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Abstract

We survey the state-of-the-art in real-time operating sys-
tems (RTOSs) from the system synthesis point of view.
RTOSs have a very long research history which provides
important theoretical results and useful industrial imple-
mentations. Convergence of applications, technology, and
market trends of embedded systems implies a strong need
for new generation of RTOS. Therefore, new system syn-
thesis problem areas, notably hardware/software co-design
and synthesis for systems-on-silicon (SOS), are opening up
new avenues for RTOS research and development. This
paper starts with a survey of classical academic and indus-
trial RTOS work and continues with a survey of recent
results related to co-design and design systems-on-silicon.
We conclude by outlining future directions for the SOS
RTOS.

1  Introduction

Recently, a convergence of applications, technology, and
market trends of embedded systems has resulted in drastic
quantitative and qualitative change in synthesis of applica-
tion-specific systems. The size of average embedded con-
sumer electronics applications has been approximately
doubling each year. At the same time the average size, in
terms of number of gates, of the integrated circuits has been
doubling every three years, while the clock period has been
steadily decreasing at just slightly lower pace. For example,
the state of the art general-purpose processor in 1971 (Intel
4004) had 2,300 transistors and had clock rate 0.1 MHz.
Today the latest-generation processor, the Intel Pentium-II,
has 7.5 million transistors and a clock rate of 300 MHz8.
These trends imply that, in each new generation of technol-
ogy, higher levels of hardware sharing are required, feasi-
ble, and economically desirable.

From the qualitative point of view, new application are
characterized by high volume of data, cost sensitivity, and
very short market windows. Many popular applications,
such as wireless telephony, internet browsing, and video-

conferencing, are intrinsically defined by a need for high
volume data management. Recent analysis of electronic
market clearly indicates crucial importance of considering
customers spending limits and to act promptly to the
changes in the market conditions6.

As a result of these trends, there is a growing consensus that
the onlydesign reuse techniques can close the fast growing
gap between the potentials of semiconductor production
technologies and traditional design productivity9. Software
is a major element of modern reuse strategies andreal-time
operating systems (RTOSs) are critical components in
reusable embedded software systems.

Traditionally, application-specific systems have been imple-
mented using the algorithm-to-architecture methodology.
While this was a viable option for synthesis of low com-
plexity application-specific systems, it does not address
needs of more complex emerging designs. Figure 1 illus-
trates the new system-level synthesis flow. RTOS provides
isolation and interface to application and algorithm devel-

opers and compilation tools from one side and to architec-
ture and integrate circuits designs from the other. Our goal
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in this paper is to analyze opportunities and challenges
posed by the emerging field. RTOS have been used in many
applications from car, ship, and airplane electronics to wire-
less and optical communication equipment, medical instru-
mentations, multimedia, internet, and even home
appliances, factory automation, process control, financial
transaction processing, and video games machines.

Even without strict space limitations of a conference paper,
it would be impossible to provide a comprehensive survey
of RTOS research and industrial state-of-the-art. Rather
than aim for comprehensiveness, we focus attention on a
selected subset of key issues and key new directions which
characterize well emerging filed of RTOS for SOS.

The reminder of the paper is organized as follows. We first
very briefly summarize operating system basics. After that
we summarize the key results from the traditional RTOS
research and discuss RTOS development efforts from the
industrial point of view. Next, we present some of the first
RTOS behavioral and system-level synthesis efforts. We
conclude by outlining the directions for the merging field of
system-on-silicon, in particular from RTOS point of view.

2  Preliminaries

In this section we briefly outline the basic facts about real-
time operating systems and systems-on-silicon.

2.1  [Real Time] Operating Systems Basics

An operating system is a system program which provides
an interface between application programs (an often a user)
and the computer hardware. They have two primary func-
tions: to make the computer system convenient to use and to
organize efficient and correct use of the computer
resources. There are four main tasks of an operating sys-
tem: process management, interprocess communication
and synchronization,memory management, and input/
output (I/O) management. The process management com-
ponent is responsible for process creation, process loading
and execution control, the interaction of the process with
signal events, process monitoring, CPU allocation and pro-
cess termination. Interprocess communication covers issues
such as synchronization and coordination, deadlock and
livelock detection and handling, process protection, and
data exchange mechanisms. Memory management includes
services for file creation, deletion, reposition, and protec-
tion. I/O management handles request and release subrou-
tines for a variety of peripherals and read, write, and
reposition programs.

Real-time systems are systems where the proper functional-
ity assumes both the correctness of the output as well as the
correct timing behavior of the system.

2.2  Systems-on-Silicon

Integrated circuits with 20 millions or more transistors
allow truly significant systems, such as HDTV, video cam-
coder, and software radio, to be placed on a single chip.
Systems-on-silicon may contain multiple CPUs, special-
purpose function units, and large amounts of embedded
RAM. They find important uses in areas as diverse as wire-
less, multimedia, and mechanotronics.

Systems-on-silicon demand more careful design because
design revisions are both costly and time-consuming. They
also require very high-quality software for several reasons:
the software will definitely be hard to observe and therefore
debug due to pin limitations; the software may be hard to
change after fabrication; and the hardware cannot be easily
changed to accommodate software performance problems.

Design of systems-on-silicon pose many qualitatively new
problems such as intellectual property protection, debug-
ging using incomplete information about hardware and/or
software, and one which we address here, a need for
embedded operating system layer.

3  Traditional RTOS Research

A real-time operating system can supply many valuable
functions to an embedded application, but the central pur-
pose of an RTOS is scheduling of the CPU. The application
is structured as a set ofprocesses, each of which has its
own program code and state consisting of register and
memory values. The process is as well-known and almost
universal model. Some operating systems support an addi-
tional level of structure known as thetask. A task is a set of
processes with data dependencies between them, as shown
in Figure 2. This example contains two tasks—processes
which have no path of data dependencies between them are
in separate tasks. A process or task may be executedperi-
odically or aperiodically.

Processes and tasks generally have some sort of temporal
constraints on their behavior. The exact nature of these con-
straints depends on the scheduling model, but several types
of temporal measurements of process/task performance are
used. Adeadline is the time at which a process must finish
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FIGURE 2. A pair of tasks.

Proceedings of the 1997 International Conference on Computer Design (ICCD '97)  
0-8186-8206-X/97 $10.00 © 1997 IEEE 



execution after being initiated. Theperiod of a periodic
process or task is the interval between initiating successive
executions.

The RTOS considers a process to be in one of three states:
waiting, ready, andexecuting. In a uniprocessor system,
only one process can be executing at any time. Some pro-
cesses may be waiting for data or other events. Processes
which are not blocked for external events but are not cur-
rently executing are considered ready. The transfer of exe-
cution from one process to another is called acontext
switch. To execute a context switch, the RTOS must save
the state of the old process, determine what process will
next obtain the CPU, and then set the CPU state to that pro-
cess’s state. Context switch overhead is non-trivial but often
not a major factor in performance; scheduling policies, pro-
cess partitioning, memory performance, and other factors
are often more critical to obtaining good performance.

Stankovic et al. provide a good survey of real-time schedul-
ing techniques4. There are several types of scheduling poli-
cies for real-time systems:

• A cooperative scheduler relies on the current process to
give up the CPU before it can start the execution of
another process. Cooperative multitasking is suitable for
extremely simple systems, such as digital filters with
purely periodic inputs, but is not used in sophisticated
embedded systems.

• A static priority-driven  scheduler canpreempt the
current process to start a new process. The highest-pri-
ority ready process is always the currently executing
process. Priorities are set before the system begins exe-
cution.

• A dynamic priority-driven  scheduler can redefine the
process priorities at run time. The highest-priority ready
process is still the currently-executing process, but since
the RTOS can redefine priorities, the scheduling policy
is embodied in the dynamic choice of priorities.

The best-known static priority-driven scheduling methodol-
ogy is rate-monotonic scheduling (RMS)3. Liu and Lay-
land showed that the optimal scheduling policy for one
particular category of real-time systems is to assign priori-
ties in inverse order of deadline—the shortest-deadline pro-
cess receives the highest priority.

A well-known dynamic priority-driven scheme isearliest-
deadline-first (EDF). This policy assigns priorities based
on the time left until each process reaches its deadline, with
the process facing the nearest deadline receiving the highest
priority. EDF results in higher CPU utilization than is possi-
ble with RMS, but since priorities in an EDF system change
during execution, it is more difficult to prove that an EDF

system meets all its deadlines under all conditions.

3.1  Recent Directions

 Recently, there has been a number of new RTOS- and
embedded system-related research results which open new
rand important development directions. We mention only a
subset of them: profile-based load balancing14, lottery
scheduling18, dynamic code generation19, embedding of
security and authentication mechanisms17, jitter hiding20,
verification15, and CORBA-related efforts16.

Bestvarsos14 demonstrated significant advantages of using
the profile-based balancing over traditional balancing tech-
niques for optimization of distributed soft real-time sys-
tems. Set of promising scheduling technique which address
a number of important issues has been also developed by
utilizing randomization18. There has been also efforts to
ensure satisfaction of real-time constraints in object ori-
ented CORBA, an important first step in development of
real-time large software systems.

Inferno, the real-time version of the Plan 9 operating sys-
tem from AT&T Bell Labs, is the first RTOS which pro-
vides a number of cryptographic, authentication, and
protection mechanism17. The first techniques for jitter hid-
ing show significant advantages in handling relative small
variation in throughput rate20. Finally, a number of recent
studies shows that a great advantages in throughput,
latency, and memory requirements can be achieved by
applying the dynamic code generation techniques19.

4  Commercial RTOS Offerings

Leading estimates that a few tens of millions copies of
RTOS have been installed. Some of large RTOS industrial
players include Integrated Systems (pSOS Systems), Wind
River Systems (VxWorks), Microtec Research (VRTX),
Microware Systems (OS-9), Spectron Microsystems
(SPOX), QNX (QNX software), Hewlett-Packard (HP-RT),
Lynx Real-Time Systems (LynxOS).  Among the most
notable recent entries include Lucent (Inferno) and Eonic
Systems (Virtouso RTOS).  Recently Microsoft entered the
market with their Windows-CE embedded operating sys-
tems. While Windows-CE does not directly address
requirements for real-time constraints, at least one company
already announce its real-time version.

While traditional academic RTOS research is dominated by
scheduling efforts, the industrial efforts have been mainly
focused on optimization for three design metrics: memory
requirements and two performance metrics: context switch
time and interrupt latency. Table 1 shows area requirements
and delay for 3 different cache configuration and five differ-
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ent cache sizes obtained using the Flynn’s cache modeling

tools11.  Table 2 show features of some of the most popular
microprocessor cores.  Majority of RTOS have versions
which start from a few KB and go up to several MB.

Although, the state-of-the-art SRAM design reports state by
factor of 2 smaller area per KB of fast memory10,12,9 it is
clear that in cost sensitive applications large RTOS imposes
high cost penalties.

The performance criteria, context switch time and interrupt
latency, are highly platform dependent. For 60 MHz com-
puters both metrics are usually a few microseconds. The
notable exception, with respect to all three metrics is the
Virtuoso RTOS which claims at least an order of magnitude
reduction for all of them.

The state-of-the-art RTOS usually provides about 16 or
more scheduling priority levels, preemption mechanisms,
several tasks scheduling algorithms (e.g. FIFO, round
robin, rate monotonic, earliest deadline first), file and I/O
support, and a sets of utility programs (e.g. linkers, compil-
ers, library managers, debuggers, and increasingly more
often visual interfaces).

A good starting point for obtaining additional information
about commercial RTOS offerings are the following two
WWW sites: http://cs-www.bu.edu/pub/ieee-rts/
Home.html and http://msn.yahoo.com/msn/

omputers_and_Internet/Operating_Systems/Realtime

5  RTOS and [Computer Aided] Design
Research and Development

In this section, we survey the recent RTOS-related CAD
efforts. The results are mainly due to an impetus provided
by two new important trends: hardware/software co-design
and synthesis techniques for systems-on-silicon.

Recent interest in hardware/software co-design5 has opened
up new avenues in RTOS research. The ability to simulta-
neously design the hardware platform and software allows
for new trade-offs and poses new challenges in system
architecture. The move toward systems-on-silicon, moti-
vated by the ability to put one or more sophisticated CPUs
and embedded RAM on a single chip, will make RTOSs
increasingly important over the next several years. Good
design and use of an RTOS can help increase the efficiency
with which scarce hardware resources are used, while a bad
RTOS can kill performance and reliability. And because
systems-on-silicon are much harder and significantly more
expensive to fix than printed circuit boards, performance
and reliability are at a premium.

The RTOS CAD efforts can be classified in four groups:
behavioral synthesis results, system-level synthesis results,
design studies, and theoretical and simulation efforts.

Potkonjak and Wolf addressed synthesis of a system of
multifunctional ASICs where individual tasks are under
hard real-time constraints21. They also introduced a heuris-
tic approach for the design and optimization of ASIC
implementations which realize multiple computational
tasks under hard real-time constraints on a single multi-
functional ASIC22. Kim et al. 20 developed a set of tech-
niques to minimize context switching time using the
behavioral synthesis techniques.

System-level techniques can be grouped into two catego-
ries: uniprocessor and multiprocessor. One major trend in
next-generation embedded systems is multiprocessors
which may contain devices and special-purpose accelera-
tors as well as a CPU; although these devices may not be
programmable, they still allow parallel execution that must
be taken into account by the RTOS. Furthermore, many
embedded systems include several CPUs, often of different
types. Coordination between the processing elements in the
system is essential for both performance and correctness.

While there have been a high interest in the multiprocessor
real-time system-level synthesis, only a few efforts have
been dedicated. Lee et al.1developed a synthesis algorithm
which generates an application-based real-time multipro-
cessor. The algorithm uses a three-step synthesis methodol-
ogy of resource allocation, assignment, and scheduling. Li

Organization Property 1KB 2KB 8KB 96KB

Direct Area (mm2) 2.107036 3.807370 13.962853 161.704666

Mapped Latency (µ) 3.79491 3.97239 4.50642 6.78866

2-way Area (mm2) 2.385426 4.021449 13.799528 156.061787

 Latency (µ) 5.67454 5.74781 6.22891 8.53658

4-way Area (mm2) 3.042479 4.645923 14.245449 154.000343

 Latency (µ) 6.04178 6.23715 6.57738 8.83248

TABLE 1. Cache Trade-offs

Microprocessor core
Clock
(MHz) MIPS

Technolog
y (µm)

Area
(mm2)

Power diss.
(mW) (Volt.)

StrongARM 233 266 0.35 4.3 300 (1.65)

ARM, 7 40 36 0.6 5.9 200 (5)

ARM. 7 Low-Power 27 24 0.6 3.8 45 (3.3)

LSI Logic, TR4101 81 30 0.35 2 81 (3.3)

LSI Logic, CW4001 60 53 0.5 3.5 120 (3.3)

LSI Logic, CW4011 80 120 0.5 7 280 (3.3)

DSP Group, Oak 80 80 0.6 8.4 190 (5)

NEC, R4100 40 40 0.35 5.4 120 (3.3)

Toshiba, R3900 50 50 0.6 15 400 (3.3)

Motorola, 68000 33 16 0.5 4.4 35 (3.3)

PowerPC, 403 33 41 0.5 7.5 40 (3.3)

TABLE 2. State of the art processor cores
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and Wolf2 developed a hierarchical algorithm for schedul-
ing and allocating processes on a multiprocessor. The syn-
thesis algorithm takes advantage of the task structure to
efficiently schedule and allocate tasks to meet deadlines.
Yen and Wolf addressed synthesis of distributed embedded
systems with both hard and soft deadlines13. While all hard
deadline must be satisfied, the optimization goal is to sat-
isfy as many as possible soft deadlines. Recently, Kirovski
et al. proposed a combination of system-level and compila-
tion techniques for area minimization for a set of applica-
tion being executed on core-based systems-on-silicon33.

While there have been a large number of RTOS design stud-
ies and commercial products in several communities, a very
limited efforts have been reported in design community.
The most notable practical application of real-time schedul-
ing approaches, and in particular rate-monotonic schedul-
ing algorithms, include the inclusion of rate-monotonic
scheduling as the scheduling policy for the IEEE POSIX
real-time operating system standard and IEEE Futurebus+
standards26,27,29, and the use of the generalized rate-mono-
tonic scheduling techniques in several major advance-tech-
nology projects such as Space Station Program and the
European Space Agency on-board operating system30. The
strong endorsement of several research and development
groups of the earliest-deadline-first and rate-monotonic
scheduling as most suitable resource allocation policies for
continuous media servers24,25,28 and ATM switch
scheduling34 further emphasizes importance of this hard-
real time scheduling approach.

Before concluding our survey of the related research efforts
with design methodology and algorithmic issues, we refer
to three recent publications in the CAD literature which
addressed use of the rate-monotonic scheduling algorithms.
Hu et al.31 compared several hard real time scheduling poli-
cies during hardware-software partitioning of the controller
for automotive powertrain module, but did not develop syn-
thesis approach or conduct any synthesis optimization.
Atlenbernd32 generalized deadline monotonic scheduling
policy along several lines, but also did not make connection
to the synthesis process. Balarin et al. verified real-time
operating system for an automatically controlled vehicle
using scalable models15.

6  RTOS for Systems-on-Silicon: Future
Directions

In this Section we briefly outline our vision about future of
the RTOS research and development directions. As Bohr
said, it is difficult to predict, in particular future. Neverthe-
less, it seems that some trends can be identified.

There is a pending change of behavioral and system level
synthesis efforts from the algorithm to architecture frame-

work to compiler/RTOS based design methodology.
Exploring the interaction between RTOS and system-level
synthesis of systems-on-silicon as well as between RTOS
and modern embedded real-life applications will be one of
the key issues in synthesis of systems using cores.

Technology, pricing and applications trends, in particular
emerging integration of DRAMs and processor logic and
popularity of large data volume applications, will most
likely alleviate the industrial emphasis on RTOS size mini-
mization. On other hand, it is reasonable to expect that
switching time, and in particular latency, will stay as an
important design metrics.

The increasing complexity of both hardware and software
will accentuate a strong need for both software and hard-
ware debugging.  RTOS benchmarking will receive signifi-
cantly higher attention.  Flexibility and scalability will be
important. Applications trends indicate that both security,
privacy, authentication, and intellectual property protection
mechanisms as well as rich I/O features for interaction with
sensors, actuators, and humans, will gain importance.  Soft
real-time systems will also gain popularity.

There is also a need for adopting a new computational and
hardware models which will form sound theoretical founda-
tion for the new filed.  New technical ideas, such as
dynamic code generation and profile-based resource bal-
ancing, and robust implementation will be the key criteria
for achieving the outlined goals.  Finally, we note the mar-
ket trends for other large system software market, indicat-
ing that most likely a very small number of RTOSs will
have a dominant share of the market.

7  Conclusions

Real-time operating systems have long been critical compo-
nents of embedded computing systems; with the advent of
systems-on-silicon, RTOSs are playing a major role in all
sorts of integrated circuits. The ability to simultaneously
configure the operating system, applications, and underly-
ing hardware platform opens up new avenues for improved
real-time operating systems. We believe that the next few
years will see continued substantial advances in real-time
operating systems.
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