is the system-level la-
tency. The idle time of the processor is calculated
as IT1 = A1 − MPi=1

ΓCi. Therefore, the idle en-
ergy dissipation of the processor is IE1 = IT1 · ePid.
Similarly, the idle time and energy dissipation of the



RL, IT2 and IE2, are also calculated. Total energy
dissipation is the sum of individual component spe-
cific energy dissipation and energy dissipation when
the component is in the idle state. Thus total energy
is evaluated as:

n

i=1

ECi + IE1 + IE2

Clearly, the complexity of the above method is
Θ(N +Q), where N and Q are the numbers of nodes
and edges in the task graph, respectively.
The activity report is generated based on the pro-

cessed task graph with the mapping information and
the time of completion for each task. The designer
can exploit the activity report to identify bottlenecks
and optimization opportunities. One possible opti-
mization is to take advantage of the idle time and use
a lower DVS setting to execute a task slowly in order
to save energy.
HiPerE is implemented using Java and can be run

on both Unix and Windows platform. HiPerE is also
integrated into the MILAN framework. Therefore, it
is possible to automatically generate input for HiPerE
and execute it to obtain the performance estimates.
We are currently developing the feedback mechanism
to automatically store the HiPerE output in the MI-
LAN framework.

C. Illustrative Example
In order to illustrate the use of HiPerE, we mod-

eled a signal processing application (AzimuthEleva-
tion) that evaluates the azimuth and elevation of an
object within an image with respect to a reference co-
ordinate (Figure 4). The application consists of two
major components, Azimuth and Elevation. Azimuth
consists of 6 tasks (shown in Figure 4). Elevation has
the same task graph as Azimuth but differs only in
the type of BandPassFilters used. In these examples,
we show the use of component specific estimations to
derive system-level estimates, the accuracy of HiPerE
estimation, and the effect of hierarchical simulation.
Details of hierarchical simulation will be discussed in
the next section.
We conducted experiments with two different archi-

tectures, a MIPS processor operating at a frequency of
600MHz and a StrongARM (SA) processor operating
at three different frequencies 206, 162, and 59 MHz.
We considered four different designs. The schedule
was the same for all designs and was evaluated using
topological sort. The four different mappings were
the complete system mapped onto a MIPS operat-
ing at 600 MHz or a SA operating at 206, 162, or
59 MHz. The energy and latency estimates obtained

Fig. 4. Application Task Graph

using HiPerE were compared with the complete appli-
cation simulation using low-level simulators. For low-
level simulation we used SimpleScalar [10] andWattch
[2] for time and energy simulation for MIPS proces-
sor and JouleTrack [11] for simulation of the SA-1100
(StrongARM) processor.
HiPerE was given two sets of values for each map-

ping. For the values in the RE (Rough Estimates)
columns for SA, we simulated a task at various op-
erating frequency using JouleTrack and derived an
equation that evaluates energy (or time) as a func-
tion of frequency. We used these equation to ob-
tain estimates for a task at different frequencies. A
similar technique has been used in [5]. We used
a single equation to characterize all the four band
pass filters used in the application. These equa-
tions are Energy = 0.0227f2 − 2.7422f + 312.93 and
Time = 0.2695f2 − 105f + 12102 where f is the op-
erating frequency. Similar technique was also used
for SimpleScalar simulation. On the other hand, the
values in the MILAN columns were obtained using
the MILAN isolated simulation technique applied for
each task. We describe part of the GenM model for
mapping of AzimuthElevation in Table I. This table
lists performance estimates (tij) for latency using the
rough estimation technique. These values were later
modified using the isolated simulation technique. The
complete GenM model consists of estimates for la-
tency and energy for all tasks for all the four different
mappings.

TABLE I

P G M A E

l a t e n c y va lu e s M IP S SA SA SA

in m i l i s e c o n d s @ 6 0 0 @ 2 0 6 @ 1 6 2 @ 5 9

B an dP a s sF il t e r 0 .2 2 2 0 9 5 2 3 1 2 6 8 9 8

T h re sh o ld 0 .0 2 9 4 1 2 0 3 3 0

L ow P a s sF il t e r 0 .4 4 2 7 4 8 3 0 3 0 9 0 4 0

S ig n a lG en e ra t o r 0 .6 3 5 6 1 3 6 1 8 8 1 8 3 9 3

Table II shows the estimation when the application



is executed on a MIPS processor. As expected, the es-
timation using the component specific simulation re-
sults in higher accuracy (error < 3%). However, the
error is high (> 20%) when the estimates based on
rough calculations are used.

TABLE II

C H P E S S

W

M IP S C om p le t e E s t im a t io n u s in g H iP e rE

P r o c e s s o r L ow - le v e l R E E r ro r M IL AN E r ro r

S im u la t io n % %
T im e (µs) 4 1 2 5 2 0 2 6 4 2 4 2 .9

E n e rg y (µJ) 1 7 8 2 0 2 2 4 0 8 2 5 1 8 3 5 4 3

The results for the StrongARM processor are more
interesting. We conducted experiments for three dif-
ferent frequency of operations. Using component spe-
cific simulation of each individual task the error is less
than 7% for all the 6 estimates when compared with
the value estimated through low-level simulations of
the complete application. However, when we com-
pared the HiPerE result through the use of rough-
estimates the error varies from −3.2% to 11%.

TABLE III

C H P E J T

S t ro n gA RM C om p le t e E s t im a t io n u s in g H iP e rE

P r o c e s s o r L ow - l e v e l R E E rr o r M ILA N E rr o r

S im u la t io n % %

@ 20 6 (µs) 1 8 2 2 8 2 0 2 4 7 1 1 1 9 3 5 0 6 .1

@ 20 6 (µJ) 6 4 3 2 6 8 0 7 5 .8 6 8 6 8 6 .7

@ 1 6 2 (µs) 2 3 1 7 9 2 2 4 6 2 - 3 .2 2 4 6 0 9 5 .8

@ 1 6 2 (µJ) 4 0 4 6 4 4 3 7 9 .6 4 3 2 1 6 .8

@ 5 9 (µs) 6 3 6 4 6 6 6 7 2 1 4 .6 6 7 5 7 8 5 .8

@ 5 9 (µJ) 2 0 1 5 2 1 9 9 9 .1 2 1 5 2 6 .8

V. A O MILAN

MILAN is a Model based Integrated simuLAtioN
framework for embedded system design and optimiza-
tion [1]. The designer formally models the target ap-
plication, underlying hardware, and constraints (la-
tency, throughput, energy, etc.) through a graphical
interface provided by MILAN. The model informa-
tion is translated into suitable input formats required
by the integrated simulators. Thus, MILAN has the
capability to drive multiple simulators with different
input/output formats from a single system specifica-
tion. Model interpreters are used to translate the
models for use in the system’s execution environment.

Fig. 5. Hierarchical Simulation for DSE in MILAN

Hierarchical simulation is used to efficiently evalu-
ate a design space. A design space represents a set
of designs enumerated by different values of parame-
ters such as configuration, operating voltage, choice of
implementation that are available in a typical SoC ar-
chitecture. Evaluation of a design space (specially the
large ones) requires efficient traversal of the space. Hi-
erarchical simulation refers to performing simulation
at multiple abstraction levels that makes it possible to
control the speed, required modeling effort, and accu-
racy of the simulation results. Hierarchical simulation
exploits the ability of HiPerE to provide quick system-
level performance estimates. HiPerE constitutes the
top level of hierarchical simulation (Figure 5). In MI-
LAN, hierarchical simulation consists of two levels.
The bottom level consists of all the component spe-
cific simulators. There are several simulators available
for individual components (processor, reconfigurable
logic, and memory) at different levels of abstraction.
These simulators provide a trade-off between speed
an accuracy. During DSE, the designs are evaluated
against the performance constraints provided by the
designer. DSE based on hierarchical simulation is as
follows:
• The designer models (in a graphical interface) the
application and the target architecture using the ap-
plication, resource, and mapping model (available
in MILAN). These models capture a design space
enumerating all possible designs. Initially, the de-
signer provides a rough estimate of various param-
eters (specifically performance values tij , t3ij, eij , and
e3ij) described in the GenM model.
• The designer uses one or more optimization tech-
nique(s) and identifies a set of designs as the output
of the optimization. Let these designs be the initial
set of designs.
or
The designer chooses to use a brute force method

and uses all possible designs as the initial set of de-
signs.



• HiPerE provides an initial system-level performance
estimate based on the initial values of component spe-
cific performance estimates and the activity reports
for each design in the initial set. These results are
used to select a set of candidate designs from the de-
sign space based on the performance constraints.
• The designer can choose to perform component spe-
cific estimation for some tasks in order to obtain more
accurate estimates and execute HiPerE again. This
results in more accurate estimation of system-level
performance which can be used to refine the initial
selection by HiPerE.
• In the final step, the designer identifies simulators
with appropriate speed and accuracy to evaluate the
designs selected by HiPerE. In case there is no single
simulator for the complete SoC architecture, HiPerE
can be used to integrate the results from individual
simulators. In hierarchical simulation, the final step
uses the most accurate simulators available and iden-
tifies the final design based on the simulation result
and performance constraints.
An illustrative example of hierarchical simulation

is shown in section IV.C. The RE columns in Ta-
bles III and II are based on offline estimates for the
tasks in AzimuthElevation application. Error in the
estimates by HiPerE is between 3.2− 11% for Stron-
gARM and > 20% for MIPS processor. The values in
the MILAN column are the result of component spe-
cific performance estimation for each task. Therefore
the accuracy of estimates using HiPerE goes up for
StrongARM (error ±7%) and MIPS processor (error
+3%). The comparison of both these estimates are
with the result of low-level simulation of the complete
task using SimpleScalar and JouleTrack.

VI. C

We presented a high-level abstraction of SoC archi-
tectures, GenM model, and rapid system-level perfor-
mance estimation based on GenM. HiPerE is a high-
level interpreter which is used for design space explo-
ration in MILAN using hierarchical simulation suit-
able for efficient application mapping onto SoC archi-
tectures. The GenM model provides abstraction to
derive well-defined optimization problems.
Rapid performance estimation at system-level has

wide range of applications. We provided a hierar-
chical approach to DSE by initially using DESERT,
an ordered binary decision diagrams based symbolic
search tool, to rapidly prune the design space, fol-
lowed by the use of HiPerE, and finally by the use of
low-level simulators to select the final design [9]. We
are also investigating detailed modeling of FPGA for
energy efficient algorithm design and optimization to
compliment the effort (application optimization) dis-

cussed in this paper. In this effort, we propose to
generate parameterized design with performance as a
function of the design parameters [4]. Such a design
will be used for application mapping onto SoC archi-
tectures.
Acknowledgement: We would like to thank Yang
Yu and Jingzhao Ou for their valuable input in defin-
ing the GenM model and identification of optimiza-
tion problems based on the GenM model.

R
[1] Agrawal A., Bakshi A., Davis J., Eames B., Ledeczi

A., Mohanty S., Mathur V., Neema S., Nordstrom G.,
Prasanna V., Raghavendra C., Singh M., “MILAN: A
Model Based Integrated Simulation for Design of Embed-
ded Systems," Language Compilers and Tools for Embed-
ded Systems, 2001.

[2] Brooks D., Tiwari V., and Martonosi M., “Wattch: A
framework for architectural-level power analysis and opti-
mizations," 27th Intl. Symposium on Computer Architec-
ture, 2000.

[3] Bondalapati K. and Prasanna V. K., “DRIVE: An In-
terpretive Simulation and Visualization Environment for
Dynamically Reconfigurable Systems," Intl. Workshop on
Field Programmable Logic and Applications, 1999.

[4] Choi S., Mohanty S., Jang J., and Prasanna V. K.,
"Domain-Specific Modeling for Rapid System-Level En-
ergy Estimation of Reconfigurable Architectures," Intl.
Conf. on Engineering of Reconfigurable Systems and Al-
gorithms, 2002.

[5] Givargis T. D., Vahid F., and Henkel J., “Evaluating
Power Consumption of Parameterized Cache and Bus Ar-
chitectures in System-on-a-chip Designs," IEEE Transac-
tions on Very Large Scale Integration Systems, August
2001.

[6] Lahiri K., Raghunathan A., and Dey S., “System-level
Performance Analysis for Designing On-Chip Communi-
cation Architectures,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, June
2001.

[7] Lajolo M., Raghunathan A., Dey S., and Lavagno L., “Effi-
cient Power Co-estimation Techniques for System-on-Chip
Design," Design, Automation & Test in Europe, 2000.

[8] Lieverse P., Wolf P., Deprettere E., and Vissers K., “A
Methodology for Architecture Exploration of Heteroge-
neous Signal Processing Systems," Journal of VLSI Sig-
nal Processing for Signal, Image and Video Technology,
November 2001.

[9] Mohanty S., Prasanna V. K., Neema S., and Davis
J., "Rapid Design Space Exploration of Heterogeneous
Embedded Systems using Symbolic Search and Multi-
Granular Simulation," Language Compilers and Tools for
Embedded Systems, 2002.

[10] SimpleScalar, http://www.simplescalar.com.
[11] Sinha A. and Chandrakasan A. P., “JouleTrack-A Web

Based Tool For Software Energy Profiling,” Design Au-
tomation Conference, 2001.

[12] Yu Y., Ou J., Mohanty S., and Prasanna V. K., "En-
ergy Efficient Mapping of Applications onto SoC Architec-
tures," in preparation, Technical Report, Dept. of Electri-
cal Engg., University of Southern California, 2002.


