Scheduling Algorithms For High-Level Synthesis 15

References

[1] D.D. Gajski, N.D. Dutt, and B.M. Pangrle, “Silicon compilation (tutorial),” in Proc. IEEE
1986 Custom Integrated Conf. (Rochester NY), May 1986, pp. 102-110.

[2] P.G.Paulin and J.P.Knight, “Force-directed scheduling in automatic data path synthesis,” in
Proc. 24th Design Automation Conf. (Miami Beach, F1), July 1987, pp. 263-270.

[3] C. Tseng and D.P. Siewoirek, “Automated Synthesis of data paths in digital systems,” IEEE
Trans. Computer Aided Design, Vol CAD-5, pp. 379-295, July 1986.

[4] C.H. Genotys and M.I. Elmasry, “A VLSI methodology with testability constraints,” in Proc
1987 Canadian Conf. VLSI (Winnipeg), Oct. 1987.

[5] P.Marwedel, “A new synthesis algorithm for the MIMOLA software system,” in Proc. 23rd
Design Automat. Conf. (Las Vegas, NV), July 1986, pp. 271-277.

[6] S.Y. Kung, H.J. Whitehouse and T. Kailath, VLSI and Modern Signal Processing. Englewood
Cliffsm NJ: Prentice Hall, 1985, pp. 258-264.

[7] Pierre G. Paulin and John P. Knight, “Force Directed Scheduling for th behavioral synthesis of
ASIC’s,” IEEE Trans. Computer Aided Design, Vol.8, pp. 661-679, June 1989.

[8] J. Lee, Y. Hsu, and Y. Lin, “A new Integer Linear Programming Formulation for the Scheduling
Problem in Data-Path Synthesis,” Proc. of the Int. conf. on Computer-Aided Design, pp. 20-23,
1989.

[9] W.F.J. Verhaegh, E.H.L. Aarts, J.H.M. Korst and P.E.R Lippens, “Improved Force Directed
Scheduling,” Proc. of European Design Automation Conf., pp. 430-435, 1991.

[10] I-C. Park and C-M. Kyung, “Fast and Near Optimal Scheduling in Automatic Data Path
Synthesis,” Proc. of the 28th DAC, pp. 680-685, 1991.

[11] K.H. Kernighan and S.Lin, “An Efficient Heuristic procedure for partitioning graphs,” Bell
system technical journal, vol. 49, pp. 291-307, February 1970.

[12] S. Davidson et. al., “Some experiments in local microcode compaction for horizontal machines,”
IEEE Trans. on Computers, pp. 460-477, July 1981.

[13] B.M. Pangrle and D.D. Gajski, “Slicer: A state synthesizer for intelligent silicon compilation,”
in Proc. of IEEE Int. Conf. on Computer Design, Oct. 1987.

[14] R. Jain, A. Mujumdar, A. Sharma and H. Wang, “Empirical evaluation of some high-level
synthesis scheduling heuristics,” Proc. of 28th DAC, pp. 210-215, 1991.

[15] S. Devadas and A.R. Newton, “Algorithms for allocation in datapath synthesis,” TEEE Trans.
on CAD of Integ. Cir. and Systems, vol. 8, pp. 768-781, July 1989.

[16] R. Camposano, “Path-Based Scheduling for Synthesis,” IEEE Trans. on CAD of Integ. Cir.
and Systems, vol. 10, no. 1, pp. 85-93, Jan 1991.

Scheduling Algorithms For High-Level Synthesis 14

9 Summary and Open Problems

In this paper several algorithms have been described for scheduling operations into control steps.
The broad areas that were focussed are: time constrained and resource constrained (using list
techniques).

The ILP approach solves the problem optimally but had large execution times. On the other
hand FDS is quicker but the optimality of the solution cannot be guaranteed. The IR algorithm
can improve the design quality of an initial schedule generated by any algorithm. The list based
resource constrained scheduling algorithms belong to a more complex class of algorithms than
the time constrained algorithms. Among other algorithms discussed simulated annealing is easy to
implement but has extremely large execution times. Path-based scheduling has high computational
complexity but can produce good schedules.

Research in high-level synthesis and scheduling has been going on for more than a decade and yet
there are many unsolved or partially touched issues, some of which are listed below:

e Pipelined scheduling : Optimized scheduling of pipelined behavioral descriptions is a recent
development in the field of behavioral synthesis. Two simple type of pipelining (structural
and functional) have only been attempted.

e Controller cost : Most scheduling algorithms do not consider the controller costs with is
directly dependent on the controller style used during scheduling.

e Area constraints : The resource constrained algorithms could have better interaction between
scheduling and floorplanning.

e Realism : A lot scope scope is there for efficient ways scheduling realistic design descriptions
that contain several special language constructs. Work is also needed on using more realistic
libraries and cost functions. Scheduling algorithms must also be expanded to incorporate
different target architectures.

Scheduling Algorithms For High-Level Synthesis 13

execution only one branch gets executed. Therefore an effective scheduling algorithm should share
resources among mutually exclusive operations. A behavioral description may also contain loop
constructs that exhibit parallelism between different iterations of the loop. There are three ways
of scheduling a loop:

1. Sequential execution : A simple approach is to directly schedule the loop body into control
steps.

2. Loop unrolling : Here certain number of loop iterations are unrolled which results in a loop
that has a larger body but fewer number of iterations. This can be done only when the length
of the loop is already known.

3. Loop folding : Here intraloop parallelism is exploited by folding the loop. Successive iterations
of the loop are overlapped in a pipelined fashion and executed.

Both loop unrolling and folding would increase the control costs. There is always a tradeoff between
the execution speed and the control cost. Also the problem size is an important factor that would
affect algorithms that do these optimizations.

Scheduling Algorithms For High-Level Synthesis 12

path. Such intervals from different are combined using the same graph technique for the final
CDFG. Introducing new control steps to this final CDFG would produce a unique schedule.

8 Some Important Scheduling Issues

In this paper so far scheduling has been discussed without actually considering realistic design
models that would have FUs with varying delays, multifunctional units, behavioral description
that have more than just straight line code. These issues have been discussed in short in the
following sections.

8.1 Functional Units with varying delays

Each functional unit will have a different delay and therefore assuming that an operation assigned
to a control step would take the same time as another operation. This assumption would lead to
a clock cycle that is unusually lengthened by the slowest unit in the design. The following three
approaches are followed to solve this problem:

1. Multicycling : If the clock cycle is shortened to allow fast operations to execute then the slower
operation would take multiple clocks and hence are called multicycle operations. However
input latches are needed in front of the multicycle functional units to hold its operands units
its result is available. This would in turn increase the size of the control logic.

2. Chaining : Two or more operations could be allowed to perform sequentially in a single
control step. Since the output of one FU has to be fed to another FU, they should be directly
connected.

3. Pipelining : A FU may have stages in it separated by latches. This makes it possible to
execute two operations in the same FU since they operate in two different stages. Pipelining
is a simple yet efficient technique to increase parallelism.

8.2 Multi-functional Units

So far its been assumed that a FU can perform only one operation but in practice there are several
cost effective multi-functional being used. For this purpose the scheduling algorithms could be
technology based so that they can explore the library of components. Operations in the critical
path could be assigned faster functional units than those not in the critical path. Also the scheduling
algorithm could try to use the same multi-functional for two data independent operations which
are in two different control steps.

8.3 Realistic Design Descriptions

Behavioral description usually contain conditional and loop constructs. A conditional construct
(similar to an “case” statement) results in several branches that are mutually exclusive. During

Scheduling Algorithms For High-Level Synthesis 11

6.3 Comparison of List Scheduling Algorithms

List scheduling is one of the most popular methods for scheduling operations under resource con-
straints. A table comparing these two approaches is given below.

A COMPARISON OF THE LIST SCHEDULING ALGORITHMS
List-Based Static List

Computational Complexity High Not very high
Quality of schedule Mostly Optimal Mostly Optimal
Space Complexity Very High Not High
Input Problem Size Any size Any size
Execution Speed Slower than FDS | Faster than List-Based
Technique Used Many priority lists One priority list

7 Other Scheduling Algorithms

In addition to the scheduling techniques discussed above several other solution exist to the schedul-
ing problem. Two important approaches: Simulated Annealing and Path-Based scheduling have
been briefly discussed in following sections.

7.1 Simulated Annealing

A simulated annealing based scheduling is described in [15]. Schedules can be represented as a
two dimensional table of control steps versus available functional units. Scheduling can now be
viewed as a placement problem where the table entries are filled by operations. Since a FU can
perform only a single operation in a given control step an entry cannot be occupied by more than
operation. Beginning with an initial schedule the algorithm iteratively modifies the table, each time
displacing an entry and determining the cost of the displacement. A modification is accepted with
a probability eventhough the resulting schedule is not better, so that it is possible to search the
solution space by climbing out of local minimums in search of a globally optimal solution. Although
simulated annealing is robust, it requires long execution times.

7.2 Path-Based Scheduling

Path-based scheduling algorithm [16] minimizes the number of control steps needed to execute the
critical path in the CDFG. All possible execution paths are extracted and scheduled independently.
The schedules of different paths are combined to generate the final schedule. The algorithm gener-
ates constraints between nodes that have to be assigned in different control steps. The problem of
introducing minimum control step constraint is transformed into a clique-partitioning graph prob-
lem. Nodes represent constraint interval and edges represent constraint interval overlapping. A
clique partitioning solution would then indicate the minimum overlapping of intervals in a given

Scheduling Algorithms For High-Level Synthesis 10

6.1 List-Based Scheduling

Scheduling techniques described in [12] belong to list-based scheduling algorithms. List based
scheduling is a generalization of the ASAP algorithm with the inclusion of resource constraints. A
list based algorithm maintains a priority list of ready nodes, i.e., nodes whose predecessors have
already been scheduled. The priority list for each operation is sorted with a priority function that
resolves any resource contentions. In each iteration, operations with higher priority are scheduled
first and lower priority operations are deferred to later control steps. Scheduling an operator to a
control step makes other successor operations ready, which will be added to the priority list.

A simple priority function can be inversely proportional to the mobility, i.e., the greater the mobility
the lesser the priority and vice-versa. This would ensure that operations with large mobility are
deferred to later control steps because the number of control steps into which they could go is more.
Basically this is same as pruning one control step from its mobility range and deferring the decision
later. The SLICER system [13] developed at the University of Illinois uses this type of priority
function.

As it can be seen the success of a list scheduler depends mainly on the priority function used.
Mobility is a good priority function because smaller the mobility higher the urgency for scheduling.
An alternative mobility function could use the length of the longest path from the operation node
to a node with no immediate successor. There are many other priority functions that have been
proposed. The time and space complexity for this approach is slightly more because several lists
have to be maintained dynamically.

6.2 Static List Scheduling

This approach [14] starts by creating a single large list before starting scheduling. This algorithm
differs from ordinary list-based scheduling in both the assignment of control steps as well as in
maintaining the priority list. The algorithm first uses the ASAP and ALAP algorithm to obtain
the least and the greatest possible control step assignments (LCS and GCS respectively) for each
operation. The algorithm then sorts all the operations in ascending order using the GCS labels as
the primary key and then sorts each set of operations with same GCS labels, in descending order
with the LCS labels as the secondary key.

Once the priority list is created the operations are scheduled sequentially starting with the last
operation in the priority list (i.e., with the highest priority). In each iteration when the limit for
the number of resources has been reached the rest of the operations are deferred to later control
steps. the type of the operation matters because eventhough an addition operation is of lower
priority them multiply operations but has the highest priority among addition operations then it
might be scheduled before the multiply operations if an adder unit is available. This scheduling
technique has an advantage over the ordinary list based approach: A list is constructed statically
only once and not grown dynamically.

Scheduling Algorithms For High-Level Synthesis 9

constraints. For example the five possible moves in the schedule in figure-5¢ is shown by the arrow
marks. A random move is picked, moved and locked temporarily in that position. Similarly all
other moves are made until all operations are locked. The costs for all these moves are calculated
and the move that produced the maximum gain (or maximum reduction the cost) is chosen and all
moves in the sequence until this move are moved permanently. Then all operations are unlocked
and the whole procedure is repeated with this new schedule. Very much like the KI. method, the
quality of the result produced by this algorithm depends on the initial solution.

There have been two enhancements made to this algorithm: (i) Since the algorithm is computation-
ally efficient it can be run many times with different initial solution and the best solution can be
picked. (ii) A better look-ahead scheme that uses a more sophisticated strategy of move selection
as in [kris84] can be used.

5.4 Comparison of Time Constrained Scheduling Algorithms
All the time constrained scheduling algorithms use the ASAP and ASAP algorithms in their initial

phases. A comparison table of these approaches is given in the table below. Look at them it can
be said that FDS is the best on an overall basis and hence the most popularly used.

A COMPARISON OF THE TIME-CONSTRAINED SCHEDULING ALGORITHMS
ILP FDS IR

Computational Complexity | Very High Low High

Quality of schedule Optimal Opt./Sub-Opt. Near Opt.

Space Complexity Medium Low Very High

Input Problem Size Small Any size Cannot be large

Execution Speed Low High Medium

Technique Used Math. Prog. | Constructive Refinement

Popularity Least used Most used Medium

6 Resource Constrained Scheduling

In applications where the design is restricted by the silicon area, resource constrained scheduling
algorithms will be useful. The goal of these algorithms is to produce a design with the best possible
performance but still meet the given resource constraints. The schedule is gradually constructed,
one operation at a time, so that the resource constraints and data dependencies are not violated. In
each control step the number operations scheduled in any control step does not exceed the number
of FUs available. Also the algorithm ensures that all the predecessors are scheduled before the
before that operation.

The following sections describe two popular scheduling algorithms in this category.

Scheduling Algorithms For High-Level Synthesis 8

Repeat

step 1: Evaluate time frames: = 0= == === === —~- @ -7 - ----
1.1 Find ASAP schedule @
1.2 Find ALAP schedule * +

step 2: Update distribution grps =~ === = = === = = = = = = -

step 3 : Calculate self forces E + < @
step 4 : Add pred. & Succ. forces _——_——a - >

step 5 : Schedule op. with least

self force. E|
Until (All ops. are scheduled) L S i

@ (b) (©)
Figure5: (a) FDSoutline (b) Distribution graph (c) Sub-opt schedule example

in figure-4a is shown in figure-5b. For each operator the force is calculated using the formulae:
DG(i) = > opnrype Prob(Opn,i), where Prob is the probability of an operation in control step i.
The probability of each vertical bar in the distribution calculated using the formula: Prob = (1 /
Mobility Range). The force for each operation is calculated using the formula: Force(i) = DG(i)
* x(i), where x(i) is the probability of an operation in control step i, and is negative if it is being
removed from control step i and positive if it is being added. The total force for an operation is
calculated by adding the forces of the predecessor and successor operations with its self force.

For example the force for the circled multiply operation is calculated as follows: Probability = 1/2
=0.5,DG(1) =1+ 1+ 0.5+ 0.33 = 2.83, DG(2) = 2.33. Therefore Force(1) = (DG(1) * x(1))
+ (DG(2) * x(2)) = (2.833 * 4+0.5) 4+ (2.33 * -0.5) = +0.25. Similarly Force(2) = -0.25. When the
total force for all the operations are calculated, operation with the least force is scheduled in that
control step. the algorithm stops when all the operations in the DFG have been scheduled.

The complexity of the FDS algorithm is O(cn?) where ¢ is the number of control steps and n is the
number of operations in the DFG. The FDS algorithm not always produces an optimal solution.
For example the DFG shown in figure-5b has a distribution graph where the forces for scheduling
the circled operation into control steps 2 or 3 are the same. In this case the algorithm cannot
estimate the best choice accurately. The best choice here would be to assign it in control step 3 so
that each control step has only one type of FU. If it happens to take the other choice then it would
result in a sub-optimal schedule where there are two FUs of a type in control step 2 or 3.

Alternatively the strategy could be changed by pruning one control step from its mobility range
and postponing the decision to a later stage as in [9]. The FDS algorithm never backtracks on its
decisions and hence is classified under constructive algorithms.

5.3 Iterative Rescheduling

Due to the lack of a look ahead scheme the FDS algorithm is likely to produce a sub-optimal
solution this weakness can be coped by rescheduling some operations in each partial schedule. The
iterative rescheduling (IR) method [10] based on the previously proposed graph-bisection problem
by Kernighan and Lin [11] proceeds by rescheduling one operation at a time. Any initial schedule is
taken each operation is scheduled into an earlier or later step keeping in mind the data dependency

Scheduling Algorithms For High-Level Synthesis 7

2. Constructive heuristics : Force directed scheduling method described in section 5.2 is an
example of a constructive heuristic.

3. Tterative Refinement : An example of this type, iterative rescheduling, is given section 5.3.

The following sections summarize each of these algorithms and finally compare them.

5.1 Integer Linear Programming

The integer linear programming (ILP) method [8] tries to find an optimal schedule using a branch-
and-bound search algorithm. It also involves some amount of backtracking, i.e., decisions made
earlier are changed later on. A simplified formulation of the ILP method is given below.

First it calculates the mobility range for each operation M = {S5; | £y < j < L}, where Ej and
Ly are the ASAP and ALAP values respectively. The scheduling problem in ILP is defined by the
following equations:

n
Minimize (Z(C'k * Ni)) and Z z;; =1, Vi, 1 <i < n, number of operations,
k=1 E,<;<L;

where 1 < k < m operation types are available, and Ny is the number of FUs of operation type k
and C}, is the cost of each FU. Each z;; is 1 if the operation ¢ is assigned in control step j and 0
otherwise. Two more equations that enforce the resource and data dependency constraints are:

Y wij < Niand ((q * zjq) = (p * 2i)) < =1, p<pgq,
=1

where p and q are the control steps assigned to the operations z; and z; respectively.

The ILP formulation increases rapidly with the number of control steps. For unit increase in the
number of control steps we will have n additional x variables. Therefore the time of execution of
the algorithm also increases rapidly. In practice the ILP approach is applicable only to very small
problems.

If it is possible to eliminate the backtracking involved in the ILP method considerable amount of
computation time could be saved. Heuristic methods do the job by scheduling one operation at a
time based on some criterion. The following section describes one such method.

5.2 Force Directed Scheduling

The Force directed scheduling (FDS) is a heuristic method [7] that is a very popular scheduling
technique for time constrained scheduling. The main goal of this algorithm is to reduce the total
number of FUs used. This algorithm achieves its goal by uniformly distributing the operations of
the same type over the available control steps. This algorithm is briefly explained below.

A simple outline of the FDS algorithm is given in figure-5a. Using the ASAP and the ALAP
values the distribution graphs for the operators are obtained. A distribution graph for the DFG

Scheduling Algorithms For High-Level Synthesis 6

Figure 4. (a) Data Flow Graph (b) ASAP schedule (c) ALAP Schedule

The ASAP Algorithm starts with the highest nodes (that have no parents) in the DFG and assigns
time steps in increasing order as it proceeds downwards. It follows the simple rule that a successor
node can execute only after its parent has executed. This algorithm clearly gives the fastest schedule
possible. In other words, it schedules in least number of control steps but never takes into account
the resource constraints. It has also been stated [7] that this technique has proved useful for
near-optimal microcode compaction.

4.2 ALAP Algorithm

This approach is a refinement of the ASAP scheduling concept with conditional postponement of
operations. In the MIMOLA system [5], postponement occurs whenever the operation concurrency
is higher than the number of available functional units. Kung et. al. use a similar scheme [6]
assigning “as late as possible” (ALAP) levels for the operations. Figure-3c shows an ALAP schedule
for the DFG in figure-3a.

The ALAP algorithm works exactly in the same way as the ASAP algorithm expect that it starts at
the bottom of the DFG and proceeds upwards. This algorithm gives the slowest possible schedule
that takes the maximum number of control steps. However this doesn’t necessarily reduce the
number of functional units used.

5 Time Constrained Scheduling

Time constrained scheduling is also called as fixed-control-step approach. Time constrained schedul-
ing is important for designs targeted towards applications in real-time systems like digital signal
processing systems where the main objective is to minimize the cost of the hardware.

Time constrained scheduling algorithms usually use three different techniques:

1. Mathematical Programming : One of the most popular techniques is the integer linear pro-
gramming method described in section 5.1.

Scheduling Algorithms For High-Level Synthesis 5

3 Classification Of Scheduling Algorithms

Over the years researchers have tried to come up with various kinds of solutions [2, 7, 8, 10, 12,
14, 15, 16] to the scheduling problem. Several algorithms have be put forth and each one has
it own advantages and disadvantages. Scheduling algorithms can be broadly classified into time
constrained and resource constrained scheduling, based on the goal of the scheduling problem. In
time constrained scheduling the number of FUs are minimized for a fixed number of control steps.
On the other hand, in resource constrained scheduling the number of control steps are minimized
for a given design cost (number of functional and storage units). I have tried to classify the well
known scheduling algorithms into categories as shown in figure-3.

Scheduling

Algorithms

l |
; Time Resource
Basic Constrained [Constrained } [M iscell aneou

Force Int. Linear Iteratlve Iat h-
Directed Progmg. | |Refinement n i g
AsSoonas |AslLaeas List- Static
Possible Possible Based List

Figure 3: Classification of Scheduling Algorithms

There have been other classifications [7] of the scheduling approaches also. The following sections
give a brief summary of each of these algorithms and compare them.

4 The Basic Scheduling Algorithms

As we have seen DFGs expose parallelism in the design. Consequently each node has a range of
control steps in which it can be assigned. Most of the algorithms that will be described later require
the earliest and the latest bounds within which operations in the DFG can be scheduled. The first
and simplest schemes that are used to determine these bounds are called the As Soon As Possible

(ASAP) and the As Late As Possible (ALAP) algorithms.

4.1 ASAP Algorithm

A simple scheme is to schedule operations “as soon as possible” (ASAP), as is done in Carnegie
Mellon University’s Emerald/Facet system [3] and CATREE system [4] system from the University
of Waterloo. Figure-3b shows an ASAP schedule for the DFG in figure-3a.

Scheduling Algorithms For High-Level Synthesis 4
K

(8o) (o)
N

7

I | |
Control Flow Graph Data Flow Graph

Figure 1. CDFG for the ADDER example Figure 2: The scheduled CDFG

2.2 A Scheduled CDFG Example

Figure-2 shows the same CDFG (in figure-1) scheduled into four synchronous time steps labeled
So, 51, 52, 3. In state Sy the adder busy-waits for the signal START to rise. When START is
asserted, the adder is initialized with the values in A_PORT and B_.PORT. The addition operation
takes place in state S7. In the next state S5, the CARRY_OUT port is assigned the carry of
addition, depending on the value of the most significant bit of RESULT. Finally, in state S5 the
addition is completed by asserting the DONE signal. The CDFG after scheduling is annotated with
state labels, thus maintaining a link between the abstract behavior and the states in the design.

After partitioning the CDFG representation of the behavioral description into control steps, a
separate functional unit (FU) is assigned to execute each operation in that control step. The total
number of FU’s needed for the design is proportional to the maximum number of FU’s in any control
step. Thus, if we can schedule more operations in a control step greater will be the FU’s but fewer
number of control steps would be necessary for the design. On the other hand if fewer operations
are scheduled in a control step, fewer will be the FU’s required but the number of control steps
needed to finish all the operations would be more. Scheduling is an important task in high-level
synthesis because il impacts the tradeoff between design cost and performance.

Scheduling Algorithms For High-Level Synthesis 3

entity ADDER is
port(A_PORT, B_.PORT,
CARRY_IN, START : in bit;
SUM,
CARRY_OUT, DONE : out bit;
);
end ADDER;

architecture BEHAVIORAL of ADDER is
begin

process

variable A, B : bit;

variable RESULT : bit_vector(1 downto 0);

begin

wait until (start = 1);

A := A_PORT;

B := B_PORT;

RESULT := A + B + CARRY_IN;

if (RESULT(1) = 0) then
CARRY_OUT <= 0;

else

CARRY_OUT <= 1;
endif;
DONE <= 1;

end process;

end BEHAVIORAL;

The process statements in VHDL are executed sequentially but the statements without any data
dependencies can be executed concurrently. For example, the assignment statements for the vari-
ables A’ and "B’ can be executed concurrently. This implicit parallelism and control flow in the
input HDLs can be nicely captured in a CDFG as shown in figure-1.

The CDFG has two parts: the control flow graph and the data flow graph. Each entry in the control
flow graph has a corresponding data flow graph. The order of execution of the process statements
are captured in the control flow graph. For example, the assignment statements for the variables
"A” and "B’ can be executed only when control comes out of the 'wait statement’. This has been
clearly captured in the CDFG shown in figure-1.

The following section describes the CDFG of the adder after it has been partitioned into control
steps.

Scheduling Algorithms For High-Level Synthesis 2

Scheduling is one of the most important and primary tasks in high-level synthesis. The following
section gives a brief description of what scheduling is and why it is necessary.

1.2 Scheduling

A Finite State Machine with Datapath (FSMD) model is the most popular one that is used to
describe digital systems at the register transfer level. It consists of an FSM called the control
unit and a datapath. The datapath consists of the storage and functional units necessary for the
system. The FSM consists of a set of states, a set of transitions between states, and a set of actions
(involving the datapath) associated with each transition.

Scheduling can be described as the process of dividing the intermediate representation into states
and control steps, in such a way that it can directly synthesized into an FSMD model. In other
words scheduling does a temporal mapping of the given representation. A behavioral description
and hence the intermediate representation consists of a sequence of operations to be performed by
the synthesized hardware. The task of scheduling, partitions these operations into time steps such
that each operation is executed in one time step. Each time/control step corresponds to one state
of the controlling finite state machine in the FSMD model.

The rest of this paper discusses in detail the general scheduling problem with the help of an example,
classifies the various scheduling algorithms and summarizes and compares them and finally discusses
the open problems in scheduling.

2 The Scheduling Problem

The behavioral description of a design is compiled into a canonical intermediate representation
that can preserve the original behavior of the input HDL specification, while allowing addition of
synthesis results through various refinements. Scheduling algorithms then partition this canonical
intermediate representation so that each partition can be executed in one control step.

2.1 A Canonical Intermediate Representation

The behavioral description of a design is usually given in a hardware description language (HDL)
like VHDL. Since there can be a lot of variation between the semantics of the input HDLs and the
target architectures a canonical intermediate representation is needed. The most popular canonical
intermediate representation used is called a Control Data Flow Graph (CDFG) that captures all
the control and dataflow dependencies of an input behavioral description.

Consider the following VHDL description of a pseudo full-adder that has a START and a DONE
interface signals.

Scheduling Algorithms For High-Level Synthesis 1

1 Introduction

VLSI technology has advanced to such a state that it would be extremely complex to design digital
systems starting at the transistor level or at the logic level. There has been an ever increasing
need for design automation on more abstract levels where the functionality and tradeoffs can be
clearly stated. This led to the development of CAD algorithms that could search the design space
more thoroughly and find nearly optimal designs. Therefore, automation of the design process from
conceptualization to silicon became more important and necessary. Designers provided a top-down
methodology, where they describe the intent of the design and let CAD tools add detailed physical
structure to it. This method of synthesizing systems from a design description became better
suited for the design of complex systems. At this point of evolution, VLSI technology has reached
a point where high-level synthesis (HLS) of VLSI chips and electronic systems is becoming more
cost effective and less time consuming than being fully hand designed by a group of designers.

In the past decade there has been a lot of activity going on in the area of high-level synthesis
[1,2,3,4,5,13] and HLS is becoming an increasingly popular research topic. The following section
briefly describes the various tasks involved in high-level synthesis.

1.1 High-Level Synthesis

High-level synthesis can be described as the process of translation of a behavioral description into
a structural description that comsists of a set of connected compomnents called the data-path and
a controller that sequences and controls the functioning of these components. High-level synthesis
starts at the systems level and proceeds downwards to register transfer (RT) level, logic level and
finally circuit level, each time adding some additional information needed at the next level of
synthesis. The five major tasks involved in high-level synthesis are described below. The first three
steps lead to the data-path formation and the last step leads to the formation of the controller.

1. Compilation : Compilation involves translation of the design description into an intermediate
representation that is most suitable for high-level synthesis.

2. Partitioning : Partitioning deals with division of the intermediate representation (i.e, the
behavioral description or the design) into sub-representations in order to reduce the problem
size.

3. Scheduling : Scheduling partitions the intermediate representation into time steps, thereby
generating a finite state machine model.

4. Allocation : Allocation though closely intertwined with scheduling, involves partitioning of
intermediate representation with respect to space (hardware resources) which is also known
as spatial mapping.

5. Control generation : Finally, this step involves the derivation of the controller that sequences
the design and controls the functional and storage units in the datapath.

Scheduling Algorithms For High-Level Synthesis

Term Paper
ECES34
Course: Digital Design Environments
Instructor: Dr. Ranga Vemuri

by

Sriram Govindarajan

Dept. of ECECS
University of Cincinnati

Cincinnati, OH 45221-0030

March 17, 1995

Abstract

Scheduling has long been recognized as a very important step in the high-level synthesis process.
A wide variety of algorithms exist in the literature for efficiently performing the task of scheduling
in high-level synthesis. The objective of this paper is to present a comprehensive survey of the
various scheduling techniques currently known. These algorithms have been classified into four
different categories: Basic scheduling algorithms, Time constrained, Resource constrained and
Miscellaneous. The Basic algorithms are not used individually for scheduling but are used in the
initial phase of other algorithms. In each category a set of algorithms are described briefly with
examples. A comparison of the algorithms under each category has also been done. Finally,
important issues in scheduling, related to improving performance and exploiting parallelism are
discussed.

General Terms: Design, Performance, Parallelism, Algorithm, Constraints

Additional Keywords: VLSI (Very Large Scale Integrated Circuits), CAD(Computer Aided De-
sign), HLS(High-level Synthesis), FSMD(Finite State Machine with Datapath), VADL(VHSIC
Hardware Description Language), CDFG(Control Data Flow Graph), ASAP(As Soon As Pos-
sible), ALAP(As Late As Possible), ILP(Integer Linear Programming), FDS(Force Directed
Scheduling), IR(Tterative Re-scheduling)

