
Constraint-Driven Communication Synthesis

Alessandro Pinto Luca P. Carloni Alberto L. Sangiovanni-Vincentelli

Department of Electrical Engineering and Computer Science
University of California at Berkeley, Berkeley, CA 94720-1772

E-mail: {apinto,lcarloni,alberto}@ic.eecs.berkeley.edu

15th March 2002

Abstract

Constraint-driven Communication Synthesis enables the automatic design of the communication architecture of a complex system
from a library of pre-defined Intellectual Property (IP) components. The key communication parameters that govern all the point-to-
point interactions among system modules are captured as a set ofarc constraintsin thecommunication constraint graph. Similarly, the
communication features offered by each of the components available in the IP communication library are captured as a set offeature
resourcestogether with its cost figures. Then, every communication architecture that can be built using the available components while
satisfying all constraints is implicitly considered (as animplementation graphmatching the constraint graph) to derive the optimum
design solution with respect to the desired cost figure. The corresponding constrained optimization problem is efficiently solved by a
novel algorithm that is presented here together with its rigorous theoretical foundations.

1 Introduction

In this work we propose a novel approach to design the communication architecture for a system of computational modules whose
interaction is specified from an abstract point of view as a collection of communication requirements on a set of point-to-point uni-
directional “virtual” channels. By abstracting away the specific functionality of each module, we can focus on exploring the various
communication topologies that can be built composing a set of library elements that include “passive elements” (links) as well as active
ones (repeaters, switches), each of them coming with a fixed cost function that captures an application-specific optimality criterion. The
proposed approach lies on top of a mathematical model that allows us to fully separate computational issues from communication ones.
While each computational module acts on the data streams that travel within the system (reading from input channels and writing new
data onto the output channels according to its functionality) the communication elements limit themselves to transfer the data between
two points (the links), two receive and re-transmit the same data (repeaters) or to route in the proper direction (the switches). This clear
task division allows us to focus on the complete exploration of all the possible communication architecture topologies that can be built
composing these primitive building blocks.

In fact, we limit ourselves to three main composition types to physically implement the virtual channels: the segmentation of
long channels by inserting repeaters between shorter links, the duplication of bandwitdh-challenged channels by adding extra parallel
links together with a pair of mux/demux switches, and the merging of distinct channels (which generally involves segmentation and
duplication). Different from previous approaches to the problem of communication synthesis, we rely on the definition of a fine-
grain library whose elements are combined to derive a communication topology that tightly match the system structure. The proposed
algorithm discards all the sub-optimal local solutions, while generating a core set of candidate channel implementations from which it
picks the optimum-cost subset based on the library cost functions. By composing this subset the algorithm returns the detailed topology
of the final optimum-cost architecture that is guaranteed to satisfy all the original requirements.

1.1 Related Work

Among the several releted papers published in recent years, the authors of [4] split the development of the communication architec-
ture in two steps: channel binding and channel mapping. The former binds virtual communication units to high-level communication
channels, while the latter associates to each unit a tree of alternative physical implementations from a library. Then a depth-first search
strategy is used to derive an optimal solution. In [8] and [9] the design of the communication architecture is done with an exploration of
different solutions validated by a fast performance simulation that is based on a detailed characterization of the library components The
focus of [13] is on interface synthesis among processing elements that communicate on a bus-based architecture. The authors of [11]
assume that the network topology is given and find an efficient physical implementation that allows to achieve very high performance by

1

C

u

v

1

1 u

v

u

v

u

v

u
v

2

2

3

3

4

4

5

5

A

B

Figure 1: Abstract model of communication requirements.

sending control signals and deadlines on the delivery of the message in advance to the corresponding data. The approach of [2] is similar
to the one of the present work altough specialized to ATM networks: the problem is to select the topology of a network composed of
links specified in a library with their speed and cost. Different from our approach this paper assumes that the location of the intermediate
communication nodes is fixed and the optimization is limited to link selection.

2 Communication Constraint Graphs

The abstract model to specify a communication system is represented in Figure 1 and consists of a set of computational modules
communicating through point-to-point unidirectional communication “virtual” channels that are connected to the modules by means
of input/output ports. A module may communicate with another module through multiple unidirectional channels (in both directions).
For each entering (leaving) channel connected to the module there is a corresponding dedicated input (output) port. Communication
requirements are specified for each channel as a set of two parameters: the distance to be covered and the required bandwidth. Our
intent is to use this model as a basic common starting point to define the communication specifications of various kinds of systems,
such as a “System-on-Chip”, a multi-chip multi-processor system, or a local area network (LAN). Naturally, the basic model will be
appropriately extended/refined for each particular application. For instance, in case of a “System-on-Chip”, a channel could represent
the set of wires implementing the address bus that a processor uses to access a cache memory and a certain required channel bandwidth
could be specified in gigabyte per second. Furthermore, for each port of every computational module on the chip a certain location could
be specified, thus making it possible to compute the Manhattan distance between any two communicating ports. On the other hand, if
we are studying how to implement a LAN and we want to evaluate whether to realize it as a fiber-optic network or a wireless network,
(or a combination of the two), the set of channels could just capture all the specified links among the clients and the servers. Here the
Euclidean distance among all these components could be sufficient, while for each channel, the bandwidth is usually specified in gigabit
per second.

Independently from the specific application, we follow the principle of orthogonalization of concerns [1, 7] and we uniquely derive
from the network acommunication constraint graphthat allows us to focus on the design of the communication architecture while disre-
garding the functionality of each computational module in the system. Working with the constraint graph, we define theconstraint-driven
communication synthesis problemas the task of finding the communication architecture which satisfies all the constraints specified as
communication requirements on the channels, while minimizing a predefined cost function that captures an optimality criterion which
must be defined for the specific application.

Definition 2.1 A communication constraint graph, or simplyconstraint graph, G = G(V,A) is a directed graph, where each vertex v
is associated to a port of computational module of the system and each directed arc a (also called, simply,constraint arc) represents
a point-to-point communication channel between two modules. A position p(v) is assigned to each vertex v∈ V, while the following
quantities are associated to each directed arc a= (u,v) and referred to asarc properties:

• d(a) : arc length(or, distance) between vertex u and vertex v.

• b(a) : communication bandwidth on the constrained arc a.

The right-end side of Figure 1 illustrates the communication constraint graph that is derived from the network on the left-end side. The
previous definition doesn’t specify whether the position of the vertices should be considered on the plane or in space, nor which type of
distance is used to compute the arc length. However, for all arcsa = (u,v) in the graph, the values ofd(a) must be consistent with the
positionsp(u) andp(v). For instance, in the case of a “System-on-Chip”, the position of vertexv (corresponding to a module port) will
be given by its coordinatesp(v) = (xv,yv) and the length of the arca = (u,v) may be computed using the Manhattan distance between
the coordinates of its two nodesa = |xu−xv|+ |yu−yv|. In the sequel, we will rely on the notion of geometric norm||p(u)− p(v)|| to
identify the generic distance between two verticesu,v∈ G .

2

The set of all arc properties (lengths and bandwidths) represent the set of design constraints that need to be satisfied while deriving a
communication architecture that implements all point-to-point communication channels of the system. As discussed in the introduction,
we assume that this communication architecture is realized by putting together elements taken from a communication library. In
particular, the library may contain several kinds of communication links, repeaters, and switches. For instance, a communication link
guarantees that a certain flow of information can be transferred with up to a specified bandwidth between two ports as long as they lie
within a specified distance. Examples of communication links are optical fiber connections, wireless links, or metal lines on a chip that
can sustain up to a certain bandwidth given a certain distance. A repeater is used to connect to links (that are able to sustain a certain
bandwidth) to cover a distance that they would not to be able to cover stand-alone. A switch, while being able to act as a repeater,
enables the connection of multiple links that share a specified bandwidth. A multiplexer is a switch that takes multiple incoming links
and “merges” them into one outgoing link whose bandwidth is larger than the sum of the incoming one. A de-multiplexer does the
inverse function. In the sequel we define more formally the notion of communication library and we show how putting together these
basic elements and defining a few simple operation to combine them we are able to build a rich set of heterogeneous communication
architectures having various topologies and bandwidth characteristics.

Definition 2.2 A communication libraryL = L∪N is a collection of communication links and communication nodes. Each link l∈ L
in the library is characterized by a set oflink properties:

• d(l) : the link length(or, distance) corresponds to the length of the longest communication channel that can be realized by this
link.

• b(l) : the linkbandwidthcorresponds to the bandwidth of the fastest communication channel that can be realized by this link.

• c(l) : the link cost is a figure (the lower the better) defined with respect to the other links in the library based on an optimality
criterion that may vary with the type of application.

Also, each communication node n∈ L has a cost c(n).

The realization of a communication architecture that satisfies the requirements specified by a constraint graph can be modeled as a
set of graph transformations (including the addition of new arcs and vertices). This leads us to define a new graph, called implementation
graph whose set of vertices is an extension of the set of vertices of the constraint graph. In particular, each vertex in the implementation
graph is either a “computational vertex” (corresponding to a vertex in the original constraint, i.e. a port of a computational module of
the original system) or a newly added “communication vertex”, corresponding to an instance of a communication node from the library.
Also, every arc in the graph is mapped to a library link.

Definition 2.3 A path q= (v1,a1,v2,a2, . . . ,vQ−1,aQ−1,vQ) of a graph G= G(V,A) is an alternating sequence of distinct vertices and
arcs in G, with V(q,G) and A(q,G) denoting respectively the set of vertices and arcs touched by q. Furthermore, we define thesub-path
of p up to vertex vj ∈V(q,G) as sub(q,v j) = (v1,a1,v2,a2, . . . ,a j−1,v j). As for an arc we can define the followingpath properties:

• (length): d(q) = ∑Q−1
i=0 d(ai).

• (bandwidth): b(q) = min(i=0,...,Q−1)(b(ai)).

• (cost): c(q) = ∑Q−1
i=0 c(ai).

wherec(ai) denotes the cost of an arc as it specified in the following definition.

Definition 2.4 Given a constraint graphG = G(V,A) and a communication libraryL = L∪N, an implementation graphG ′(G ,L) =
G(V ′∪N′,A′) is a directed (possibly multi-)graph s.t.:

• for each vertex in V there is a corresponding vertex in V′ and vice versa (and they have the same positions), i.e. there is a bijective
mapping functionχ : V→V ′ s.t.∀v∈V,∃v′ ∈V ′(v′ = χ(v)∧v = χ−1(v′)∧ p(v) = p(v′)).

• for each vertex in N′ there is a corresponding communication node in N, i.e. there is a surjective mapping functionψ : N′→ N
s.t.∀n′ ∈ N′,∃n∈ N(n = ψ(n′)).

• for each arc in A′ there is a corresponding communication link in L and they share the values of their properties, i.e. there is a
surjective mapping functionφ : A′→ L s.t.∀a′ ∈ A′,∃l ∈ L(l = φ(a′)∧d(a′) = d(l)∧b(a′) = b(l)∧c(a′) = c(l).

• for each arc a= (u,v) in the constraint graph there is a set of pathsP (a) in the implementation graph connectingχ(u) to χ(v)
without passing through any other computational vertex (but only, possibly, through communication vertices) that together satisfy
the bandwidth constraint b(a) as the sum of the bandwidth b(q) of each path q∈ P . Formally,∀a = (u,v) ∈ G ,∃P (a) ∈ G ′ s.t.
∀q = (n1, . . . ,nQ) ∈ P :

1. n1 = χ(u)∧nQ = χ(v)∧∀m∈ [2,Q−1](nm∈ N′).

3

Duplication+Segmentation

a=(10,30)

L

l=(10,10)

n1
n2a=(20,30)

Segmentation

Figure 2: Examples of arc segmentation and duplication.

2. b(a)≤ ∑q∈P b(q).

The set of pathsP (a) is called theconstraint arc implementation(or, simply,arc implementation) and its cost is C(P (a)) =
∑q∈P c(q).

Definition 2.5 Thecostof an implementation graphG ′ is defined as1:

C(G ′) = ∑
n′∈N′

c(n′)+ ∑
a′∈A′

c(a′) (1)

where c(n′) = c(ψ(n′)) and c(n′) are as of definition 2.4.

Generally, for a given library there are many possible implementation graphs that satisfy the requirements expressed by the constraint
graph while having different costs. In particular, one implementation graph, called the optimum point-to-point implementation graph, is
guaranteed to exist and it is derived by implementing a single arc constraint independently from all the others present in the constraint
graph.

Definition 2.6 Given a constraint graphG = G(V,A) and a communication libraryL = L∪N, aoptimum point-to-point implementa-
tion graphG ′(G ,L) = G(V ′∪N′,A′) is an implementation graph such that∀ai ∈G,P (ai) has the minimum cost C(P (ai)) while being
subject to the constraint that: ⋂

ai∈G

P (ai) = /0,

i.e. its arc implementations are disjoint.

The following definition gives a characterization of all possible structures for the arc implementations in an optimum point-to-point
implementation graph (see also figure 2).

Definition 2.7 Given a constraint graphG = G(V,A) a communication libraryL = L∪N, and animplementation graphG ′(G ,L) =
G(V ′∪N′,A′) the arc implementationP (a) of a(u,v) ∈ A is called:

• anarc matching iffP (a) = {p = (χ(u),χ(v))}, i.e. the implementation corresponds to exactly one library link.

• a K-way arc segmentation iffP (a) = {p = (χ(u),n1, . . . ,nK−1,χ(v))},∀k ∈ [1,K−1](nk ∈ N′), i.e. the implementation corre-
sponds to the concatenation of K library links.

• a K-way arc duplication iffP (a) = {p1 = (χ(u),χ(v)), . . . , pK = (χ(u),χ(v))}, i.e. the implementation corresponds to placing K
library links in parallel.

Clearly, the optimum point-to-point implementation graph can be seen as the representation of a communication architecture that is
built considering sequentially the implementation of each constraint arca as a stand-alone task, performed according to the following
steps:

1Note that the “computational vertices” inV are not part of the cost equation, they may be though as having null cost.

4

1. if it exists, the minimum cost linkl in the library that satisfies the constraintsd(l) ≥ d(a)∧b(l) ≥ b(a); if such a link exists an
arc matching is the desired arc implementation2.

2. if d(l)< d(a) for all library links l (while b(l)≥ b(a) is satisfied by somel), then arc segmentation will lead to an implementation.

3. conversely, ifb(l)< b(a) for all library links l (while d(l)≥ d(a) for somel), then arc duplication will lead to an implementation.

4. in case both constraints can not be satisfied by any link in the library, then a combination of arc segmentation and arc duplication
will lead to an implementation..

Lemma 2.1 For all constraint graphsG = G(V,A) and all communication librariesL = L∪N, there exists anoptimum point-to-point
implementation graphG ′(G ,L) = G(V ′∪N′,A′) and C(G ′) = ∑n′∈N′ c(n′)+ ∑a′∈A′ c(a′) = ∑a∈AC(P (a)).

On the other hand, by analyzing the definition of implementation graph it is clear that some of its arc implementations may share
paths (i.e. links and/or communication nodes). In fact, in general the cost of an implementation graph is smaller than the sum of the
costs of its arc implementations, i.e., re-considering equation 1, we have:

C(G ′) = ∑
n′∈N′

c(n′)+ ∑
a′∈A′

c(a′)≤ ∑
a∈A

C(P (a)) (2)

As a consequence, we are forced to analyze the interactions between point-to-point constraint arc implementations and the task of
finding the optimum implementation graph becomes more challenging.

Definition 2.8 Given a constraint graphG = G(V,A) a communication libraryL = L∪N, and animplementation graphG ′(G ,L) =
G(V ′∪N′,A′), the union of K∈ [2, |A|] arc implementationsP (a1), . . . ,P (aK) is called a K-way arc mergingwhen∃q? s.t.

⋂K
k=1 P (ak) =

q?. The path q? is called thecommon pathof the merging transformation.

It becomes natural to define a constrained optimization problem aimed to find that implementation graph whose cost (expressed as
the sum of the cost of all its components mapped to a library element) is minimum.

Problem 2.1

Given: a constraint graphG = G(V,A) and a communication libraryL = L∪N

Minimize: the costC(G ′)
Over all: implementation graphsG ′(G ,L) = (V ′∪N′,A′) of G .

Clearly, this problem can be seen as a special case of 0-1 integer linear programming (ILP).
In the sequel, we will present an exact algorithm to find the solution of this constrained optimization problem when the following

assumption holds:

Assumption 2.1 Given a constraint graphG = G(V,A) and a communication libraryL = L∪N, for each constraint arc a= (u,v),
C(P (a))> 0 and for all pairs of arcs a= (u,v),a′ = (u′,v′)∈A and for all corresponding minimum-cost constraint arc implementations
P (a),P (a′):

((d(a)≤ d(a′)∧b(a)≤ b(a′))⇔ (C(P (a))≤C(P (a′))) (3)

This assumption is justified from a practical point in most application domains: for instance an optical fiber supporting a given bandwitdh
is priced per meter; similarly, for radio link covering a fixed distance the higher is the desired bandwith the more expensive is the cost
of the equipment.

3 Solving the Constrained Optimization Problem

To solve exactly the constrained optimization problem defined in the previous section we developed an algorithm that is based on a
sequence of two steps, namelylocal solution generationandglobal solution derivation:

1. We efficiently generate the setS of all those alternative distinct implementations of each arc in the constraint graph that are not
“dominated” by other less expensive implementations. The setS includes all|A| arc implementations in the optimum point-
to-point implementation graph (see 2.6) together with a minimal set of arcs implementations that are built applyingk-way arc
mergings (k∈ [2, |A|]) (possibly combined with some arc segmentation/duplication). The elements ofS are said “local” since they
generally provide an implementation only for a subset of the constraint arcs, and, in the case ofk = |A|-way mergings (where all
arcs are implemented), the implementation may only represent a locally-minimum in the search of the solution space.

2See also the assumption 2.1 defined below.

5

t

��

��
��

������

	

��
�

��

��

��
��

������

��

�� ��

�
!"

#$

%&

'(
)*

+�+,�,

-.

/0 12

34
56

u1

v1

u2
v2

u3

v3

un
vn

a) b)

u1

v1

u2
v2

u3

v3

un vn

y

x

u1

v1

u2
v2

u3

v3

un vn

x
y

l1

c)

a

a’

78

Figure 3: Example of split in a k-way merge

2. After computing the cost of each element ofS , we solve an instance of the weighted Unate Covering Problem(UCP)3, to find that
subset ofS providing the minimum cost global implementation for all arcs of the constraing graph.

When combined, the two steps correspond to implicitly considering all possible communication sub-architectures that can be generated
by putting togheter communication library components while being compatible with the requirements of the constraint graph. To
be effective, this approach must rely on the ability of generating the smaller possible set of local solutionsS that must necessarily
be considered to guarantee that the entire solution space is explored as part of the exact search of the global optimum. One could
naively think to generate all possible solutions and leave the responsability of finding the global optimum to state-of-the-art UCP
solvers [3, 6, 10], which provide sophisticated techniques to prune away suboptimal local solutions. In practice, this would turn out to
be quite expensive from a computational point-of-view during both steps. Instead, we will present here a set of theoretical results that
guide us during the first step, enabling the pruning of many useless branches during the search of the tightestS .

Since, the proliferation of alternative arc implementations (on top of those of the optimum point-to-point implementation graph) is
due to the possibility of realizingK-way arc merging implementations, it is natural to focus on defining criteria that establish when a
subset ofK arcs can be merged.

Definition 3.1 Let G = G(V,A) be a constraint graph andL = L∪N a communication library. Also∀k ∈ [2, |A|−1], let Ak denote a
subset of A having cardinality|Ak|= k and Vk the vertices connected by the arcs of Ak. LetGk = G(Vk,Ak) be the projection ofG onto
Ak. Ak is said to be k-way mergeable iffthe union of the arc implementations of the minimum-cost implementation graphG?(Gk,L) of
Gk is a k-way merging. The set of sets of k-way mergeable arc is denoted asM k.

The following lemma provides a sufficient conditions to detect when a pair of arcs is not 2-way mergeable. As for all the remaining
results in this section, this condition is valid independently from the characteristics of the chosen communication libraryL = L∪N, as
long as the library satisfies Assumption 2.1.

Lemma 3.1 Let A2 = {a,a′} ⊆ A be a subset of two arcs a= (u,v),a′ = (u′,v′) of a constraint graphG = G(V,A). Then,{
d(a)+d(a′)≤ ||p(u)− p(u′)||+ ||p(v)− p(v′)||

)
}⇒ A2 6∈M 2

Proof. [By contradiction]. Let us assumeA2 ∈M 2 and prove that this implies that||p(u)− p(u′)||+ ||p(v)− p(v′)|| < d(a) + d(a′).
For any libraryL , let G ′(G2,L) = G(V ∪N,A) be the graph implementation corresponding to the generic 2-way merging illustrated in
figure 4, whereV = {u,v,u′,v′} N = {x,y} andA′ = {(u,x),(y,v),(u′,x),(y,v′),(x,y)}. GraphG ′ has cost:

C(G ′) = C(P ((u,x)))+C(P ((u′,x)))+C(P ((y,v)))+C(P ((y,v′)))+C(P ((x,y)))

Instead, letG?(G2,L) be the optimum point-to-point implementation graph made of the arc implementationsP (a),P (a′) and cost
C(G?) = C(P (a)) +C(P (a′)). By definition 3.1 of 2-way mergeability,A2 ∈M 2⇒C(G ′)<C(G?). Therefore, sinceC(P (x,y))> 0,
we have that

C(P ((u,x)))+C(P ((u′,x)))+C(P ((y,v)))+C(P ((y,v′)))<C(P (a))+C(P (a′))

Recalling Assumption 2.1 on the libraryL and considering that the bandwidth constraintsb(a),b(a′) must be satisfied by both imple-
mentations, the previous inequality on the costs translates on the following inequalities on distances:

d((u,x))+d((u′,x))+d((y,v))+d((y,v′))< d(a)+d(a′)

which, by the triangular inequality of the distance, implies that||p(u)− p(u′)||+ ||p(v)− p(v′)||< d(a)+d(a′). 2

The following lemma can be seen as an extension of the result of the previous lemma to the case ofk arcs because it provides a
sufficient condition that guarantees that they are notk-way mergeable.

3This problem can be seen as a matrix formulation of the MINIMUM COVER problem [5].

6

v’

��

��

��

��

�	

�

�

��

��

�������
�������
�������
�������

�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
����� �������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

u

v

u’
v’

x

y

u

v

u’

�

Figure 4: 2-way merge

Lemma 3.2 Let Ak = {a1, . . . ,ak} ⊆ A be a subset of k arcs a1 = (u1,v1), . . . ,ak = (uk,vk) of a constraint graphG = G(V,A). Then,{(
(k−1) ·d(ak)+

k−1

∑
i=1

d(ai)

)
≤

k−1

∑
i=1
||p(ui)− p(uk)||+ ||p(vi)− p(vk)||

}
⇒ Ak 6∈M k

Proof. [By contradiction]. Let us assumeAk ∈M k and prove that this implies(
(k−1) ·d(ak)+

k−1

∑
i=1

d(ai)

)
>

k−1

∑
i=1
||p(ui)− p(uk)||+ ||p(vi)− p(vk)|| (4)

Let q? = (x,y) be thecommon pathof the k-way merging for the arcs ofAk. For each constraint arcai = (ui ,vi) ∈ Ak, a necessary
condition to be part of thek-way merging is

d(ai)> d((ui ,x))+d((y,vi)) (5)

Without loss of generality, single out the constraint arcak = (uk,vk) ∈ Ak. Then, sum both sides of inequality(5) for all otherk−1 arcs
a1, . . . ,ak−1. Finally, sumk−1 times to both sides of the resulting inequality the corresponding sides of inequality(5) written for arc
ak−1. By applying the triangular inequality to theak−1 pairs of distancesd((ui ,x)) + d((y,vi)) with respect to the position of the nodes
u andv we obtain inequality 4. 2

Theorem 3.1 Let G = G(V,A) be a constraint graph. Then,{
∀k∈ [2, |A|−1],∀Ak−1⊂ A\{a},

(
Ak−1∪{a} 6∈M k

)}
⇒

⇒
{
∀h∈ [k, |A|],∀Ah⊂ A\{a}

(
Ah∪{a} 6∈M k+h

)}
Proof. LetAk ⊂ A\ {a} be an arbitrary set ofk constrained arcs ofG that doesn’t containa = (u,v) nd let Ak+1 = Ak∪{a}. Let’s
consider allk distinct subsets ofAk+1 that containsa. For for each of these subset, we apply Lemma 3.2 to write the condition that
excludes itsk-way mergeability:

(k−1) ·d(a)+d(a2)+ · · ·+d(ak) ≤
≤ ||p(u2)− p(u)||+ · · ·+ ||p(uk)− p(u)|| +
+||p(v2)− p(v)||+ · · ·+ ||p(vk)− p(v)||

...

(k−1) ·d(a)+d(a1)+ · · ·+d(ak−1) ≤
≤ ||p(u1)− p(u)||+ · · ·+ ||p(uk−1)− p(u)|| +
+||p(v1)− p(v)||+ · · ·+ ||p(vk−1)− p(v)|| ⇒

By summing thek−1 inequalities is:

k · (k−1) ·d(a)+(k−1) ·d(a1)+ · · ·+(k−1) ·d(ak) ≤
≤ (k−1)||p(u1)− p(u)||+ · · ·+(k−1)||p(uk)− p(u)|| +
+(k−1)||p(v1)− p(v)||+ · · ·+(k−1)||p(vk)− p(v)|| ⇒

If we divide both sides of the previous inequality byk−1, a quantity greater than zero, and we recall Lemma 3.2, we obtain the condition
that guarantees thatAk+1 is notk+1-way mergeable. Due to the arbitrary choice of the setAk, we have proven that{

∀Ak ⊂ A\{a},
(

Ak∪{a} 6∈M k
)}

7

This corresponds to the thesis for the caseh = k. The corresponding result for allh∈ [k+1, |A|] can be obtained by applying recursively
the same procedure . 2

Given a constraint graphG = G(V,A) and communication libraryL = L∪N, the following result provides a sufficient condition to
establish that a subsetAk of A is notk-way mergeable, i.e., formally, thatAk 6∈M k.

Theorem 3.2 Let Ak = {a1, . . . ,ak} ⊆ A be a subset of k arcs a1 = (u1,v1), . . . ,ak = (uk,vk) of a constraint graphG = G(V,A) and
L = L∪N be a communication library. Then,{

k

∑
i=1

b(ui ,vi)≥
(

max
l∈L
{b(l)}+ min

j∈[1,k]

{
b(u j ,v j)

})}
⇒ Ak 6∈M k

Proof. Figure 3 helps to understand the proof. By hypothesis, the common path of any possiblek-way merging must be decoupled in
at least 2 arcsa,a′ with φ(a) = {l1 ∈ L | b(l1) = maxl∈L {b(l)}}. Without loss of generality, leta1 be the arc carrying the minimum
bandwidth costraint withinAk, i.e. a1 = min j∈[1,k]

{
b(u j ,v j)

}
. We consider two cases:

1. Assume that the inequality is in fact an equation. This means that we can separate the implementation along the dotted linet,
as shown in figure 3-(b), and derive an implementation composed by a path froma1 source toa1 destination that includesa′,
together with ak−1-way merge for the other constraint arcs. The cost of the implementation ofa1 is greater or equal than its
point-to-point minimum-cost implementation, because the latter has necessarily a smaller distance to cover while the bandwidth
is the same (recall Assumption 2.1). Therefore thek-way merge has a cost that is greater than the direct implementation of the
link with the minimum bandwidth plus ak−1-way merge of the other links (Figure 3-(c)).

2. If the hypothesis is an inequality then two situations may occur: the first, trivial, happens when there are no links in the library
that match theb(a1) and this is the same as the case already discussed. Instead, when there arer arcs implementations sharing
a′, we can ideally separate the merge into two implementations along the dotted linet. Hence, we can divide the arcs into two
setsAr andAk−r s.t. Ar ∪Ak−r = Ak andAr ∩Ak−r =∅. Again, two situations may happen. If the two sets are respectivelyr-way
mergeable and(k− r)-way mergeable, then the implementation of the two sets separately has a cost less or equal to thek-merge
of Ak and, by definition, this means thatAk is notk-way mergeable. If instead, at least one of the two sets is not mergeable, say
Ar , this means that the point-to-point implementation of its arcs has a lower cost. Therefore the composition of the implementaion
of Ak wiht the(k− r)-way merge ofAk−r andr point-to-point implementations of the arcs ofAr has a cost lower than thek-way
merge ofAk. Hence,Ak is notk-way mergeable. 2

Figure 5 illustrates the algorithm to generate a minimal set of candidate arc implementations that is based on the above resuls. First,
it is convenient to define two distinct symmetric matrices (the Constrained Distance Sum MatrixΓ and the Merging Distance Sum
Matrix ∆) to capture key quantities related to each pair of arcs in the constraint graphG = G(V,A). In particular, for any two arcs
ai = (ui ,vi),a j = (u j ,v j), Γ(ai ,a j) = d(ai)+d(a j) and∆(ai ,a j) = ||p(u)− p(u′)||+ ||p(v)− p(v′)||. Notice that since the two matrices
are symmetric, we only need to scan the values of their upper diagonal part.

After having saved intoS the optimum point-to-point arc implementation associated to each constraint arc (loop 3-6), the algorithm
proceeds by subsequently considering all possiblek-way mergings for incrementing value ofk (loop 13-32). Using the result of The-
orem 3.1, as soon as nok-way mergings are possible for an arca j , the corresponding column (and row) is removed from the matrix
Γ (line 22). The algorithm leaves the main loop, when the set of columns ofΓ becomes empty (line 27). In general, for any given
k, we iterate through the current set of columns ofΓ (recall that each of them is associated to an arc that can still be part of ak-way
merging) and, for each columna j , we considerate all possible sets of rowsI (also associated to arcs) of cardinalityk togheter with
a j as a potentiallyk-way mergeable subsetAk. If the pruning condition of Lemma 3.2 (line 16) is not satisfied as well as the one of
Theorem 3.2, as soon as (line 22) is reached, we are forced to include a possiblek-way merging ofAk within S . Instead, if this is not
the case for allAk, we are allowed to avoid consideringa j again. The algorithm terminates returning the setS of candidate arc imple-
mentations, whose exact structure (i.e the exact topology, communication node position, number of links,. . ./) is later obtained solving
a simple linear optimization problem, which computes also the cost. Finally, a unate covering matrix is built by associating to each
row a constraint arc, to each column a candidate implementation and setting each entryi, j to one if the implementationj implements
the arci, to zero otherwise. Each columns has also a weigth corresponding to the implementation cost. Finally, the selection of the
optimum global solution correspond to the solution of this instance of weighted Unate Covering Problem (UCP) and can be found by
using state-of-the-art UCP solvers [3, 6, 10].

4 Domain Application Examples

The algorithm presented in the previous section is illustrated here by means of two examples that are taken from different application
fields. The first example represents a simple wide-area network (WAN), while the second example shows how the current approach can
be adapted to attack the on-chip communication synthesis problem,

8

1: GenerateCandidateArcImplementations(G ,L)
2: {Compute setS of candidate arc implementations}
3: S ⇐ /0
4: {Get optimum point-to-point arc implementations}
5: for all arca∈ G do
6: P (a)⇐ findBestPointToPointImplementation(a,L)
7: S ⇐ S ∪σ(P (a))
8: end for
9: {Find non-dominated candidatek-way mergings}

10: B⇐ ComputeBandwidthVector(G)
11: Γ⇐ ComputeConstrainedDistanceSumMatrix(G)
12: ∆⇐ ComputeMergingDistanceSumMatrix(G)
13: k⇐ 1
14: f oundCanditateMapping⇐ TRUE
15: while (f oundCanditateMapping) do
16: for all column j ∈ col(Γ) do
17: for all row subsetsI = {i1, . . . , ik} ⊆ row(Γ) do
18: if ∑k

i=1 ∆[i, j]< ∑k
i=1 Γ[i, j] then

19: bmin⇐min
{

B[j],mini∈[1,k]{B[i]}
}

20: if ∃l ∈ L s.t. (b(l)+bmin)<∑k
i=1B[i]+B[j] then

21: S ⇐ S ∪ f indKMergingImplementation(j, I)
22: f oundCanditateMapping⇐ TRUE
23: else
24: col(Γ)⇐ col(Γ)\{ j}
25: end if
26: end if
27: end for
28: end for
29: if col(Γ) = /0 then
30: f oundCanditateMapping⇐ FALSE
31: else
32: k⇐ k+1
33: end if
34: end while

Figure 5: Algorithm to generate all candidate arc implementations.

Figure 6-(a) reports the diagram of a wide-area communication network, where the length of the arcs suggests that the“computational”
nodes A,B,C are fairly close to each other as well as nodes D and E, while the two groups are separated by a distance which is rel-
atively much larger. We assume that every channel presents the same bandwidth requirement, namely 10Mbps. Figure 6-(b) shows
the corresponding communication constraint graph where only the ports and the channels are retained. In this case, it is reasonable to
adopt the approximation that all the ports of a computation node have the same position. The library that is available for implementing
the communication architecture consists of two types of links, whose cost is a function of the supported channel length: a radio link
lr = (11Mbps, l ,$2×meter), and an optical linklo = (1Gbps, l ,$4×meter). Table 1 and Table 2 report respectively the values of the
Constrained Distance Sum MatrixΓ and the Merging Distance Sum Matrix∆ expressed in kilometers.

By running the algorithm reported in Figure 5, it is easy to determine that arca8 is not mergeable with any other arc and, therefore,
will have to be implemented as a minimum-cost point-to-point link. Due to its distance, this links turns out to be the radio link. The
algorithm also determines that arca7 cannot be involved in any 4-way arc merging (nor, therefore, in anyk-way mergings withk> 4).
Besides the 8 optimum-cost point-to-point implementations, the setS contains thirteen 2-way, twentyone 3-way, sixteen 4-way, and five
5-way candidate arc mergings. For each candidate implementation the following minimization problem is solved to derive its cost as
well as the position of its communication nodes. implementation:

Minimize: the costC(x)
Subject to: K ·x = d

TheK matrix is derived by writing the equation forcing that the sum of the lengths alongx andy axes must be equal to the difference
in position between source and destination points. Finally, after solving the weighted UCP, we learn that the minimum cost solution is

9

E

1

a2

a3

a4

a5

a
6

a7

a8

a1

a2

a3

a4

a5

a
6

a7
a8

�� �� ��

��
�	
�

�
 �� ��

��
�� �� �� ��

�� ��(0,0)

(2,−5)

(3,4)

(100,6)

(103,4)

a)

b)

A

B

C

D

a

Figure 6: Simple WAN and its Constraint Graph

a1 a2 a3 a4 a5 a6 a7 a8

a1 10.38 14.05 102.02 105.18 103.61 8.60 8.60
a2 14.44 102.40 105.56 104.00 8.99 8.99
a3 106.07 109.23 107.67 12.66 12.66
a4 197.20 195.63 100.62 100.62
a5 198.79 103.78 103.78
a6 102.22 102.22
a7 7.21
a8

Table 1: Constrained Distance Sum MatrixΓ, with Γ(ai ,a j) = d(ai)+d(a j).

obtained by merging the arcsa4 with a5 anda6 in an optical link and implementing each of the other arcs with a dedicated radio link.
The result is shown in Figure 7 where the dash-dot lines indicate a radio link and the solid line indicates an optical link.

If we change the application domain by moving to the problem of deriving an architecture for an on-chip communication network,
the characteristics of the constraints and the cost function are quite different. Still the proposed approach can be used to find for
instance the minimum number of repeaters (stateless buffers) that it is necessary to insert on a metal line while performing an optimum
segmentation using the notion of critical length (lcrit) as defined in [12]. For this application, a first-cut libraryL can be considered as
composed by only one link (a metal wire of lenghtlcrit that is only dependent on the technology process) and three communication nodes
(an inverter, a multiplexer and a de-multiplexer, all optimally sized). By using the Manhattan distance as the appropriate measure for
the length of the links, the cost of each arc in the implementation graph is given byb(|xv−xu|+ |yv−yu|)/lcrit c. Figure 8-(a) illustrates
an example of this application, where we have studied the most critical channels on a multi-processor MPEG 4 decoder implemented
in a 0.18µ technology. The final communication architecture, reported in figure 8-(b), has a total number of 55 required repeaters (with
lcrit = 0.6mm). It is important to notice that this result is valid as long as the assumption that all links on the chip have a delay smaller
than the clock period. Naturally, with the advent of deep sub-micron (DSM) process technology (0.13µ and below), this will be true for
fewer wires. Still the approach presented in this work can be combined with the recently proposed latency-insensitive methodology [1],
after making sure to define a cost function centered on the minimization of both stateless (buffers) and stateful (latches) repeaters.

5 Conclusions

This paper introduces a novel algorithm for the automatic synthesis of a communication architecture among a set of computational
blocks once their relative positions and required pairwise communication bandwidth is provided. The algorithm is the result of a
new way of modeling the problem (embodied by the notion of communication costraint graph) and it is based on a series of theoretical

10

a1 a2 a3 a4 a5 a6 a7 a8

a1 9.05 14.05 102.02 97.02 102.40 200.09 200.17
a2 5 103.61 98.61 104.00 201.69 201.58
a3 98.61 103.61 107.67 198.61 198.42
a4 5 9.05 100.00 100.63
a5 5.38 103.07 103.78
a6 101.40 102.22
a7 7.21
a8

Table 2: Merging Distance Sum Matrix∆, with ∆(ai ,a j) = ||p(u)− p(u′)||+ ||p(v)− p(v′)||.

(2.05,0)

A

B

C

D

E

Figure 7: Example 1: Implementation Graph

results that give simple conditions to detect when a possible merging between point-to-point communication channels should be avoided
because it is guaranteed to be part of a suboptimal solution.

Future work includes the extension to the case of statistical routing as well as to the case of shared use of resources. In the first
case a channel use probability could be specified for each distinct point-to-point communications. The algorithm should be modified
to consider their merging in case the available link bandwitdh is not fully exploited. The second case includes considering limitations
in the number of library elements that can be deployed and/or their features (e.g. a switch that can not drive all its outgoing channels
simultaneously).

Acknowledgments

This research was supported partially by the SRC and the GSRC/Marco center at Berkeley.

References

[1] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-Vincentelli. A Methodology for”Correct-by-Construction”
Latency Insensitive Design. InProc. Intl. Conf. on Computer-Aided Design, pages 309–315. IEEE, November 1999.

[2] C.P. Chang, P. Kermani, and A. Kershenbaum. Multi-link-speed network topology design. InInternational Phoenix Conference
on Computers and Communications, pages 299–306, 1992.

[3] O. Coudert. On solving binate covering problems. InProc. of the Design Automation Conf., pages 197–202, June 1996.

[4] J.M. Daveau, T. B. Ismail, and A.A. Jerraya. Synthesis of system level communication by an allocation based approach. In
International Symposium on System Synthesis, pages 150–155, 1995.

[5] M.R. Garey and D.S. Johnson.Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman and
Company, 1979.

[6] Evguenii I. Goldberg, Luca P. Carloni, Tiziano Villa, Robert K. Brayton, and Alberto L. Sangiovanni-Vincentelli. Negative
Thinking in Branch-and-Bound: the Case of Unate Covering.IEEE Transactions on Computer-Aided Design, 19(3):281–294,
March 2000.

[7] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli. System level design: Orthogonolization of
concerns and platform-based design.IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 19(12),
December 2000.

[8] Peter Voigt Knudsen and Jan Madsen. Integrating Communication Protocol Selection with Hardware/Software Codesign.IEEE
Transactions on Computer-Aided Design, 18(8):1077–1095, August 1999.

11

(1.10,−2.61)

a) b)

(0,0)

(0.34,0)
(0.68,0)

(3.62,0.86)

(3.62,−4.66)

(5.61,−0.58)

(6.67,−10.46)(1.15,−10.46)

(2.97,−7.84)

Figure 8: Example 2: Constraint graph and implementation graph

[9] K. Lahiri, A. Raghunathan, and S. Dey. Efficient exploration of the soc communication architecture design space. InProc. Intl.
Conf. on Computer-Aided Design, pages 424–430, 2000.

[10] S. Liao and S. Devadas. Solving covering problems using LPR-based lower bounds. InProc. of the Design Automation Conf.,
June 1997.

[11] Li-Shiuan Peh and William J. Dally. Flit reservation flow control. InInternational Symposium on High-Performance Computer
Architecture, pages 74–84, 1999.

[12] R. H. J. M. Otten and R. K. Brayton. Planning for Performance. InProc. of the Design Automation Conf., pages 122–127, June
1998.

[13] Ti-Yen Yen and Wayne Wolf. Communication synthesis for distributed embedded system. InProc. European Design Automation
Conf., pages 288–294, November 1995.

12

