ISSN 1166-8687

PUBLICATION
INTERNE
N° 1131

OQ\Q/
&
&
9
%
(2
S

5
S
2)

<

A SYNCHRONOUS APPROACH FOR HARDWARE
DESIGN

MICHEL ALLEMAND, FRANCOIS BODIN, APOSTOLOS
KOUNTOURIS,
PAUL LE GUERNIC, JEAN-CHRISTOPHE LE LANN,
ANDRE SEZNEC, CHRISTOPHE WOLINSKI

 |RISA

CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCE

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES
» Campus de Beaulieu — 35042 Rennes Cedex — France

I R I S A Tél. : (33) 02 99 84 71 00 — Fax : (33) 02 99 84 71 71

http://www.irisa.fr

A Synchronous Approach for Hardware Design

Michel Allemand, Francois Bodin, Apostolos Kountouris,

Paul Le Guernic, Jean-Christophe Le Lann, André Seznec,
Christophe Wolinski

Theme 1 — Réseaux et systemes
Projet CAPS,EP-ATR

Publication interne n ° 1131 — Octobre 1997 — 34 pages

Abstract: In this report we present a methodology for designing complex
hardware systems. This methodology is based on the synchronous data flow
language SIGNAL which offers a formal framework to build executable specifica-
tions of hardware components. All design steps (i.e. refinements, verification,
simulation, HDL generation, ...) are based on this unique formalism which
allows to reduce product design cycle by decreasing communication problems
between design phases. In this report we emphasis on the verification process
and the HDL generation. The methodology can be applied to the dataflow
synchronous common format DCT [19].

Key-words: Signal, synchronous data flow, HDL, hardware design, method-
ology

(Résumé : tsvp)

ks

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(upreEssA 6074) Université de Rennes 1 — Insa de Rennes et en Automatique — unité de recherche de Rennes

Une approche synchrone pour la conception
de matériel

Résumé : Ce rapport présente une méthodologie pour la conception de
systemes matériels complexes. Cette méthodologie est fondée sur le language
flots de données synchrones SIGNAL qui offre un cadre formel pour ’écriture
de spécifications exécutables de composants matériels. Toutes les étapes (i.e.
raffinement, vérification, simulation et génération HDL, ...) sont fondées sur
cet unique formalisme ce qui permet de raccourcir le cycle de production en
réduisant les problemes de communications entre les phases de conception.
Dans ce rapport nous mettons ’accent sur les processus de vérification et de
génération de code HDL. La méthodologie s’applique aussi au format commun
flots de données synchrones DCT [19].

Mots clés : Signal, flot de données synchrone, conception de matériel,
méthodologie

A Synchronous Approach for Hardware Design 3

Introduction

In most approaches to complex hardware system design (i.e. microproces-
sors, micro-controllers ...) multiple formalisms such as natural languages (i.e.
English), standard programming languages (i.e. C), hardware description lan-
guages (i.e. Verilog [23] or VHDL [24]) and specific formalisms are used in
the distinct specification steps. One of the consequences of design methods
built on multiple formalisms is that the product design and checking is in-
herently long. Typically, from a specification written in a natural language
a simulation oriented description (usually in C) and a synthesis oriented im-
plementation (usually as a RTL HDL program) are derived. Such design me-
thodology results in a very long cycle production time since communications
between phases are difficult and error prone. For instance, when a design
error (or an unexpected timing constraint) is discovered during the implemen-
tation, updating the design chain is very time consuming and may result in
further errors. Furthermore the use of formal methods is very difficult in such
a multi-formalisms framework.

In this report, we present a design methodology for complex hardware sys-
tems where the synchronous language SIGNAL [17] is used as the unique forma-
lism for all design steps. SIGNAL offers a very adequate formalism to hardware
specification as it provides an implementation independent abstraction based
on synchronous data flows.

One of the main advantage of SIGNAL is provided by its formal semantic
that allows directly the application of formal verification methods. Correct by
construction behavioral simulators and proved equivalent synthesizable HDL
descriptions can also be automatically derived from a SIGNAL specification.
An incremental development from a high level description to a very precise
one is done through the specification of the implementation choices. These re-
finement steps are, as much as possible, proved to be correct and automatically
performed.

This report presents a preliminary description of the methodology for hard-
ware design based on SIGNAL. Section 1 overviews the SIGNAL language, its
functional and operational semantics. Section 2 describes the methodology
for designing and deriving an application from an executable specification.
In Section 3, we show how synthesizable HDL is derived from a SIGNAL spe-

PIn®1131

4 Michel Allemand et al.

cification. In particular, we emphasis on the concept of well clocked imple-
mentations that defines how abstract signals are mapped to implementable
ones. Section 4 provides an overview of the formal verification process based
on model checking techniques.

1 Overview of the SIGNAL Language

SIGNAL [18] is a declarative real-time synchronous data-flow language. It al-
lows to define an application as a relation between typed (mathematical) va-
riables defined on sequences of values (the signals); these relations are descri-
bed as a set of constraints built on signals as equations on domains including
boolean, enumeration, integer, real, arrays and structures associated with a
standard set of operators on those traditional data types.

1.1 SIGNAL

SIGNAL is built around a minimal kernel. It manipulates signals which are
unbounded series of typed values with an implicitly associated clock. In this
language the notion of physical time (chronometric) is replaced by a logical
notion of time (order in a denumerable set of events and a “simultaneous”
equivalence relation). The clock of a signal denote the set of instants (relatively
to the other signals) where values are present. This notion is illustrated figure
1. The absence of a signal (relatively to the presence of other signals) is
denoted by L.

V
— — v3 1+ Vi1

ASYNCHRONOUS
WORLD

NS

Figure 1: Asynchronous model versus the synchronous model.

SYNCHRONOUS
SYSTEM

MONITOR

Irisa

A Synchronous Approach for Hardware Design 5

Signals of a special type ewvent are characterized only by their clock, i.e.

their presence (they are given the boolean value true at each occurrence and L
else). Given a signal X, its clock is obtained by the language expression event
X, resulting in the event signal that is present simultaneously with X.
The constructs of the language are used to specify the behavior of systems in an
equational style: each equation states relations between signals (i.e., between
their values and between their clocks). Systems of equations on signals are built
using the composition construct. In this sense, it is a form of constraint-based
programming. When equations define a function from input values to output
values (ie. is a dataflow function), the resulting program is reactive (i.e., input-
driven). In other cases (it is not enough to consider values, absence symbol is
needed to get functions), correct programs can be demand-driven or control-
driven. A program is said control/demand-driven if further relationship must
be specified by the execution context to produce an input-driven program.

1.1.1 Kernel of SIGNAL
The kernel includes the five following constructs:

e Functions: Y := R(X1,X2, ...,Xn) (e.g., addition, multiplication, conjunc-
tion,...). They are defined on the types of the language. For example,
the equation stating that signal F is the boolean negation of signal E is
written F := not E.
The signals Y, X1, ..., Xn must all be present at the same time. Those
operators for which inputs and outputs have the same clock are called
monochonous operators.

e Delay operator ($): ZA := A $ 1 It is a monochonous operator
which gives the previous value ZA of a signal A relatively to the clock
of A. An initial value has to be given to ZA. It is the only way to access
past values of signals. Signals A and ZA have the same clock. By de-
finition A § (n» + 1) = (A $ n) $ 1 when n > 0. The $ operator is
illustrated figure 2.

e Extraction operator: Y := X when C . The values of Y are produced
by extracting the values of X when the values of the boolean condition C
are present and true. The operands and the result do not have identical

PIn®1131

6 Michel Allemand et al.

| zZA :=A$ 1
| zB:=A$1
| zC:=A$ 3
wher e

integer ZA, ZB init O,
ZCinit [[1]:10, [2]:20,[3]:30]

A 1 2 1 3 4 5 1 6
ZA ? 1 1 2 3 4 1 5
ZzB O 1 1 2 3 4 1 5
ZC 10 20 . 30 1 2 1 3

Figure 2: $§ operator example. Note that ZA and ZB have the same clock as A.

clock, when is then called a polychronous operator. The clock of signal Y
is the intersection (a clock can be seen as a set of instants) of the clock
of X and the clock of occurrences of C at the value true. This operator is
illustrated figure 3.

ok := x <= 1 when found
X 1 0 2 3 0 3
f ound t t f
ok t

Figure 3: when operator example.

e Merge operator: S := A default B. The deterministic merge is a
polychronous operator which defines the union of two signals of the same
type, with a priority on the left one when both are present simultaneously.
The clock of S is the union of that of A and that of B. S holds the value of
A when A is present, otherwise S is equal to B. This operator is illustrated
figure 4.

e Parallel composition of processes is an associative and commutative
operator “|”, denoting the union of the underlying systems of equations
and thus the intersection of the solutions. Systems communicate and in-
teract through signals defined in one system and featured in others. For

Irisa

A Synchronous Approach for Hardware Design 7

S := A DEFAULT B
A__1 2 3 4
B 10 20 30 40

g_ 1102 30 3 4

Figure 4: default operator example. Clock of S is the union of clocks of A
and B.

these signals, composition preserves constraints from all systems, espe-
cially temporal ones. This means that they are present if the equations
systems allow it. In SIGNAL, for processes P1 and P2, composition is writ-
ten: P1 | P2

Except for the local declarations that need the introduction of the notion
of restriction (see [4]), the rest of the language is built upon this kernel. A
structuring mechanism is proposed in the form of process schemes, defined
by a name, typed parameters, input and output signals, a body, and local
declarations. Occurrences of process schemes in a program are expanded (like
macro-expansion) by a pre-processor of the compiler. Derived processes have
been defined from the primitive operators, providing programming comfort:
e.g., synchro{X,Y} which constrains signals X and Y to be synchronous; when
C giving the clock of occurrences of C holding true; X cell B which memorizes
values of X and outputs them also when B is true. Arrays of signals and of
processes have been introduced as well. For a complete description of SIGNAL
see [4].

1.2 Overview of the Semantic of SIGNAL

In this section we briefly present the trace and operational semantics of Si-
GNAL. The trace semantic defines operations on sequences of values of set of
signals. More details on these notions can be found in [16] and [15].

PIn®1131

8 Michel Allemand et al.

1.2.1 Trace Semantics: Flows, Signals and Clocks

Consider an alphabet (finite set) A of typed variables called ports. For each
a € A, D, is the domain of values (integers, reals, booleans...) that may be
carried by a at every instant:
Dy =Ugea (D, U{L})

where the additional symbol L denotes the absence of the value associated
with a port at a given instant. For two sets A and B, the notation A — B
will denote the set of all maps defined from A into B. Using this notation, we
introduce the following objects:

e Events. Events specify the values carried by a set of ports at a consi-
dered instant. The set of the A-events (or “events” for short when no

confusion is likely to occur) is defined as
gA =A— DA

Events will be generally denoted by e and their domain by D(e). We
shall denote by L4 the “silent” event e such that e(a) = L, V a € D(e).

al 1 2 1 3 4 5 1 6
a2 ; 1 1 ¢+ 2 3 1 1 5 :
a3 o 1 1 2 1 4 1 5
al 10 20 1+ 30 1 2 1 3

Figure 5: Example of Trace.

e Traces. Traces are infinite sequences of events. Let IN, = {1,2,---}
denote the set of positive integers, then the set of A-traces (or simply
“traces”) is defined as

7?4 = W+ — & A

An example of trace is given figure 5.

e Compression. The compression of an A-trace T' (deleting the silent
events) is defined as the (unique) A-trace S such that :
Sp =Ty,

where kg =min{m >1 : T, # L}, ky=min{m >k, 1 : T, # L}

Irisa

A Synchronous Approach for Hardware Design 9

where min () = +oo by convention. The compression of a trace T will

be denoted by T |.

e Flows and signals. The condition
T=T1
defines an equivalence relation on traces we shall denote by T ~ T". The
corresponding equivalence classes are called flows. The set of all possible
flows on A will be denoted by Fy4, so that we have!
Fa=(Ta),n~

Elements of F4 will be generically denoted by F4 or simply F' when
no confusion can occur. While the notion of trace refers to a particular
environment (since the L’s are explicitly listed), the notion of flow does
not. Since

Fa=[IN+ — (A= Da)],.

any Fy € F4 may be written as
Fy=(F,)

and the F,’s are termed signals. Hence a signal is a component of a
flow specified by selecting a particular port in the alphabet A. The flow
corresponding to the trace figure 5 is shown figure 6.

al 1 2 v 3
a2 Q 1 1 v 2

a3 0 1 A 2 J

a4 10 20 30 A 3

Figure 6: Example of Flow.

a€cA

6

5
1{ =

P - W N
N M ool

Definition of a SIGNAL program P P is simply a subset, F C F4, of the
set of all flows on A. In other words, we consider a SIGNAL program, as a way
to specify “legal” flows. This set of flows is denoted [P] (i.e. interpretation
of P) when P denotes the syntaxical description.

1./ ~ denotes here the quotient space by the relation ~

PIn®1131

10 Michel Allemand et al.

Restricting P: Consider a subset A’ of the alphabet A. The inclusion A" C A
induces a projection from £4 onto £,. The trace restriction is defined
as:

T— 1Ty
Va, ((a € A) = (Y1, (T y)i(a) = Ty(a))

The restriction, 7j/{a2,a3}, 18 illustrated figure 7. This notion is naturally
extended to processes.

al 1 2 1 4 5 1 6
a2 ; 1 1 1 3 1 1 5 \
a3 0O 1 1 1 4 1 5
ad 0 20 1+ 30 1 2 1 3

Figure 7: Trace restriction.
Process Composition: the composition of two processes P;, on A; and P,
on Ay, denoted by P = P;|P, is the maximal flow set defined by:
P = {F € Faua, / ((ﬂ\z‘h l € Pl)/\ ((ﬂ|A2 l € PQ)}
This is illustrated figure 8.

oy & Mi v2 | v3 va
aza\l\li W2 1 3E>
2 LWL W2 1 W3

P2 o= w1 X2 | xa =5
al 1ov1 V2 5

PIP2 2 &% 1 W1 1 2 1 3 =
a3 X1 X2 1 X3 1 X4

Figure 8: Process Composition.

Let us now define the semantic of the four kind of kernel operators in-
troduced in section 1.1.1 (functions, delay, extraction and merging).

Irisa

A Synchronous Approach for Hardware Design 11

Functions: Y := R (X1,...,Xp)

Vn € IN,,
(Vi) Xip=1LAY,=1)
V (Vi) Xin# LAY, # LAY, =[R](X1,,--+, Xpn))

Where R denotes a monochronous operator and [R] its interpretation.
The notation X1, denotes the value carried by the port with name X1
at the n-th instant of the considered trace. This notation will be further
used in the remainder of this section.

Delay: Y := X$1 init x0

Vn & W+,
(Xpn=1AY,=1)
V (n=1)AX,# LAY, =20)
Extraction: Y := X when B
Vn € ﬂV+,

(B, =true NY, = X,)
V (B, #trueANY, = 1)

Merging: Y := U default V
Vn € W+,

(Up # LAY, =U,)
V (U,=LAY,=1V,)

2 Methodology for Synchronous Hardware De-
sign

Figure 9 illustrates the methodology we propose for synchronous hardware
design. It is based on refinements to achieve the final specification. We can

PIn®1131

12 Michel Allemand et al.

component
library

Specification

Formal V erification)\‘/ 1 * C Timing Ev aluation-1
BN

A

/
C HDL-Sim ulation > C Behavioral-Sim ulation
Gutomatlc T ransf ormatlons)

Gate synthesis Comparison)
Y
D—{ Timing Ev aluation-2 >

Figure 9: Methodology for hardware specification.

HDL generation Refinement Steps Simulator Generation)

VLSI/Gate Arra yletc.

distinguish two kinds of refinements: behavioral refinements which consist
in modifications of the specification and implementation refinements which
consist in adding the implementation details to the specification. Refinements
may be done manually but also automatically (correctness is ensured in this
case). Modification to the specification are made according to the information
provided via various tools which are applied on the specifications:

Formal Verification: The first verification is provided by the compilation of
the specification (see section 4.1 about the compilation process). Then
other verification methods (model checking, theorem provers) are applied
so properties of the specification are formally checked. This step consists

Irisa

A Synchronous Approach for Hardware Design 13

essentially in two phases. In phase one, the formal properties to be veri-
fied by the component description are given. The second phase, mostly
automatic, is the verification of the properties.

Component Library: Hardware components libraries can be taken into ac-
count into this process assuming that interface constraints and a behavio-
ral model are provided. At any step in the design, the user can integrate
a predefined library components.

Behavioral/HDL Simulations: Simulators can be provided either from the
SIGNAL specification (via C code generation) or from the derived HDL
description. As SIGNAL signals are comparable to HDL signals, the simu-
lation results can be compared directly. Deriving the simulator directly
from the SIGNAL specification can be done at any step of the design and
allows to get, generally, faster simulation.

Timing Evaluations: The timing evaluations provide basic data to choose
the implementation of the hardware components [12].

HDL Generation: When a SIGNAL description is a complete specification
of a hardware component (i.e. input-driven, it has been successfully
processed by the SIGNAL compiler), then it can always be fully compiled
in some HDL language. However we are assuming that gate synthesis is
performed through third party tools such as Synopsys.

process INT_MUX2=
{ ? logical CTR; %CTR, V1, V2 are input signals’
integer V1;
integer V2
! integer VAL } %VAL is the output signaly,
(] VAL := (V1 when (not CTR)) default (V2 when CTR)|)
end

Figure 10: Description of an integer multiplexer in SIGNAL.

PIn®1131

14 Michel Allemand et al.

Writing the specification of a component is performed in a top-down man-
ner consisting first in the mapping of the input/output signals to SIGNAL and
then in describing the relationship between these signals. For each signal, a
type must be chosen to carry the data. In SIGNAL, among others the following
types can be used:

event: An event can be used each time a signal has to trigger an action. For
instance, any boolean signal active on true or false can be represented
by an event.

logical: Any signal that must carry a logical value. For instance the signal
command of a two entry multiplexer (shown figure 10).

integer: Most of the usage of integers is done as a preliminary step for any
multi-bit values. As the specification is refined, integers can be replaced
by a simpler types at the HDL implementation level.

arrays: arrays can be used to group signals, of the same type, if there are
always used synchronously.

The component body is described as a set of operations (intrinsically a set
of equations) on input signals (?) to produce the output signals (!). Figure 11
shows a specification of a simple resetable incrementer-decrementer counter.
A second example is the description a simple finite state machine shown figure
13. It is described in SIGNAL using two integer signals, S denoting the next
state, and SZ the current state. For each transition T a signal is created. This
signal is an event that triggers the transition. For complex FSMs we provide
a preprocessor that allows to write automaton description in a more classical
style.

One of the key for refinements is to allow to check that a refinement pro-
duces a specification that is “equivalent” to the previous one. In SIGNAL this
is simply done, either because the refinement is automatically performed and
proven correct (such as the transformation used for HDL generation, see sec-
tion 3), or using formal verification techniques such as model checking (see
section 4). For instance figure 12 shows how equivalence can be checked of a
component part P and the refined one P’. £y, F5, E] and F) allow to express
equivalence between I/O signals.

Irisa

A Synchronous Approach for Hardware Design 15

process COUNTER =
{ ? event RESET,CLK,DEC,INC
! integer I }

(] LNI := ((O when RESET)
default (LI when INC when DEC)
default ((LI+1) when INC)
default ((LI-1) when DEC)
default LI) cell CLK

| LI:= LNI$1

| T :=LI
D)
where

integer LI init O, LNI init O
end

Figure 11: Incr.-Decr. Counter in Signal
IN

El —— equivalencemap— E2

Initial Refined
description description
P P
E1l E 2
OouT1 OK ouT2

Figure 12: Refinement verification.

3 HDL Code Generation

We provide here a systematic, non optimal translation path from SIGNAL
specifications to HDL descriptions. The most fundamental requirement for

PIn"1131

16

Michel Allemand et al.

ol

” /M
000 3:=1lcl

mz /M
D 1 7= ccO

STATE 0O STATE 1

J2 := ccl & c3

AN

ool

process FSM=

event c0O,c1,c2,c3,ccO,ccl,CLK
event 00,01,000,00

:= (1 when T1) default (0 when T2) default SZ
synchro S, CLK

TO :=

T1 :=
T2 :=

ol :=

S$1

(cO0 default c2) when (SZ = 0)

ccO0 when (SZ = 0)

(ccl when c3) when (SZ = 1)

when ((not cl1) default CLK) when (SZ = 1)
when TO

when T3

when T1

when T2

event TO,T1,T2,T3;
integer S, SZ init O

{
!
}
(s
|
| SZ :
|
|
|
| T3 :
| 00 :
|
| 000:
| ool:
[)
where
end

Figure 13: An automaton description in Signal.

the HDL code generation is that the resulting code should be functionally

Irisa

A Synchronous Approach for Hardware Design 17

LIBRARY HDL generation rules

Initial
SIGNAL
program

Transformed
SIGNAL program

SIG to SIG
TRANSFORMATIONS
HDL code

HDL
GENERATOR

options + user choices

Figure 14: HDL generation process.

equivalent to the initial SIGNAL specification. In this section we first define
the notion of implementation we use and then give a structural translation
method, illustrated figure 14, to produce synthetisable HDL code.

3.1 Well Clocked Implementations

The well clocked implementation notion allows us to compare two SIGNAL pro-
cesses, a specification P with a set A of I/O signals and an implementation P’
with a greater or equal set A’ of 1/O signals. Roughly speaking, P’ is a well
clocked implementation of P if, the subset of I/O signals of P’ that correspond
to the I/O signals of P (a one to one correspondance o) at each instant defined
by a clock system of P (definition of present) hold respectively the same values.
In other words, an implementation extends the event domain. Using strobe si-
gnals we are able to sample the events such that we get the initial specification.

A clock system of a process P defines a tree of signal clocks of P. It is
mainly used to define the presence or absence of signals. More formally:

Definition 3.1 (Clock System) Let P a process on A. A clock system on
P is a function s : A — A such that:

o if c € Im(s) then c is a boolean.

o Yz € A there exists an unique n (denoted depths(z)) such that

PIn"1131

18 Michel Allemand et al.

— Vp > n, P (z) = sP(x)
— Vp < n, sP(z) # sP(x)

e VF € [P],Vt € IN.,Vx € A, present(s)f (z) = true = F(t)(z) #L
depths(z

)
where present(s) (x) £ /\ {F(t)(s'(z)) = true}

Compiling a program P computes such an s clock system for P.

The sampling of a process P, according to a clock system s, consists in
extracting the events selected according to s from the traces of P:

Definition 3.2 (Sampling) Let P be a process on A and s a clock system
on P (s can be produced by the compilation of P) such that tick(P) = clk € A
(ie. clk is the fastest clock of P: Vx € A, s4Pths(@)(3) = clk).

Then we define the sampling function, denoted Ss, by:

FeSy([P])

=

(3G € [P],Vt,Ya € A, present(s)®(a) = true = F(t)(a) = G(t)(a))
A present(s)¥(a) = false = F(t)(a) =L

Using clock system and the sampling function, a well clocked implementa-
tion is defined as follow:

Definition 3.3 (Well Clocked Implementation) Let P a process on A and
Q a process on A', such that there exists a one to one correspondance o such
that o(A) C A, let s a clock system on Q.

Q is a well clocked implementation of P with respect to s (denoted [Q] <
[P1) if:

(S([QD))joay =[P]

Irisa

A Synchronous Approach for Hardware Design 19

This definition means that in order to simplify the implementation we can
add and rename signals of process P. In practice, that means that for each
initial signal a we can add a strobed signal stb_a’ and rename the initial signal
into ', that both ' and stb_a’ will be synchronized with the fastest clock clk,
and if we look only at the signals a’ of the new process, its behaviour is the
same as the behaviour of initial process. Figure 15 illustrates the notion of
well clocked implementation.

al Vi V3 V6 CI K
t t t t t t
cl k /\
strobe_al strobe_a2
t t t t t t
clk s S
al Vi V2 V3 V4 V5 V6 V7 V8
f t f f t t f al
strobe_al az

Figure 15: Well clocked implementation.

3.2 HDL Generation

The HDL generation is decomposed in two steps. A first transformation (I)
modifies the SIGNAL specification in a new one that allows the HDL generation.
This transformation must satisfy the property of well clocked implementation
defined in previous section. The second step (H) is a structural translation of
the SIGNAL specification into the HDL target language (VHDL in our case).
This is illustrated figure 16.

xxx.SIG —»@—» yyy.SIG —»@—» xxx_syn.vhd

Figure 16: Transformations for HDL generation

PIn"1131

20 Michel Allemand et al.

3.2.1 The Strobe Insertion Transformation 7

event e —pp —Jpp event e_o
logical | —Jp P —Jpp | ogical | _out
integer i —Jpp —Jp integer i_out

clk ——
| ogi cal e —Jp —p» | ogical e_o
| ogi cal strobe | ogi cal strobe
¢ I ogi cal | Q | ogi cal | _out
| ogi cal strobe | ogi cal strobe
i nteger i i nteger i _out

Figure 17: The strobe insertion transformation I.

The main goal of Z is to transform the SIGNAL program in such a way that
it is composed of signals that can be implemented. In our case this consists
in transforming all signals into strobed signals that are synchronous to a si-
gnal clk that represents the circuit main clock. In other words all signals a
are transformed in two new signals (a’, strb_a’). This transformation is
illustrated figure 17. More formally the transformation is defined as follow.

Definition 3.4 (IN and OUT sets) Let P a process on A such that clk € A
and clk = tick(P) (tick(P) is the fastest signal of P). Syntactically,

e IN(P) is the set of inputs signals of P exept clk;

e OUT(P) is the set of outputs signals of P.

Definition 3.5 (Syntactical transformation Z) Let P a process on A such

that clk € A and clk = tick(P), let ¢ and p two one to one correspondances
such that o(A) U u(A) = A" and o(clk) = p(clk) = clk

Irisa

A Synchronous Approach for Hardware Design 21

e Va; € IN(P), we note a;, = o(a;) and stb_a; = p(a;)
e Vb; € OUT(P), we note b; = o(b;) and stb_b; = u(b;)

We define I (de- 7 .p, ., p,
noting L,) by : P s Q

such that: Q= (] < a; = a; when stb_a] >;cq1.n)
‘ {bla"' ’bm} = P{ala"' ’an}
| < stb_b;- := true when event b; default false >jci1.m)
| < b;. :=b; default b;- >je{l.m}
| < synchro{clk, a;, stb_a;} >ic(1.n}
| < synchro{clk, b, stb- 0%} >jeq1.m)

|) where Ay, aanabla"' abm

Where < equation >pc(1.py means that we have an equation for all k, where

n = Card(IN(P)) and m = Card(OUT(P)).

Correctness of the Z Transformation According to the definition (3.1)
of a well clocked implementation, proving this transformation is done in two
steps that we briefly illustrate in this section.

Process transformation: We prove first that the application of the trans-
formation only on the external interface of a process is a well clocked
implementation of the process. More formally:

Property 3.1 Let P a process A such that clk € A and clk = tick(P)
(tick(P) is the fastest clock of P) then

[Z(P)] =5 [P]
when s defined by the following equations is a clock system of Z(P):

e Va; € IN(P), s(a}) = stb_al, and s(stb_a}) = clk

2

PIn"1131

22 Michel Allemand et al.

e Vb; € OUT(P), s(b}) = stb_b; and s(stb.b;) = clk
e s(clk) = clk

The basic idea of the proof of this first transformation consists in showing
that the two sets of traces (S;([Z(P)])), (1) and [P] are equal.

o

Composition of Transformations: The second part of the proof shows that
the transformation of a composition of two processes is equivalent to the
composition of the transformations of each process and thus that the
recursive application of the transformation is correct. More formally:

Property 3.2 Let P a process on A such that clk € A and clk =
tick(P).
Let (|P1|P|) a subprocess of P (at a syntactical level), P, on Ay, Py on
Ay, A1 C A and Ay C A.
Then:

[Z(A[P)] = [Z(P)|Z(F)]

This property can be proved by equivalence of traces using some addi-
tional lemmas.

3.2.2 Producing HDL Code, the # Transformation

This transformation corresponds to the second step of the HDL generation pro-
cess. Basically H applies a set of rules for a structural translation based on the
chosen HDL target language. These rules translate operators, processes, and
types of SIGNAL to the equivalent elements of the target HDL. For instance,
when generating VHDL, the translation of the default operator is given figure
18. The mapping used for scalar types is the following: event is translated
in BIT, logical is translated in BIT and integer is translated in INTEGER
range MINVAL to MAXVAL.

Integers require a range to be provided for minimizing hardware. We envi-
sion a semi-automatic user-assisted process to extract such ranges. If a range
is not known then default values have to be used depending on the intended
internal /external bus widths.

Irisa

A Synchronous Approach for Hardware Design

23

Y
L e
process DEFAULT_SYN= Lo S ’
{ ? event CLK; M b N
| ogi cal STB_A; g i ‘
A
I ogi cal STB_B; |y
B J 1 =
ogi cal STB_G LT} {b P
c tamt
}
(| synchro {CLK, A STB_A, B, STB_B}
| synchro {CLK, C STB_C} Lo
| C:= (A when STB_A) default B T Tl -
| AH := when STB_A Fiammn!
| BH := when STB B al
| CH:= AH default BH |y
| STB_C := (true when CH) default false L 17T -
1 1l 4‘. o
D

gggggggggggg

Figure 18: The default operator (left) and the synthesis result (right).

A prototype of the VHDL code generator has been implemented. The out-
put of the VHDL synthesis process, for the incrementer-decrementer counter
given in figure 11, is shown figure 19. The corresponding simulation is given

figure 20.

Other circuits have been synthesized with our tool: an address generator
(control protocol and data path), a GCD (based on euclid algorithm) and a
eight words depth fifo. The results are summarized in Table 1. The areas are
obtained using the Class library of the Synopsys [22] tool and after Synopsys

optimization.
SIGNAL | VHDL | gen. || ports | nets | cells Area
time comb. | non comb. | total
Counter 171 4631 | 0.24s 14 85 80 109 56 | 165
Address gen. 3321 | 18791 | 0.31s 20 | 650 | 637 863 1024 | 1887
GCD 231 6071 | 0.34s 29 | 175 | 155 213 112 | 325
FIFO 261 7631 | 0.39s 22 | 646 | 634 798 952 | 1750

Table 1: Synthesis results

PIn®1131

Michel Allemand et al.

24

F
q{

i

F

Figure 19: Synthesis of the Incr.-Decr. Counter.

Irisa

A Synchronous Approach for Hardware Design 25

| Synopeys Wavelorm Viewer ~E ow) — [Unlitkd] I
File Edit Marker GoTo View Options Window Help

[E; E\NIDET!DEE HEXI z+!z—!@! i< |>1 I<<!>>1<—|q| E _

1000 [R L [T |

FEICLK
EUUTIRST
/EAUUT/DEC
EAUUTANG

%

S - o o —

]

3| [=i[=T T=il«] 1T [=
Ready [Time = 1000 Wif=66 [#fec=5 |Sel=1

Figure 20: VHDL simulation of the Incr.-Decr. Counter.

4 Proving Properties on SIGNAL Specifications

To ensure that a SIGNAL specification is correct, simulation is insufficient.
Verification of properties is necessary. The correctness properties that we can
address are:

e Safety properties (nothing bad happens) like partial correctness, mutual
exclusion or invariants. These statical properties have to be satisfied at
all instants.

e Liveness properties (something good will happen) like accessibility or
starvation freedom. These dynamical properties have to be satisfied on
the flows of the SIGNAL program.

In the following of this section we present two methods of verification; the
first one using observers and the SIGNAL compiler, the second one using a
model checking tool, SIGALI that take into account SIGNAL | event and the
clock hierarchical structure.

4.1 Using the SIGNAL compiler

Part of the safety properties can be addressed directly by the SIGNAL com-
piler. The work done by the compiler consists in computing the control of
the program. During this computation called “clock calculus”, the compiler

PIn®1131

26 Michel Allemand et al.

computes clocks of the signals, checks the consistency of constraints between
these clocks, prove some statical properties and find inconsistencies like null
clock expressions (signals without values) or data dependence cycles. This
clock calculus relies on an algebra on set of instants. This is detailed in [1].

We can use this calculus to prove some statical properties. For instance if
we want to prove that a SIGNAL specification S has the statical property P
expressed in SIGNAL, we compile the following composition: (| S | ERROR :=
not P |).

When the compiler computes a null clock for the signal ERROR (which
means that ERROR is never true), the specification S satisfies the statical
property P.

4.1.1 Example

request1 & !request2 !requestl & request2

I
grantedl grant ed2

Figure 21: Control automaton of an arbiter.

C clk

grant 2

grantl

Let us consider the specification of a bus arbiter given in graphical form figure
21. The behavior of this arbiter is the following:

e if one client requests the resource and the other does not request it, then
the requesting client is granted.

e if the two clients request the resource at the same cycle then the client
which has last been granted is not granted and the other is.

Irisa

A Synchronous Approach for Hardware Design 27

Using the method described above, we can prove that the two clients cannot
be granted at the same cycle. In order to prove this safety property we compose
the result of the signal generation from the automaton description and the
expression:

ERROR := GRANT1 when GRANT?2

After compilation, the signal ERROR is a null clock signal and thus that
FRROR is never true and thus that two clients cannot be granted at the
same cycle. However, this method faces the problem that when the compiler
does not compute a null clock. In this case, there are two possibilities: the
property is false or the compiler is not able to compute the null clock due to
its heuristics.

4.2 Model Checking

We have seen that with the signal compiler, if a property is not true, it does not
mean that it is false. The compiler only uses statical properties of SIGNAL and
so cannot address dynamical properties of programs such as liveness properties.
In such cases, a more exhaustive method such as model checking is needed.

We use the SIGALI model checker which is developed in the SIGNAL envi-
ronment. The properties are written in the CTL temporal logic.

4.2.1 Overview of SIGALI

The equational nature of the SIGNAL language leads naturally to the use of
methods based on system of polynomial dynamical equations over GF3 as a
formal model of programs behavior [13]. The SIGALI model checker is based
on this model.

The system of polynomial equations characterize sets of solutions which are
states and events. The techniques used in SIGALI consist in manipuling the
equation systems instead of the solution sets which avoids the enumeration of
the state space. In order to allow the use of SIGALI, a SIGNAL process is trans-
lated into a system of polynomial equations over GF3(true — +1, false —
—1, absent — 0, present — +1). An overview of this method for verifying
SIGNAL programs is given in [14].

PIn®1131

28 Michel Allemand et al.

To limit cases exploration, SIGALI takes advantage of the partial order on
signal’s clock.

4.2.2 Overview of CTL (Computation tree logic)

This branching time temporal logic has first been proposed by Clarke and
Emerson [6]. In their approach, a finite state system is modeled as a labeled
state-transition graph which can be viewed as a finite Kripke structure [11].
In addition to usual temporal operators G (always), F (sometimes), X (next
time) and U (until) which are regarded as state quantifiers, path quantifiers
are provided to represent all paths (A) and some paths (E) from a given
state. Some abbreviated operators are also provides: AF¢ = A(true U ¢);
EF¢ = E(true U ¢); AGp = -EF(—¢) and EGp = ~AF(—9).

In order to be checked by SiGALI, CTL formulae are translated into ex-
pressions involving operations on polynomial dynamical systems.

4.2.3 Requirements

In order to be able to prove properties on SIGNAL specifications with model
checking techniques, we need to have a boolean description. Particularly, the
states of the automatons used to describe the control parts, that are translated
into integers for the simulation step, have to be translated into boolean signals.
In our prototype we use a binary coding of these integers.

4.2.4 Example

Let us consider again the arbiter given 21. If we consider the third transition,
its translation with a boolean coding of the states is given in figure 22.

On this example, we can prove the same safety property as we did with the
compiler. This property is expressed by the following CTL formula:

AG(~(GRANT1 A GRANT?2)) (1)

As SIGALI works in GFsand thus considers three values for a boolean signal,
we have, for instance, to make a difference between the isfalse and the not
operator. The operator isfalse(b) tests if the value of b is —1 and not(b) is
the complementary set operator (not(true) = {false, absent}).

Irisa

A Synchronous Approach for Hardware Design 29

| stateCode 0.X_2X := true when
(when ((not (stateCodeZ 0) and not (stateCodeZ 1))
when (when (not (REQUEST1)) when (REQUEST2))))

| stateCode 1 X 2 X := true when
(when ((not (stateCodeZ 0) and not (stateCodeZ 1))
when (when (not (REQUEST1)) when (REQUEST2))))

Figure 22: SIGNAL description of an arbiter with boolean states

So the formula (1) corresponds to the following SIGALI expression where
and is the intersection set operator:

AG(not(and(istrue(GRANT1), istrue(GRANT2)))) (2)

On this example, we can prove liveness properties too. For instance, we can
prove that if a request is made by a client, it will eventually be granted. These
property is expressed by the formula (3) which script of the corresponding
SIGALI session is also given figure 23:

AG(imp(REQUEST1, AF(GRANTY1))) (3)

> read("ARBITER.z3z");

> read("Ctl.z3z");

> verif (AG(not (and (istrue (GRANT1 4),istrue (GRANT2.5)))));
True

> verif (AG(imp (REQUEST1 1,AF (GRANT1 4))));

True

Figure 23: A SIGALI proof session

PIn®1131

30 Michel Allemand et al.

5 Related Works

Many approaches to hardware specification relies on hardware description lan-
guage such as Verilog or VHDL [23, 24]. As these languages are conceptually
similar to general purpose imperative languages such as C, ADA or Fortran
they tend to the same drawbacks:

1. HDL language descriptions are too close to implementations. The syn-
chronous approach allows to write executable specifications which are
more independent from any implementation.

2. In SIGNAL there is no notion of a synthesizable subsets of the language
which are generally obstacles to ensure portability between tools.

3. Model checking techniques are difficult to implement on HDL (especially
on the full language) while SIGNAL offers a formal model that already
integrates clock calculus. Furthermore, it is possible to automatically
transform programs into an equivalent form that improves accuracy of
model checking. For instance, bounded integers can be transformed as a
set of boolean variables for the purpose of model checking, while integers
are used when generating the implementation or simulating it.

The methodology we are proposing can also be implemented on other syn-
chronous languages than SIGNAL [3, 8]. However, SIGNAL offers a good com-
promise over other existing ones. Indeed, SIGNAL is a declarative language
that naturally provides an abstraction of hardware components. The clock
calculus of SIGNAL synthesizes the constraints and verifies their consistency
(they admit a solution) and their completeness (they admit only one solution).
For instance, compared to Statechart [10] we ensure the deterministic behavior
of a component. For a more extensive comparison of synchronous languages
the reader may refer to [9].

Hardware/software partitioning issues have not been considered so far, ne-
vertheless our approach is also related to software/hardware co-design [20] envi-
ronments for embedded system such as Polis [2], VULCAN [21], COSYMA [7],
Chinook [5], etc. The closest to our approach is Polis. Others systems are ei-
ther based on variations of the C language or on HDL language. Compared

Irisa

A Synchronous Approach for Hardware Design 31

to Polis, rather than having multiple front-ends to a finite state machine lan-
guage, our approach is based on a unique formalism for all specification steps.
However, a SIGNAL interface to Polis (i.e. a translator from SIGNAL to the
Polis CFSM language) could be easily implemented to provide a link between
the tools.

Conclusion

We present in this report a methodology based on the synchronous data flow
SIGNAL language. We show that this language provides an adequate abstrac-
tion for the executable specification of complex hardware components. Gene-
ration of synthesizable HDL code can be done as well as model checking. This
allows to integrate in a unique framework and many of the specification steps.
However, this work still need to be extended to provide a very convenient tool.
The first extension will be to enhance the SIGNAL language to allow more
genericity in the description and also new data types. Part of future work
will also consist in providing proven correct refinement transformations. None
of these extensions are fundamental but they should make hardware specifica-
tions easier to write. The next direction of study is the integration of hardware
components. In particular HDL to SIGNAL translation may be explored to use
existing HDL libraries. Finally to improve the HDL code generation we will
study optimizations based on the clock calculus, such as resource allocation to
decrease hardware cost.

References

[1] T.A. Amabegnon, L. Besnard, and P. Le Guernic. Arborescent Canonical
form of Boolean Expressions. Technical Report 2290, INRIA, June 1994.

[2] F. Balarin, M. Chiodo, D. Engels, P. Giusto, and etc. Polis, A design en-
vironment for control-dominated embedded systems, Usr’s Manual. Tech-
nical report, University of California, etc., December 1996.

[3] G. Berry, P. Couronné, and G. Gonthier. Synchronous Programming of
Reactive Systems, an Introduction to ESTEREL. In K. Fuchi abd M.

PIn"1131

32

Michel Allemand et al.

[10]

[11]

[12]

Nivat, editors, Programming of Future Generation Computers. Elsevier
Science Publisher B.V. (North Holland), 1988.

Patricia Bournai, Bruno Chéron, Thierry Gautier, Bernard Houssais, and
Paul Le Guernic. Signal manual. Research Report 1969, INRIA, Septem-
ber 1993.

Pai Chou, Ross Ortega, and Gaetano Borriello. The Chinook Hard-
ware/Software Co-synthesis System. Dept. of CS and Engineering, U.
of Washington, Tech. Report 95-03-04, March 1994.

E. M. Clarke and Emerson A.A. Design and Synthesis of Synchronization
Skeletons using Branching Time Temporal Logic. In Springer-Verlag, edi-
tor, Workshop on Logics of Programs, volume 131 of LNCS, pages 52-71,
1981.

D.E.Thomas, J.K.Adams, and H.Schmitt. A Model and Methodology for
Hardware-Software Codesign. IEEE Design & Test of Computers, pages
6—15, September 1993.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous
Dataflow Programming Language LUSTRE. Proceedings of the IEEE, 79,
September 1991.

Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Klu-
wer Academic Publishers, 1993.

D. Harel. Statecharts: A visual approach to complex systems. Science of
Computer Programming, 8, 1987.

G.E. Hughes and M.J. Creswell. An Introduction to Modal Logic. Me-
thuen, 1977.

Apostolos Kountouris and Paul Le Guernic. Profiling of signal programs
and its application in the timing evaluation of design implementations.
In IEEE Colloq. on HW-SW Cosynthesis for Reconfigurable Systems, HP
Labs Bristol UK, February 1996.

Irisa

A Synchronous Approach for Hardware Design 33

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

M. Le Borgne, A. Benveniste, and P. Le Guernic. Dynamical Systems
over Galois Fields and DEDS Control Problems. In 3%th IEEE Conf. on
Decision and Control, volume 3, pages 1505-1509, 1991.

M. Le Borgne, H. Marchand, E. Rutten, and M. Samaan. Formal Verifi-
cation of SIGNAL Programs: Application to a Power Transformer Station
Controller. In Springer, editor, 5th Conf. on Algebraic Methodology and
Software Technology, volume 1101 of LNCS, pages 271-285, July 1996.

Paul Le Guernic and Albert Benveniste. Real-time synchronous, data-flow
programming : The language SIGNAL and its mathematical semantics.
Internal publication 298, IRISA, Rennes, June 1986.

Paul Le Guernic and Thierry Gautier. Data-flow to von neumann : the
signal approach. Rapport de Recherche 1229, INRIA, May 1990.

Paul Le Guernic, Thierry Gautier, Michel Le Borgne, and Claude Le
Maire. Programming real-time applications with SIGNAL. Proceedings of
the IEEE, 79(9):1321-1336, septembre 1991.

P. LeGuernic, T. Gautier abd M. LeBorgne, and C. LeMaire. Program-
ming real time applications with signal. Proceedings of the IEEE, 79,
September 1991.

Esprit project EP 20897: Sacres. The Declarative Code DC+, Version
1.2. Technical report, SACRE CONSORTIUM, May 1996.

R.K.Gupta and Giovanni De Micheli. Hardware-Software Cosynthesis
for Digital Systems. IEEE Design & Test of Computers, pages 2941,
September 1993.

Giovanni De Micheli R.K.Gupta. System Synthesis via Hardware-Software
Codesign. Computer Systems Laboratory Technical Report CSL-TR-92-
548, 1992.

Inc. Synopsys, editor. HDL Compiler for Verilog Reference Manual, Ver-
ston 3.5. February 1996.

PIn®1131

34 Michel Allemand et al.

[23] Donald E. Thomas and Philip R. Moorby. The Verilog Hardware Des-
cription Language. Kluwer Academic Publishers, 1994.

[24] IEEE standard VHDL: language reference manual. IEEE, 1987. std 1076-
1987.

Irisa

