
Scalability Analysis of Cluster-based Betweenness
Computation in Large Weighted Graphs

Andrea Castiello, Gianmarco Fucci
University of Sannio

Benevento, Italy
Email: {name.surname}@unisannio.it

Angelo Furno
University of Lyon, ENTPE-IFSTTAR, LICIT

Lyon, France
Email: angelo.furno@ifsttar.fr

Eugenio Zimeo
University of Sannio

Benevento, Italy
Email: zimeo@unisannio.it

Abstract—Computation of node betweenness centrality (BC)
of weighted and directed graphs is a time-consuming task that
could limit the application of such a metric for monitoring
large, dynamic networks. As widely demonstrated in previous
work, approximated approaches represent a solution to reduce
computation time when ranking nodes according to their BC
values is sufficient with respect to knowing their exact BC values.
According to this observation, we have proposed a fast algorithm
for computing approximated BC values for large weighted and
directed graphs. It is based on the identification of pivot nodes
that equally contribute to BC values of the other nodes of the
network discovered via a cluster-based approach.

In this paper, we focus on the performance and scalability
analysis of the proposed algorithm in order to characterize
its behavior with different sets of computing resources and to
identify room for further improvements. To this end, we exploit
a real dataset related to a transportation network. The results
show that the proposed algorithm exhibits significantly lower
execution times if compared with the Brandes’s solution for
computing exact BC values, especially when the number of
available computing resources is limited. However, the speedup is
not negligible even when the number of resources grows, where
improvements are possible, as shown by our analysis.

Index Terms—Betweenness Centrality, Weighted Big Graphs,
Performance Evaluation, Scalability Analysis, Transportation
Networks

I. INTRODUCTION

Graph models are used to study topological bottlenecks
of many kinds of networks. For these models, Betweenness
centrality (BC) [1] is a very popular metric to characterize
nodes that are most traversed by shortest paths connecting
pairs of other nodes of a graph. It has been widely adopted in
many application domains but its high computation time limits
the adoption for real-time monitoring of very large networks.

The fastest algorithm to compute the exact value of be-
tweenness centrality has been proposed by Brandes [2]. Given
a graph G(V,E), it exhibits O(n+m) space and O(nm) time
complexities for unweighted graphs and O(nm+n2log(n)) for
weighted ones, where n = |V | is the number of nodes and m =
|E| the number of edges. To achieve this performance, Brandes
adopts a single-source shortest-paths (SSSP) algorithm based
on breadth-first graph search or on Dijkstra algorithm for un-
weighted and weighted graphs, respectively. Each exploration
is computed with a complexity O(m) and O(m+n · log(n)), for
unweighted and weighted graphs respectively, where m� n2

is the number of edges. This is good for sparse graphs but
insufficient for real-time monitoring of very large networks.

A faster approach, useful for some kinds of applications,
allows achieving lower computation time by calculating ap-
proximated BC values. These strategies try to penalize some
shortest paths or exploit heuristics (possible based on topo-
logical properties) to identify only k� n pivots as sources for
the computation of single-source shortest-paths (SSSP).

While several attempts exist for computing approximated
values of betweenness centrality for unweighted graphs, di-
rected and weighted graphs have been scarcely addressed in
the literature. These kinds of graphs are becoming more and
more important in different application domains, such as social
networking (where the edge weights can indicate the strength
of the interaction between people) and transportation (where
weights can convey information on travel times, vehicle flows,
etc.) among many others. Moreover, the growing size of the
graphs considered in such application domains poses signif-
icant challenges from a scalability point of view, demanding
more and more computing power when it comes to compute
network metrics on top of them.

In this paper, we discuss accuracy, performance and scala-
bility (with reference to the number of computing resources) of
our algorithm introduced in [3]. Similarly to the ones proposed
in [4] and [5], the algorithm exploits topological characteristics
of graphs to classify nodes for their selection as pivots, thus
allowing for rapidly computing approximated values of BC on
very large weighted and directed graphs. Differently from the
papers above, it exploits clustering to identify reference nodes
(clusters’ border nodes) to perform a topological analysis. The
solution can calculate an almost exact value of betweenness
centrality for several nodes, i.e., the most critical ones, while
keeping a good approximation for the others, with an execution
time that strictly depends on the number of retained pivots.

The evaluation, which is the main focus of this paper, is
organized in two sections. In the first part, we evaluate the
accuracy of our algorithm on a very-large graph, correspond-
ing to the transportation road network covering the whole
Rhone-Alpes region, France. The original graph is directed and
unweighted, but we enrich it with dynamic weights derived
from Global Positioning System (GPS) taxi traces, thus gen-
erating a dynamic, directed and weighted graph. Edge weights
represent the hourly median travel time on the corresponding

road segments, as estimated from the taxi trips. Computing
betweenness centrality on such a graph (e.g., every hour) can
provide indications about re-distributions of the traffic flow (or
potential congestion), if we make the assumption that people
prefer the shortest (fastest) paths to reach their destinations.

In the second part, we present an in-depth discussion on
the performance behavior exhibited by the algorithm, with a
fixed dataset and by varying the set of available resources.
A full more general analysis with multiple dataset has been
addressed in [6] for unweighted graphs, and it will be extended
to the weighted version of the algorithm in future work. The
evaluation shows that our approximated solution is able to
significantly reduce the number of sources nodes (pivots) for
SSSP computation thus, consequently, lowering the sequential
computing time. Additionally, we show that our solution
preserve a good level of parallelism, thus permitting to exploit
multiprocessor and distributed computers to further reduce
computation time when such hardware is available or when
higher accuracy is needed.

The rest of the paper is organized as follows. In Sec. II, we
present related work. In Sec. III, we describe our algorithm for
fast BC calculation, while Sec. IV presents the evaluation of
our approach in terms of accuracy on a large-scale transporta-
tion dataset. Sec. V reports on an in-depth performance and
scalability analysis of the proposed algorithm. Finally, Sec. VI
concludes the work by also discussing future directions.

II. RELATED WORK

Betweenness centrality, originally proposed in [7] for undi-
rected graphs was extended to directed graph in [8]. Brandes in
[2] proposed a faster algorithm which also works for weighted
networks. The idea was the adoption of single-source shortest-
paths algorithm via breadth-first graph search and Dijkstra
algorithm for unweighted and weighted graphs, respectively.

Several approaches, aiming to evaluate exact or approxi-
mated solutions, have been developed to further reduce the
computation time. The proposed solutions can be classified
according to three main categories: (i) exploiting and increas-
ing parallelism, (ii) estimating BC values through a partial
exploration of graphs, (iii) calculating BC values of fraction
of nodes in dynamically evolving graphs.
Parallel approaches: In [9], the first parallel implementation
for computing betweenness centrality is presented, which
handles weighted graphs as well. It is based on a fine-grained
multi-level parallelism, in which the neighbors of a given node
are traversed concurrently on a shared data structure with
granular locking. The algorithm was successively improved
[10] by removing the need for locking in the dependency ac-
cumulation stage of Brandes’ algorithm through the adoption
of a successor list instead of a predecessor list for each node.
Incremental approaches: A different set of approaches
(stream-based) tries to avoid recomputing the BC values of all
the nodes of a graph G′ ≡ G+∆G when they are known for
a previous configuration G. For example, in [11], researchers
proposed an efficient approach that reduces the search space by
focusing only on the vertices whose betweenness centralities

get changed as a consequence of an update in the graph.
Similarly, in [12], computation time is reduced by using the
hypergraph sketch data structure, i.e., a weighted hyper-edge
representation of shortest paths. Based on sampling based tech-
niques [13], Bergamini et al. first proposed a semi-dynamic
[14] and later a fully dynamic approach [15] for dynamic net-
works (both weighted and unweighted), capable of performing
in-memory computation with millions of edges. Recently, an
efficient algorithm for incremental BC computation [16] has
been proposed. The algorithm has good performance when the
graph changes for a very limited number of nodes. Conversely,
the high speedup drastically reduces when the graph is subject
to significant changes of its topology.
Approximated approaches: The third research trend focuses on
achieving low computation time by calculating approximated
BC values. These strategies penalize some shortest paths,
whose computation is the most expensive task in the whole
process. For example, in [17], the authors only consider paths
up to fixed length k. Brandes and Pich [4] also proposed an
approximated algorithm for faster BC calculation, by choosing
only k� n pivots as sources for the SSSP algorithm through
different strategies, but they overestimate the BC of unimpor-
tant nodes that are near a pivot. To overcome this problem,
various solutions have been proposed. A generalization frame-
work for betweenness approximation [5] proposes to scale BC
values in order to reduce them with reference to nodes close
to pivots. In another paper, a solution to reduce the pivots for
nodes with high centrality is proposed via adaptive sampling
techniques [18]. A recent work [19] based on approximation
shows large fluctuations of accuracy over the top-100 nodes
on a scale-free graph. A random, shortest path based [20]
approximation approach was presented in [13].

For directed and unweighted networks an approach is pre-
sented in [21], where similarly to [22], authors pre-compute
reachable vertices for all the graph nodes. However, at the best
of our knowledge, there is a scarcity of contributions focused
on both weighted and directed networks. A proposal in this
direction is presented in our recent work [3]. Here, we briefly
describe the approach to present its main internals and support
the discussion on performance and scalability of the algorithm,
which is the main contribution of this paper.

III. FAST BC COMPUTATION OF WEIGHTED AND DIRECTED
GRAPHS

In this section, we present the W2C-Fast-BC algorithm [3],
the weighted and directed version of the one previously
proposed in [6], [23]. It allows reducing BC computation time
of weighted and directed graphs in a parametric way, i.e., by
acting on the accuracy of BC values. The algorithm is based
on the Brandes’ one for weighted graphs and on the heuristic
proposed in [24] for identifying graph pivots.

As in our previous work [6], [23], we exploit a fast
clustering algorithm based on modularity for identifying graph
communities and their related border nodes. Specifically, we
used a distributed implementation [25] of Louvain method for
weighted and directed graphs [26].

In the following subsections, we briefly introduce the
adopted notation, the Brandes’ algorithm and discuss mod-
ularity for weighted graphs.

A. Notation

We assume the following definition throughout the paper.
Let G(V , E, T , W , f (E, T)) be a dynamic, weighted, directed
graph, where V denotes the set of nodes and E ⊆ V×V the set
of edges. N = |V | denotes the number of nodes in the graph. W
represents the set of weights and T the set of time units. For
instance, for very large networks, T may represent hours of the
day. We highlight that the length of the considered time unit
(e.g., 1 hour) represents the period of observations before a
new computation of BC is launched, and translates therefore
into a time constraint for computing betweenness centrality.
The function f : E×T –> W maps each edge ei j ∈ E at time
slot t ∈ T to a weight w ∈ W . We denote as Ĝ(V , E, Ŵ) a
directed and weighted instance of the dynamic graph G related
to a specific time slot t̂ and therefore associated to a subset of
weights Ŵ ⊆W . The algorithms reported in the following are
related to a specific instance Ĝ of the dynamic graph G, i.e.,
BC computation is iteratively performed (in a quasi-real time
fashion) at the beginning of time slot t̂ +1 on the instance of
the dynamic graph related to time slot t̂.

A path p(vi, v j), between two nodes vi and v j of Ĝ, consists
of a set of nodes and edges that connect these two nodes.

The length of a path between any two nodes vi and v j,
represented by len(p(vi, v j)), is the sum of the weights of
the edges (or hops) to reach v j from vi. If nodes vi and v j
are directly connected, then the path length is the weight of
the link, or 1 for unweighted graphs. A shortest path between
any two nodes vi and v j, denoted as sp(vi,v j), is a path with
the minimum length, among all the paths connecting the two
nodes. Multiple shortest paths may exist between the same
pair of nodes, i.e., multiple paths having the same length. The
distance d(vi,v j) = len(sp(vi,v j)) is the length of the shortest
path between nodes vi and v j. We denote σviv j as the number
of shortest paths between vi and v j, while σviv j(vk) represents
the number of shortest paths from vi to v j that cross node vk.

B. Brandes’ algorithm

Given a graph Ĝ, the pair-dependency of a source node s on
an another node v for a destination t of the graph is defined as
δst(v) = σst (v)

σst
. The betweenness centrality of any node v can be

expressed in terms of dependency score δs•(v) = ∑t∈V δst(v),
obtained by summing the pair-dependencies of each pair of
nodes on v that has s as source node. To compute this
score, Brandes’ algorithm exploits a recursive relation that is
motivated by this observation: let R = {w : v ∈ Ps(w)} be the
set of nodes w such that v is a predecessor of w along a shortest
path that starts from node s, and Ps(w) = {v ∈V : {v,w} ∈ E,
d(s,w) = d(s,v) + d(v,w)} the set of direct predecessors of
a generic node w in the shortest paths from the source node
s to w; then, v is a predecessor also in any other shortest
path starting from s and passing through a different w∈ R [2].
Consequently, we have:

δs•(v) = ∑
w:v∈Ps(w)

σsv

σsw
(1+δs•(w)), (1)

Finally, the BC of node v is obtained as:

BC(v) = ∑
s∈V

δs•(v). (2)

For scaling purpose, BC values are often normalized by
dividing them by (n−1) · (n−2)/2 for undirected graphs and
by (n−1) · (n−2) for directed ones.

Conceptually, Brandes’ algorithm runs in two phases. Dur-
ing the first phase, it performs a search on the whole graph
to find all the shortest paths starting from every node s,
considered as source of the breadth-first exploration of the
whole graph. In the second phase, it performs dependency
accumulation by backtracking along the discovered shortest
paths. During these two phases, the algorithm maintains four
data structures for each node found on the way: a predecessor
set Ps(v), the distance ds(v) from the source, the number of
shortest paths from the source σst(v) and the dependency
accumulation when backtracking at the end of the search.

C. Weighted modularity and Louvain method

Modularity is a metric, defined as a value between -1 and
1, to measure how tightly the nodes are attached to each other
in the network. It was introduced to identify communities
in undirected and unweighted (or weighted) networks [27].
Given a graph Ĝ, partitioned into a set of communities
C = {c1,c2, ...,cD}, formally, modularity [28] of graph Ĝ is
defined as follows:

Q =
1
m ∑

i, j∈V

[
Ai j−

kin
i kout

j

m

]
δ (ci,c j) (3)

where δ is 1 if ci = c j (nodes i and j belong to the same
community) or 0 otherwise, m is the sum of all of the edge
weights in the graph, kin

i , kout
j are the sum of the weights

of the edges entering node i and the edges exiting node j,
respectively; Ai j is 0 if nodes ni and n j are not connected. In
case the nodes ni and n j are connected then Ai j is wi, j, that is
the weight of the edge connecting nodes i and j.

We exploit modularity for clustering weighted directed
graphs with the Louvain method [29], [30]. The algorithm
initially searches for small communities. Then, it creates a
new graph whose nodes are the communities identified in
the previous step. These two steps are iteratively run until
there is no modularity gain derived by aggregating clusters
in larger communities. In our implementation, the weights
used to compute weighted modularity are assumed as in the
notion of closeness (nodes are tighter if they have lower
distance or travel time), i.e. “smaller is tighter”. This choice
is motivated by the fact that we want to reduce the number
of border nodes for each cluster. Therefore, we generate
communities whose nodes are highly locally inter-connected
with short (or fast to travel) local paths. Conversely, when

computing shortest paths in SSSPs, weights are assumed as in
the notion of length (or travel time), i.e., “higher is farther”.
We use a distributed variant of the Louvain algorithm for
weighted and directed graphs [25], [26]: all vertices select a
new community simultaneously, updating the local view of the
graph after each change. Even though some choices will not
maximize modularity, after multiple iterations, communities
will typically converge thus producing a final result relatively
close to the sequential version of the algorithm.

D. W2C-Fast-BC

Given a graph Ĝ, we split it into a set of clusters (i.e., C)
by using the Louvain (Alg. 1, line 3) method for weighted
graphs [25]1.

Algorithm 1 Pseudo code of the W2C-Fast-BC Algorithm
1: function W2C-FAST-BC(Ĝ,C,kFrac)
2: . Phase1
3: C← weightedLouvainClustering(Ĝ)
4: . Phase2
5: map i← 1, |C| do
6: bordernodesi← f indBorderNodes(Ĝ,Ci)
7: end map
8: map i← 1, |V| do
9: localδi← computeLocalδ (i,C,bordernodes)

10: end map
11: reduce i← (1, |V|), localδs, localδz, i = j do
12: localBCi← localδs(i)+ localδz(j)
13: end reduce
14: map i← 1, |C| do
15: superClassesi←WkMeansClustering(Ci,classesi,kFrac)
16: end map
17: map i← 1, |superClasses| do
18: Pi← selectPivotO f (superClassesi, localBC)
19: end map
20: . Phase3
21: map i← 1, |P| do
22: δi← computeδFrom(Pi)
23: δi← (δi− localBC) · |superClassesi|
24: end map
25: reduce i← (1, |V|),δs,δz, i = j do
26: BCi← δs(i)+δz(j)
27: end reduce
28: for i← 1, |V| do
29: BCi← BCi + localBCi
30: end for
31: return BC
32: end function

The main result of clustering is the identification of border
nodes (an array for each cluster). A border node is a node
having at least one neighbor node in a different cluster (line
6). Then, a parallel execution of Brandes’ algorithm (based
on Dijkstra2) is performed inside each cluster to compute
the local BC (lines 8-13). This computation generates the
partial inner-cluster contribution to the BC of each node
and additional information, such as the number of weighted
shortest paths and distances from a node of a cluster towards
each border node of the same cluster. The information above

1The implementation leverages a Scala parallel solution partially based on
the Distributed Graph Analytics (DGA) by Sotera: https://github.com/Sotera/
distributed-graph-analytics.

2The adoption of Dijkstra algorithm instead of breadth first search
represents a main variant of our FastBC algorithm proposed in this paper.

is used to identify the nodes inside each cluster that equally
contribute to the dependency score of each node of the graph
(equivalence class, see [6], [24] for more details). Taking
into account that nodes belonging to the same class produce
the same dependency score on each node of the graph, one
representative node should be identified as a source node for
applying Dijkstra’s algorithm (line 18). This node is called
class pivot.

The partial dependency score calculated for the pivot is
then multiplied by the cardinality of the pivot class (line 23).
This method avoids re-applying Dijkstra’ algorithm to another
node of the same class, thus ensuring fast calculation of BC
if P� N, where P represents the set of pivots selected and N
represents the number of nodes of the graph. The final value
of BC is obtained for each node by summing up all partial
contributions (produced by the reduce operation, lines 25:27)
with local BC values (lines 28:30).

To further reduce the computation time, we extended the
concept of class by introducing super classes through an
additional clustering operation inside each initial Louvain-
derived cluster (line 15). A super class is a group of classes,
belonging to the same Louvain cluster and obtained by clus-
tering (via K-means) the vectors generated by considering, for
each node, the normalized distances from the Louvain cluster’s
bordernodes and the amount of shortest paths towards them.

To perform class grouping, we exploit a parallel K-means
algorithm by using a different K for each initial Louvain
cluster. K is defined as a fraction (K-Fraction) of the initial
number of classes belonging to each Louvain cluster. For
example, by considering a fraction equals to 0.4, the algorithm
adopts a 0.4 fraction of the number of classes in each Louvain
cluster. By this approach, we are able to drive the behavior of
the algorithm towards the desired computation time. However,
when the computation time decreases the approximation wors-
ens, as deeply illustrated in our previous work [6], [23], [24].

IV. ANALYSIS OF A DYNAMICALLY WEIGHTED
REAL-WORLD ROAD NETWORK

To evaluate our W2C-Fast-BC algorithm, we leveraged
a large-scale transportation graph, namely Rhone-ROADS,
corresponding to the entire road network of the Rhone de-
partment, France [31]. The graph includes the agglomeration
of Lyon and its surroundings and has a geographical extent
of approximately 3,300 Km2. The network is directed and
unweighted, with 117,605 nodes and 248,337 edges.

We transformed the Rhone-ROADS graph into a dynamic
weighted graph by relying on an additional dataset, namely
Rhone-TAXIS, which reports on anonymized GPS traces of
taxis active in the Rhone department. Rhone-TAXIS has been
collected by the French operator Radio Taxi via a fleet of
approximately 400 taxis during 2011-2012. Geo-referenced
taxi trips are collected according to a variable sampling
interval (between 10 and 60 seconds), with a global average
of 800,000 measurements per day.

The generic sample of the Rhone-TAXIS dataset, i.e., an
elementary taxi trip, includes the time-stamped start and

arrival GPS positions of a small segment traveled by the
associated taxi identifier. These measures permit to roughly
estimate the traveled distance and the instant speed of the taxi
moving along a given road segment.

To obtain the final dynamic weighted graph from the above-
mentioned datasets the following procedure was applied:
1) As a preliminary cleansing step, we filtered out elementary

trips with unrealistic speeds (≥ 130 Km/h).
2) By considering only the retained elementary trips, we

map-matched all taxi trips to the edges of the Rhone-
ROADS graph. This step allows identifying the association
between elementary trips and the directed edges of the
Rhone-ROADS graph. To that purpose we used the Python
Mapillary map-matching open source library3.

3) From the map-matched elementary trips, we computed the
hourly median speeds (referred to a typical day) of each
Rhone-ROADS edge. More precisely, we created a 24-
sized vector (one entry for each hour of the day) for each
edge e, where the entry associated to the generic time slot
(i.e., hour) t is computed considering the median of all the
speed values of the elementary trips associated to edge e
and related to time slot t from possibly different days.

4) Edges with no elementary trip associated during time slot t
are filtered out and not considered in the following phases.

5) We calculated the median hourly travel time vector for each
edge e from the previous vectors. The estimated travel time
to cross an edge at the generic time slot t is obtained as the
ratio of the length of the corresponding road link (a static
information known from the Rhone-ROADS graph) to the
hourly median speed estimated on that link (the entry at
time slot t from the speed vector).

6) We reconstructed the final dynamic graph as a graph
composed of 24 different weighted instances. The snapshot
instance Ĝ of the dynamic graph for a specific time slot t̂
is obtained by considering the weights associated to each
edge e as from the entry t̂ of the travel time vector above.

The W2C-Fast-BC and Brandes algorithms are applied
iteratively to each hourly instance of the dynamic graph (i.e.,
a snapshot Ĝ). This is conceptually equivalent to an on-line
operational situation, where the graph naturally emerges from
sensor-collected data used to continuously compute up-to-date
traffic information on each edge with hourly periodicity.

It is worth noting that, given the relatively small size of the
observed taxi fleet and the circadian rhythm characterizing
human mobility, snapshots of the dynamic graph related to
rush hours (e.g., 7:00-09:00 and 17:00-19:00) have a much
smaller size with respect to the original Rhone-ROADS graph,
i.e., approximately 30,000 nodes and 60,000 edges (see the
framed portion of the graph in Fig. 1). Such size further
reduces for graph snapshots related to non-rush hours. Indeed,
most of the observed elementary trips are condensed within the
city center of Lyon, with only few observations recorded in the
outskirts and within rural areas as well as during night time.
However, since the goal of the paper is to prove the efficiency

3https://github.com/mapillary/map matching

Fig. 1. KNR-interpolated graph at 08:00

Fig. 2. Top-1000 nodes’ BC values at 08:00

of our solutions with respect to very-large scale weighted
networks, we have decided to increase the scale of the dynamic
graph by means of a spatial interpolation technique.

To obtain a dynamic, realistic, weighted network, larger than
the one directly observed from taxi trips, we leveraged an
interpolation technique that we call KNR-interpolation4. The
technique allows estimating the hourly value of median speed
(and thus the median travel-time weight) for those edges of the
original Rhone-ROADS network with no available observation
from taxi trips at time slot t. The KNR-interpolation is applied
in place of step 4) of the previously described graph weighing
procedure. Fig. 1 graphically shows the KNR-interpolated
snapshot at 08:00 of a typical working day. Fig. 1 also presents
speed-ratios (i.e., median speed divided by road speed limit)
either estimated via taxi traces (for the framed portion of the
graph) or via the KNR interpolation technique. Red and orange

4KNR-interpolation is based on K-nearest-neighbor regression [32], a
non-parametric supervised machine-learning technique. Each edge is modeled
as a data point with multiple topological features. The median speed at time
slot t, available for some edges (labeled instances) and missing for other ones
(unlabeled instances), represents the target interpolated feature.

0.2 0.4 0.6 0.8 1.0
K-Fraction

0

1000

2000

3000

4000

5000
E
x
e
c.

 T
im

e
 [
s] K-fraction: 0.2,

execution time: 987.697 s

W2C-Fast-BC

Exact-BC

3.
0

5.
0

11
.0

16
.0

21
.0

27
.0

32
.0

37
.0

41
.0

44
.0

47
.0

Percentage of pivot nodes [%]

Fig. 3. Execution time of W2C-Fast-BC vs Brandes-BC at 08:00 (with 10
cores)

0.2 0.4 0.6 0.8 1.0
K-Fraction

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
v
g
.
P
e
rc

.
E
rr

o
r

[%
]
(t

o
p
-1

0
0

0
)

K-fraction: 0.2,
avg perc error : 0.1317

W2C-Fast-BC

Fig. 4. W2C-Fast-BC average perc. error (top 1,000 nodes) at 08:00

colors indicate highly-congested edges, i.e., lower values of
the speed ratio, while greens and blues indicate a smooth,
non-congested situation at time t. The resulting graph has
approximately the same size of the Rhone-ROADS network.

The values of BC for the top-1000 nodes are reported
in Fig. 2 (nodes with larger circles have higher BC) for
the snapshot related to 08:00. Fig. 3 shows that the exact
algorithm for computing BC on the weighted graph requires
a computation time of more than one hour (when using 10
cores for parallel execution of Brandes’ algorithm), therefore
being unable to complete within the duration of the time slot.

Remarkably, our W2C-Fast-BC computes in only 987 sec-
onds (i.e., approximately 15 minutes) when using a K-fraction
equal to 0.2 (always using 10 cores for parallelism, as with
Brandes’ exact algorithm). Moreover, W2C-Fast-BC shows an
average percentage error of only 0.13%, as it can be seen
in Fig. 4, related to different values of K-fraction, and a
maximum percentage error of 0.8% over the top-1000 BC
nodes (as reported in Fig. 5, which describes the percentage
errors associated to each of the top-1000 nodes of the graph,
with K-fraction equal to 0.2).

Similar results have been observed over the whole dynamic
graph (i.e., the 24 hourly time slots, as reported in Fig. 6 and
Fig. 7), thus proving the adequacy of our solution for quasi
real-time monitoring of dynamic, weighted road-networks.

0 200 400 600 800 1000
Nodes ranked by Exact-BC (top-1000)

-0.400%

-0.200%

0.000%

0.200%

0.400%

0.600%

0.800%

P
e
rc

.
E
rr

o
r

[%
]

Perc. Error

Fig. 5. Percentage errors on the top-1000 nodes with K-fraction = 0.2

00
:0

0

02
:0

0

04
:0

0

06
:0

0

08
:0

0

10
:0

0

12
:0

0

14
:0

0

16
:0

0

18
:0

0

20
:0

0

22
:0

0
0

1000

2000

3000

4000

5000

6000

7000

E
x
e
c.

 t
im

e
 [

s]

W2C-Fast-BC (K-frac. = 0.2)

Exact

Fig. 6. Dynamic Graph: execution time

00
:0

0

02
:0

0

04
:0

0

06
:0

0

08
:0

0

10
:0

0

12
:0

0

14
:0

0

16
:0

0

18
:0

0

20
:0

0

22
:0

0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
v
g
.
P
e
rc

.
E
rr

o
r

[%
]

W2C-Fast-BC (K-frac. = 0.2)

Fig. 7. Dynamic Graph: average percentage error (top-1000)

V. PERFORMANCE AND SCALABILITY ANALYSIS

In order to analyze the performance of the W2C-Fast-BC
algorithm when a different number of computing resources is
used, in this section we report and dicuss several test results.
We performed the tests by using a Scala-based implementation
of both W2C-Fast-BC and exact algorithms, by leveraging
multi-core processing for parallel execution through Apache
Spark. This framework was configured to work in the stan-
dalone cluster mode on two Intel Xeon E5 2640 2.4 GHz
multi-core machines, each equipped with 56 virtual cores and
128 GB of DDR4 RAM.

We considered different execution configurations by varying
the number of cores used in the cluster and the K-fraction
parameter exploited by the K-means clustering algorithm. The
analysis involved different numbers of cores (i.e., 1, 2, 4, 8,
16, 32, 56) and different values of the K-fraction parameter

(i.e., 0.01, 0.2, 0.4, 0.6, 0.8, 1).
The first tests we conducted aimed to compare the execution

time of the algorithm by evaluating the elapsed time between
the end time and the start time for each configuration. Sub-
sequently, we calculated the efficiency by evaluating how the
different configurations of the algorithm exploit the parallelism
permitted by the available computing resources of the cluster.
Then we evaluated the performance of the proposed W2C-
Fast-BC algorithm by comparing it with the exact solution
proposed by Brandes. This comparison, reported as exact-
fast ratio, allowed us to evaluate the speed increase of the
different behaviors (by varying K-fraction) of the W2C-Fast-
BC algorithm compared to the exact solution.

In order to unveil the reasons behind a decreasing speedup
with a growing number of cores, we conducted additional
intensive tests to analyze the performance of each main part
of the proposed algorithm. For this breakdown analysis, we
identified three phases of the algorithm (see Alg. 1): i) parallel
Louvain clustering execution, ii) local BC evaluation with
identification of classes/super-classes, iii) pivot-based com-
putation and final reduce operations to sum up the different
contributions of BC.

A. Elapsed Time

The first test we performed was referred to the measure of
the elapsed time observed with a different number of cores
and different values of the K-fraction parameter. In particular,
the plot in Fig. 8 shows on the X-axis the number of cores in
a base-2 logarithmic scale and on the Y-axis the elapsed time
in a base-10 logarithmic scale. The figure shows a different
curve for each tested scenario: one curve (labelled as exact)
represents the elapsed time of the execution based on the exact
(Brandes) algorithm while the other ones (each labelled with
the value of the K-fraction parameter) show the elapsed times
obtained with W2C-Fast BC algorithm, when using one of the
different values of K-fraction from the interval reported above.

The execution carried out with the exact algorithm shows,
as expected, an elapsed time greater than all the executions
with W2C-Fast-BC. In all cases, by increasing the number of
cores, the execution time decreases in a non-linear way. Com-
paring the different curves of the W2C-Fast-BC algorithm, we
observe that with a fixed number of cores the execution time
strongly decreases when the value of K-fraction decreases,
even though one should remind these configurations introduce
not negligible errors on the BC values. However, the gap
between the different curves reduces when considering values
of K-fraction greater than or equal to 0.4. Moreover, when
K-fraction is lower than the values above, a higher number of
cores does not contribute to significantly improve performance
and in some cases the elapsed time remains almost unchanged
or even increases as in case of W2C-Fast-BC executed with
K-fraction = 0.01. This behavior suggested a more in depth
analysis that we performed by firstly comparing the algorithms
with reference to efficiency and exact-fast ratio and then by
exploring the behavior of each phase of the algorithm.

Fig. 8. Elapsed time

B. Efficiency
We analyzed the efficiency of the exact and W2C-Fast-BC

algorithms with different values of K-fraction, by increasing
the number of cores exploited for the execution.

The plot in Fig. 9 shows on the X-axis the number of cores
in a base-2 logarithmic scale and on the Y-axis the value of
the efficiency. The efficiency can be calculated as:

E =
ts

(tp ·#core)
(4)

where, for each configuration, ts represents the elapsed time
with one core while tp is the value of the elapsed time of
the multi-core execution. The figure shows that by increasing
the number of cores efficiency reduces. This is true for all
configurations and also the exact algorithm follows a similar
behavior. However, we can clearly observe that W2C-Fast-BC
behaves better when K-fraction is high. With K-fraction= 0.01
the efficiency reduction is more evident when the number of
cores increases. This result suggests that our approach (in the
current implementation) is very effective when the available
resources are limited. To better appreciate the speedup boost of
the proposed algorithm, an additional analysis was performed
in order to compare the computation time of W2C-Fast-BC
with reference to the exact solution proposed by Brandes.

Fig. 9. Efficiency

C. Exact-Fast ratio
We analyzed the ratio, by varying the number of cores,

between the execution time of the exact algorithm and that of
the W2C-Fast-BC algorithm for different values of K-fraction.

The plot in Fig. 10 shows on the X-axis the number of cores
in a base-2 logarithmic scale and on the Y-axis the value of the
ratio. The figure clearly shows that when K-fraction is very low
(i.e. 0.01), our approach exhibits an important performance
boost with a speedup equal to 22 when the number of cores
is two or four. However when the number of cores increases,
the observed speedup linearly decreases, reaching seven with
56 cores. With higher values of K-fraction, the ratio with
the exact version appears to be almost constant by increasing
the number of cores. This result is very interesting. With a
value of K-fraction that ensures tolerable errors, computing
time can be reduced by increasing the number of cores as for
the Brandes’ algorithm. When a small number of resources is
available, very fast executions can be still performed by using
a small value of K-fraction even though higher errors will
be observed. Therefore a small number of resources can be
used for performing coarse-grained monitoring under normal
traffic conditions whereas more accurate monitoring (e.g. for
emergency handling) could be performed by allocating a larger
number of computing resources.

Fig. 10. Exact-Fast ratio

D. Performance breakdown

To understand the reasons of different behaviors when K-
fraction varies, we performed further tests to identify the
parts of the W2C-Fast-BC algorithm that negatively impact
on efficiency. To this end, the W2C-Fast-BC algorithm was
divided in phases to perform a breakdown analysis and to
discover opportunities for possible improvements.

The phases selected for the performance breakdown are:

• Louvain Time: time for executing the first level of
clustering based on the Louvain algorithm.

• Local BC + Class Detection time: time needed to (a)
compute the exact value of BC inside each cluster (local
BC), obtained from the previous phase, (b) identify the
equivalence classes inside each cluster and (c) perform
the additional clustering based on K-means to aggregate
small classes in wider super-classes and to select the
pivots for the last phase of the algorithm.

• Pivot based BC + final BC reduction time: time needed
for the execution of the Brandes algorithm for each pivot
(global contribution) including the one needed to compute

the sum of the local and global contributions of BC for
each node of the graph.

The following figures report the processing time of each
phase on the Y-axis, in a logarithmic scale.

1) 2 Cores: By analyzing the breakdown with 2 cores of
the W2C-Fast-BC algorithm (Fig. 11), we can observe that
for almost all the values of K-fraction (except for K-fraction
equal to 0.01) the phase that most affects the elapsed time is
the one concerning the calculation of pivot-based BC and the
successive reduction operation. The largest time is observed
when using a K-fraction=1 and corresponds to more than
10,000 s. In fact, as expected, this phase requires more time as
K-fraction increases since a larger number of pivots must be
considered for the SSSP exploration of the whole graph. The
other two phases take an almost constant processing time when
K-fraction varies. It is worth to note that even if the Louvain
phase is independent from K-fraction, a small variability could
be observed due to different runs that may adopt different
initial communities configurations.

Fig. 11. Performance breakdown with 2 cores

2) 4 cores: The behavior of the three phases of the algo-
rithm with 4 cores (Fig. 12) is similar to the one observed with
2 cores but with an improvement of performances. In fact, the
processing time of each phase (varying K-fraction) decreases
according to the available amount of additional resources (even
if the log scale does not contribute to appreciate the almost
linear improvement).

As with the previous configuration, the calculation of the
BC through the pivots and the reduction operations represent
the most significant contribution to the overall time. Both local
BC with class detection and Louvain phases benefit from the
increment of the available cores, even if the improvement for
running the Louvain algorithm is less appreciable.

3) 8 cores: With 8 cores (Fig. 13), the time for running
each phase further decreases, following the behavior already
observed with 4 cores.

4) 16 cores: When the number of exploited cores is 16,
the trend previously observed for the performance breakdown
exhibits an important change (Fig. 14). In fact, not all the

Fig. 12. Performance breakdown with 4 cores

Fig. 13. Performance breakdown with 8 cores

phases continue to benefit from the growing number of cores,
since the execution of the Louvain algorithm exhibits almost
the same time as in the previous case of 8 cores. This behavior
is motivated by the particular implementation of the parallel
version of Louvain that needs to exchange the most modular
configuration of communities obtained after each iteration.
Therefore, the advantage due to the selection of a better
configuration for each step is overwhelmed by the need for
additional communication and synchronization.

Fig. 14. Performance breakdown with 16 cores

5) 32 cores: With 32 cores, the processing time of the
first phase slightly grows (Fig. 15). The second phase takes
approximately the same time for each K-fraction value, which
is around 100s.

Fig. 15. Performance breakdown with 32 cores

6) 56 cores: When the number of exploited cores reaches
56 (Fig. 16), which is the maximum available number of cores
in our hardware configuration, the Louvain phase is executed
in much more time than the one spent with 32 cores, since it
is now almost the same obtained with only 2 cores.

As concerning the other two phases, while the computation
of pivot-based SSSP explorations and reduction continues to
benefit from available computing resources, the second phase
exhibits a sort of saturation for some values of the K-fraction
parameter. We observe also that the time needed to perform
SSSP explorations from a pivot in case of K-fraction= 0.01 is
lower than the time needed for computing Louvain and class
detection algorithms. This behavior motivates the small values
of efficiency with very low values of K-fraction.

Finally, the figure shows that the third phase strongly bene-
fits from parallelism as in case of exact algorithm, since with
this hardware configuration the time needed for computing BC
is about 1,000s in the worst case of K-fraction=1 compared to
about 12,000s with 2 cores.

Fig. 16. Performance breakdown with 56 cores

VI. CONCLUSION

The paper analyzed the performance and the scalability
issues of a fast approximated algorithm for computing node
betweenness centrality of weighted graphs. The analysis has
been performed by using a real transportation network en-
riched with dynamic weights derived from GPS-taxi traces.
The results show that the algorithm is able to find the most
critical nodes of a directed and weighted graph with a sig-
nificant speedup and a negligible error if compared to the
exact Brandes’ algorithm. The speedup appears to be higher
when the amount of computing resources is low, even though
it remains relevant when a higher number of cores is used. The
in-depth analysis revealed that the efficiency of our approach is
comparable to the one exhibited by the exact solution when the
values of the K-fraction parameter is not too low, since with
low values the boost of performance for SSSP explorations
is overwhelmed by a higher computation time of the Louvain
method executed with a high number of resources.

In the future, we will focus on Louvain clustering optimiza-
tion to improve the first phase of the algorithm. Additionally,
we aim to exploit dynamic resource allocation to avoid useless
parallelism that slows-down the performance of the whole
algorithm. Moreover, since the performance of the algorithm
could depend on the kind of graph, we plan to extend the scala-
bility analysis to graphs with different sizes and topology (e.g.,
small-world, random networks), related to different application
domains, by comparing the results with other approximated
approaches.

ACKNOWLEDGMENT

This work has been supported by the French research
project PROMENADE (grant number ANR-18-CE22-0008)
and by the GAUSS project (MIUR, PRIN 2015, Contract
2015KWREMX)

REFERENCES

[1] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, vol. 25, pp. 35–41, 1997.

[2] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of
Mathematical Sociology, vol. 25, no. 163, 2001.

[3] A. Furno, N.-E. El Faouzi, R. Sharma, and E. Zimeo, “Fast approximated
betweenness centrality of directed and weighted graphs,” in International
Conference on Complex Networks and their Applications. Springer,
2018 to appear.

[4] U. Brandes and C. Pich, “Centrality estimation in large networks,”
International Journal of Bifurcation and Chaos, vol. 17, no. 07, pp.
2303–2318, 2007.

[5] R. Geisberger, P. Sanders, and D. Schultes, “Better approximation of
betweenness centrality,” in Proceedings of the Meeting on Algorithm
Engineering & Expermiments. Society for Industrial and Applied
Mathematics, 2008, pp. 90–100.

[6] A. Furno, N.-E. El Faouzi, R. Sharma, and E. Zimeo, “Reducing pivots
of approximated betweenness computation by hierarchically clustering
complex networks,” in International Conference on Complex Networks
and their Applications. Springer, 2017, pp. 65–77.

[7] L. C. Freeman, “Centrality in social networks conceptual clarification,”
Social Networks, vol. 1, no. 3, pp. 215 – 239, 1978.

[8] D. R. White and S. P. Borgatti, “Betweenness centrality measures for
directed graphs,” Social Networks, vol. 16, no. 4, pp. 335 – 346, 1994.

[9] D. A. Bader and K. Madduri, “Parallel algorithms for evaluating
centrality indices in real-world networks,” in Parallel Processing, 2006.
ICPP 2006. International Conference on. IEEE, 2006, pp. 539–550.

[10] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. Chavarria-Miranda,
“A faster parallel algorithm and efficient multithreaded implementations
for evaluating betweenness centrality on massive datasets,” in Parallel
& Distributed Processing, 2009. IPDPS 2009. IEEE International Sym-
posium on. IEEE, 2009, pp. 1–8.

[11] M.-J. Lee, J. Lee, J. Y. Park, R. H. Choi, and C.-W. Chung, “Qube: A
quick algorithm for updating betweenness centrality,” in Proceedings of
the 21st International Conference on World Wide Web, ser. WWW ’12.
New York, NY, USA: ACM, 2012, pp. 351–360.

[12] T. Hayashi, T. Akiba, and Y. Yoshida, “Fully dynamic betweenness
centrality maintenance on massive networks,” Proc. VLDB Endow.,
vol. 9, no. 2, pp. 48–59, Oct. 2015.

[13] M. Riondato and E. M. Kornaropoulos, “Fast approximation of be-
tweenness centrality through sampling,” Data Mining and Knowledge
Discovery, vol. 30, no. 2, pp. 438–475, 2016.

[14] E. Bergamini, H. Meyerhenke, and C. L. Staudt, “Approximating be-
tweenness centrality in large evolving networks,” in 17th Workshop on
Algorithm Engineering & Experiments, ser. ALENEX ’15. Philadelphia,
PA, USA: SIAM, 2015, pp. 133–146.

[15] E. Bergamini and H. Meyerhenke, “Approximating betweenness central-
ity in fully dynamic networks,” Internet Mathematics, vol. 12, no. 5, pp.
281–314, 2016.

[16] N. Kourtellis, G. D. F. Morales, and F. Bonchi, “Scalable online be-
tweenness centrality in evolving graphs,” 2016 IEEE 32nd International
Conference on Data Engineering (ICDE), pp. 1580–1581, 2016.

[17] S. White and P. Smyth, “Algorithms for estimating relative importance
in networks,” in Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2003, pp.
266–275.

[18] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail, “Approximating
betweenness centrality,” in Proceedings of the 5th International Con-
ference on Algorithms and Models for the Web-graph, ser. WAW’07.
Berlin, Heidelberg: Springer-Verlag, 2007, pp. 124–137.

[19] K. Ohara, K. Saito, M. Kimura, and H. Motoda, Accelerating Compu-
tation of Distance Based Centrality Measures for Spatial Networks.

[20] M. J. Newman, “A measure of betweenness centrality based on random
walks,” Social Networks, vol. 27, no. 1, pp. 39 – 54, 2005.

[21] M. Borassi and E. Natale, “KADABRA is an adaptive algorithm for
betweenness via random approximation,” in ESA, ser. LIPIcs, vol. 57.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, pp. 20:1–
20:18.

[22] M. H. Chehreghani, A. Bifet, and T. Abdessalem, “Efficient exact and
approximate algorithms for computing betweenness centrality in directed
graphs,” arXiv:1708.08739, 2017.

[23] A. Furno, N.-E. El Faouzi, R. Sharma, and E. Zimeo, “Two-level
clustering fast betweenness centrality computation for requirement-
driven approximation,” in 2017 IEEE International Conference on Big
Data (Big Data). IEEE, 2017, pp. 1289–1294.

[24] P. Suppa and E. Zimeo, “A clustered approach for fast computation of
betweenness centrality in social networks,” in 2015 IEEE International
Congress on Big Data, June 2015, pp. 47–54.

[25] Sotera, “dga-graphx: Graphx algorithms,” online. [Online]. Available:
https://github.com/Sotera/spark-distributed-louvain-modularity

[26] M. E. Newman, “Analysis of weighted networks,” Physical Review E,
vol. 70, no. 5, p. 056131, 2004.

[27] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Phys. Rev. E, vol. 69, p. 026113, Feb 2004.

[28] E. A. Leicht and M. E. J. Newman, “Community Structure in Directed
Networks,” Physical Review Letters, vol. 100, no. 11, pp. 118 703+, Mar.
2008.

[29] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

[30] N. Dugu‘e and A. Perez., “Directed louvain: maximizing modularity in
directed networks,” in PhD Thesis, gUniversite dOrlans, 2015.

[31] A. Furno, N.-E. El Faouzi, R. Sharma, E. Zimeo et al., “Fast computation
of betweenness centrality to locate vulnerabilities in very large road
networks,” in Transportation Research Board 97th Annual Meeting,
2018.

[32] N. S. Altman, “An introduction to kernel and nearest-neighbor non-
parametric regression,” The American Statistician, vol. 46, no. 3, pp.
175–185, 1992.

