o , L, .)
.':‘EINSD Master Réseaux, Télécommunications & Services

L ¥ ON

‘e

Simulation of SoC
Architectures

Dlelual xos 8o/

7|] dateLX_gr_2 cas {modified) = - o Commi s

commit [Reset ['

nesaStareT able

& [arithmeri operacion
@ [Comnarisien operatiens
§ CLogical sperations
1y conumerian
[disjunctian
[cxelusine or
[inverting
€ [[shift aperations
& T rised shift aperations
& [Jextend word
& [5aturate word
[yescraceward
[y merge wowads
& [dMultipexer

Blarkien

|
[y Memuary £ Register file s [=
§ CJReqister | =1
[with write cantrol)
Deus i’"D“'
[ous driver i

Tt

B

Thomas Watteyne 1/14 2004-2005

0@ , (e . .
i’Nsn Master Réseaux, Télécommunications & Services

Part I: Introduction to Modeling, Design and Simulation

I. Introduction

1. The push-pull effect

Modern telecommunication devices are changing rapidly. Not only must designers
cope with new emerging technologies, they also have to deal with the needs of the
market. A classical push-pull effect can be seen here. From one side, new
applications and systems are getting more and more complex, pushing the

designer. From the other harsh time-to-market constraints pull him.

The embedded system designer’s productivity has to be increased. One answer is
to take advantage of programmable architectures. A solution based on
programmable architectures has two interacting parts: the hardware and the
software. The designer’s job is to distribute the complexity of his solution over
these parts. On one side, a fully hardware solution (bard-wired) may offer great
performances, but the overall cost of designing, creating and testing the silicon
based solution would be too important. On the other hand a “complete” software
solution offers all the ease of being as far as possible from the physical world, but

may result in poor performances.

A tradeoff must be found, the designer’s work will have to focus on both
hardware and software. As a consequence, he will need an appropriate designing
platform to be used during the iterative process of prototyping. With hardware
involved, a rea/ platform would be too expensive and hard to set up. Instead of
that, it would be particularly interesting to study the behavior of the hardware
components, model it using for example mathematical models, and imitate it as

precisely as possible. Combining our virtual hardware with the software would

Thomas Watteyne 2/14 2004-2005

@ , L o .
.:g.i INSD Master Réseaux, Télécommunications & Services

need to lead to the same results as if we were working with physical hardware, but

only with a fraction of the cost. This technique is called simulation.

2. Definitions

Some definitions need to be given.

Modeling is the activity of representing a possibly existing entity using
“intellectual” tools. An example can be found in mechanics where mathematical
models represent and describe precisely the movement of a rock swung from a
catapult. Apart from mathematical, models may also be constructive. Constructive
models are made of a possibly large number of logical statements (for example an

if ... then statement), the execution of those rules leads to a simulation.

Designing can be seen as a modeling of a not yet existing entity. Here, the

intellectual representation serves as a prototype for a future production.

II. Machine and Hardware Description Languages, the LISA example

This part is based on the paper “Modeling and Simulation Issues of Programmable
Architectures”, by A. Hoftman, A. Nohl, G Braun, O. Wahlen and H. Meyr, March
2001.

1. Programmable Architecture Overview

The most obvious programmable architecture is the personal computer. Users
interact with user applications using for example a windowing interface. The
user application, in turn, interacts with a “system” application, the Operating
System. This Operating System provides all user applications with a set of

instruction it can carry out, regarding for example manipulation. POSIX is an

Thomas Watteyne 3/14 2004-2005

@ , L o .
.:g.i INSD Master Réseaux, Télécommunications & Services

example of a standardization effort of that interface. Finally, the Operating System

is the want who “talk” to the hardware. This hardware has again an interface of

micro instructions it can carry out, called the instruction set.

Less complex systems can have only one application talking to the hardware,
playing the role of both user and system application. In that case, it would be
interesting to customize the instruction set to the needs of the application. ASIP

(Application Specific Instruction Set) processors follow this idea.

From a designer point of view, the hardware/software optimal interaction can be
created only using an appropriate set of simulation tools. The first step is to
represent intellectually the behavior of the processor. That’s what the LISA

project tries to achieve is.

2. The LISA project

This project is conducted at the Aachen University of Technology in Germany.

Many languages were created to represent the processors architecture, but whereas
VHDL or Verilog were created for processor designing purposes, a language was
needed where all the fine electronic details were hidden and only the useful part
was represented. That useful part, from an application point of view, is of course
the Instruction Set. That’s what LISA (Language for Instruction Set Architecture) was

designed for.

Nevertheless, the LISA project goes far beyond that scope, and provides the
designer with a whole set of tools called the automatic tool-chain generation. The idea
is that the description of the processor can automatically generate a simulator of
that processor, an assembler and linker to translate programs written in high-level

languages into executable application, directly usable by the described processor.

Thomas Watteyne 4/14 2004-2005

@ , L o .
.:g.i INSD Master Réseaux, Télécommunications & Services

A debugger gives a useful graphical interface to the designer, a kind of visual step-

by-step overview console of the simulated execution.

Tt
LISA, | Gener: |
i i
processor ! Frocessor !
description i model |
[E—

e J

¥
processar model
L L L F r

debugger simulatar Simulator compiler assembler linker

The most important (and unique) part of this project is the use of a simulator
compiler. An analogy can be drawn with programming languages. In interpreted
ones, an analysis is done line by line during execution time, leading to poor
performances. Compiled languages work on the initial 7ex? before execution to
optimize once and for all the possibly many run times. Here, a highly customized
compiler is specifically created for every processor / program / scenario, reaching

simulation speeds in the order of 100K instructions per second.

3. Validation of the tools

Ones the tools are set up, it is important to show they work properly. In the case
of simulation, two main criteria have to be taken into account: the modeling

capabilities and the efficiency.

Four different commercial architectures will be modeled by LISA: ARM?7,
ADSP2101, TMS320C54x and TMS320C062x. It is to be noted that the validation
needs to be done in modeling, not designing mode. Each of those architectures

has very specific characteristics regarding for example very large instruction word

Thomas Watteyne 5/14 2004-2005

@ , L o .
.:g.i INSD Master Réseaux, Télécommunications & Services

length (VLIW), or multiple instruction words. The LISA architecture permits, in a

reasonable amount of time, to model those four architectures.

The final zesz for LISA would be the performance. As we are talking about
simulation, performance would be the number of instructions or cycles the
simulator can carry out in one second. As a comparison, the efficiency of the
official simulator hipped with the processor are given. We can see the
performances are better by one or two degrees of magnitude. This is really the

strong part of LISA, and is totally due to the use of compiled simulators.

Il’l thousands Of 31000
instructions / cycles per | |
second.]
20400
The left bar represents the ||
performance of the LISA | |
simulator; the right 3900
simulation uses the official 1800 800 1050
' - o 190 5
simulator. ARM7 ADSP2101 CHx C54x

4. Interest of the paper

Together with the Ptolemy project, the LISA project gives us a very clear insight
view of the importance and possible uses of simulation assisted design. What’s
more, the use of compiled simulation is a very clever way of dealing with the

traditional performance issues.

Nevertheless, it would have been useful to have a more explicit presentation of

the syntax and semantics of the LISA languages.

Thomas Watteyne 6/14 2004-2005

0@ , (e . .
i’Nsn Master Réseaux, Télécommunications & Services

Part II: Modeling and Simulation of Embedded Processors
Using Abstract State Machines

III. Architecture/compiler co-design

1. The needs

As described in the introductory part, today’s designers need to cope with both
efficiency and time-to-marked constraints. Whereas programmable architectures
provide the flexibility, their primary drawback is their performance. To counter
this problem, special purpose optimized processors are created: the ASIP family.
In Application Specific Instruction set Processors, the instruction set (the programmable
interface the architecture provides) is customized to match the needs of each

specific application as well as possible.

2. The process of architecture/compiler co-design

The scope of the design process in enlarged to both hardware and software, these
two components forming one block. The big designing challenge is where to put
the complexity of the calculation to be done. On one hand, a complete hard-wired
solution gives excellent results as far as the performance is concerned, but the cost
of development, creation and testing may be enormous. In this solution, the
instruction set will be very complex, while the application will be restricted to the
strict minimum. On the other hand, a software based solution will transpose the
complexity from processor to application. Only a simplified instruction set will be

needed. The tradeoff between hardware and software has to be found.

In order to explore the many possibilities during the iterative process of

prototyping, the most effective solution is the use of a simulator. Not only should

Thomas Watteyne 7/14 2004-2005

@ , L o .
.:g.i INSD Master Réseaux, Télécommunications & Services

it be able to monitor the simulated environment, it should be able to create a

complete development environment with a description of the hardware only. This

is called Architecture/Compiler co-design.

3. Related work

Three research groups can be pointed out working on architecture /compiler co-
design. They all try to achieve the same goal, but of course present many
differences. The first difference in the speed they may work at, that is to speed the
simulation of compiling speed. What’s more, they will all use different models,
mathematical or not, who will be able to model in an optimal way only a part of
the range of architectures. It is to note that the results each solution provide,
especially the execution times presented, have to be taken with care. An important
phase of the validation of a simulator is to compare the execution time on the

simulator and the real hardware.

The first research group is LISA, at the University of Aachen in Germany. It has
been presented in Part I of this document. The main specificity of the proposed
simulation environment is the use of a compiled simulator. Exactly as in
programming languages, a compiled solution has much better performances as an

interpreted counter part.

The specificity of the CASTEL project is that its goal is not directly to provide a
simulation environment, but focuses more on the modeling part. Indeed, the tool
presented lets us use a VHDL representation of the hardware as the register
transfer level, and creates a mathematical model of the data path using extended

finite state machines.

Finally, the last research group presented here is the one closest to the
BUILDABONG project we will present. The EXPRESSION framework lets us

design an architecture graphically using V-SAT, translate it automatically into an

Thomas Watteyne 8/ 14 2004-2005

@ , L o .
.:g.i INSD Master Réseaux, Télécommunications & Services

EXPRESSION model, which in turn can generate both a compiler and a

simulator.

IV. Abstract State Machines

1. The mathematical tool

In mathematics, the ensemble of entities one is working on is called the universe.
Inside that universe, a function lets us transform one of those entities into
another, letting us “move”. A complete structure is achieved if we also add
relations, that is to say operators that let us compare two entities. Without

relations, that is to say with only functions, the structure is called and algebra.

An Abstract State Machine (ASM) is defined as the association of a finite
vocabulary and a finite set off n-ary functions over that vocabulary. It is to note
that a state of an ASM is al algebra. What’s more, the ASM is completely defined
with an initial state So and a set of transition rules P. A transition rule is nothing
more than a “if ... then” statement, where the possibly executed rule is an update
rule, the condition a Boolean valued expressions (an explicit relation can not be

expressed, as we are working in a algebra).

As for the operational semantics, the ASM can be seen as an initial state on which
a set of transition rules is applied iteratively. The ASM will end up in a terminal
state where the transitions rules will have no effect (the terminal state is detected

after two consecutive transformations leading to the same state).
2. Modeling processors using ASMs
The granularity of the processor model we are looking for is described as at least

RTL (Register Transfer Level) and cycle accurate. A register transfer is physically

conditioned by for example the value of special mode registers, or the state of

Thomas Watteyne 9/14 2004-2005

@ , L o .
.:g.i INSD Master Réseaux, Télécommunications & Services

special purpose bits. As a consequence, a register transfer pattern will only be

executed if a register transfer condition is met, leading to a classic if ... elsa .

These guarded register transfer patterns are naturally modeled by ASMs.

3. Advantages

Apart from the fact that ASMs and a processor described at the RTL have the
same intellectual representation, using ASMs to model architectures present some
other advantages. The ASM representation is relatively short (200 lines for the
complete ARM7 description) and easy to read. The model is cycle accurate and
granular at the RTL. Even though the paper studied list the simulation speed as an
advantage, neither values nor comparisons are given. Finally, the language called
XASM used to describe the ASM include in its native syntax the call of external C
libraries. This will be most helpful for supporting irregular arithmetic operations

on arbitrary large word-lengths.

V. The BUILDABONG project

1. General view : the development phases

The BUILDABONG project is a very ambitious project as it should provide a
complete architecture/compiler co-design framework. Because of this importance,
the development has been divided in four phase, currently phase 2 is completed
and phase 3 is on his way. The basic idea is to provide the system with a graphical
representation of an architecture using the ArhitectureComposer, having is translated
in XASM code and generate both a compiler and a simulator. Finally, an explorer

will provide the designer with a user-friendly interface to steer the designing.

A graphical overview of the development phases is presented on the next page.

Thomas Watteyne 10/ 14 2004-2005

Master Réseaux, Télécommunications & Services

Explorer

Retargetable

‘BEOY

Y

Compiler

h A

Assembler
Program

h A

Parser
Linker
Loader

2. The graphical editor

The first module the designer will

have to work with

ArchitectureComposer, or graphical

Editor. A screenshot is presented

on the right. A
customizable components
graphical building bricks
the overall editing process.

This system has a

library of

Instruction Set
Description

library

Simulator Generator

BN -=

=
i T
EECIE
T

(Gem-Mex)
Simulator
[] (]

<moditied)

the

is

used as

fastens

setious

drawback if you keep in mind that every simulator environment (like

EXPRESSION) uses his own graphical editor and hardware description language.

It would be interesting to build a module capable of importing directly hardware

Thomas Watteyne

11/14

2004-2005

@ , L o .
.:g.i INSD Master Réseaux, Télécommunications & Services

descriptions in widely used HDLs (Hardware Description Languages) as VHDL

or Verilog.

3. automatic XASM-code generation

After the architecture is entered in the framework, it has to be described using
ASM, and the associated XASM code has to be generated. To illustrate the
translation algorithm, a simple example is given here. We will study the different

phases.

Architecture Composer v1.0

Flie Edit yiw Tosis - asm MAIN is
FECIEEE R - ([use cpucore
Umtitied) | maccas

— derived function Mult_res ==
constd const? c_mult (Add_res, constl_out, 8, COMPLEMENT_2)
derived function Add_res ==

c_add (A_out, B_out, 8, COMPLEMENT_2)
derived function El_out ==

c_extract (Mult_res, 16, 0, 8)
(2} | derived function COMP1_out ==

c_gteq (const3_out, Add_res, 8, COMPLEMENT_2)
function A_out
function B_out
function constl_out
function const2_out

function const3_out
D2 C init
- A_out := "0Q0000000"
_ 3) B_out := "00000000"
constl_out := "00000010"
_ const2_out := "00000001"
¥ ¥ Add const3_out := "00001000"
By ~ endinit
\ T / Con‘_5|3" CiOMP1 if COMPi_out = "1" then A_out := Ei_out
i i k< (4} endif
if COMP1_out = "1" then B_out := const2_out
L endif
endasm

At phase (1), what could be seen as a C-type “include” is used. The ¢pucore package
is invoked, letting us use more complex operators as ¢_mult, ¢_add, ¢_extract or ¢-
greg. At (2), a certain number of functions are declared. They refer to the
components of the circuit, as well as the links between them. At phase (3), the
sequential elements are initialized. Are considered sequential all the elements that
contain information, e.g. registers, the Mwu/t component is not sequential so does
not need to be initialized. Finally, the phase (4) defines the guards of the register

transfer patterns.

Thomas Watteyne 12/14 2004-2005

Master Réseaux, Télécommunications & Services

#NSRh

4. Generating the simulator

The last part of the architecture built by now by the BUILDABONG team is the

simulator generation. Here, the XASM code representing the architecture is

brought together with that representing the Application Program and with the use

of Gem-Mex, the debugging and simulation environment appears.

Two essential questions arise from
this way of working. How do you
XASM code of the

create the
Application Program? Is XASM an

efficient ~ way to represent

Application Program code? The

answer to the first question is

patience, as the

BUILDABONG project aims at

phase 3 of

creating a compiler that will be able

to translate the program into

assembler language and XASM

representation. The answer to the

Application Program
(Assembler)

Architecture
Description

ADDLIX ALBLAL
MVI2 B1B3

Architecture
Composer

Simulator Generator
(Gem-Mex)

Debugging
and
Simulation
Environment

second question is less obvious. Indeed, ASM has been proven a good modeling

language for processor architecture, but not for Assembler Application Program

Code. The answer should be given in the next paper about BUILDABONG

phase 3.

5. Future Work

As depicted in the previous paragraph, phases 3 and 4 of the BUILDABONG

project still have to be finalized. Whereas phase 4 is mainly about user-friendliness

and concise presentation of the processors inner state, I suspect phase 3 to be the

Thomas Watteyne

13/14

2004-2005

@ , L o .
.:g.i INSD Master Réseaux, Télécommunications & Services

most challenging part of the project. Indeed, lots of questions arise, as the

compiler will have to be customizable to meet different needs as power use or

Real-Time constraints.

VI. Critical view over the paper

Even though a certain number of architecture/compiler co-design frameworks
already exist, BUILDABONG is very interesting due to the fact it uses a formal
mathematical representation, the Abstract State Machines. What’s more, the
structured project planning gives us a clear view of the work (to be) done, as
provides us with already useable tools. Nevertheless, a serious drawback of the
overall system is the use of a non-standard hardware description language. The
description of a complete processor may take as much time as the analysis of the
simulation results, which is not acceptable. As a consequence, it would be
interesting to be able to import for example VHDL representations. What’s more,
it would be very useful to create in phase 3 a parametrable compiler, to take into
account specific needs as battery life or real-time constraints. Finally, as good as
the model is in a simulation environment, it is vital to perform comparison tests
between an existing architecture and its model. The results of this type of tests

should be presented in the next paper of BUILDABONG phase 3 and/or 4.

Thomas Watteyne 14/ 14 2004-2005

