
Two-level Clustering Fast Betweenness Centrality Computation
for Requirement-driven Approximation

Angelo Furno, N. E. El Faouzi
Univ Lyon, ENTPE, IFSTTAR, LICIT UMR T9401

Lyon, France
Email: {angelo.furno, nour-eddin.elfaouzi}@ifsttar.fr

Rajesh Sharma
University of Tartu

Tartu, Estonia
Email: rajesh.sharma@ut.ee

Eugenio Zimeo
University of Sannio

Benevento, Italy
Email: zimeo@unisannio.it

Abstract—Betweenness centrality is a widely adopted metric
to analyze the impact of critical nodes of graphs in several do-
mains (social, biological, transportation, computer networks).
The computation of this centrality index is very demanding
since its exact calculation exhibits O(nm) time complexity for
unweighted graphs (where n is the number of nodes and m is
the number of edges). This relative high complexity becomes
an obstacle to the adoption of betweenness centrality for
continuous monitoring of critical nodes in very large networks.
Several solutions have been proposed to reduce computation
time, mainly via parallelism, approximation or incremental
recalculation. In this paper, we propose a flexible algorithm for
computing approximated values of betweenness by tuning its
performance on the basis of a tolerable error of the computed
index. The algorithm aims at reducing the number of single-
source shortest-paths explorations via a pivot-based technique
that exploits topological properties of graphs.

The new algorithm is evaluated for studying vulnerabilities
of a real-world, very-large road network. The evaluation shows
that the approximation error does not significantly affect the
most critical nodes, thus making the algorithm well-suited for
on-line operational monitoring of road networks vulnerability.
Finally a performance index is defined in order to find an
optimal parametrization (in terms of execution time and error)
of the algorithm according to application domain requirements.

Keywords-Betweenness Centrality; Big-data; Transportation
Networks; Monitoring.

I. INTRODUCTION

Betweenness centrality (BC) is a very popular graph
metric to characterize nodes that are most traversed by
shortest paths (flows) connecting couples of other nodes
of the same graph. In other words, it is a measure of the
extent to which a node has control over information flowing
between other ones. This metric has been widely adopted
to identify opinion leaders in social networks [1], criti-
cal intersections in transportation networks [2], biological
networks [3] vulnerabilities in computer networks [4] and
in power grids [5], terrorist networks [6]. In spite of its
usefulness, high computation time limits the applicability of
betweenness centrality especially for real-time monitoring
of very large infrastructures modeled as graphs.

A naive algorithm based on its definition exhibits O(n3)
complexity since it requires the computation of all the

shortest paths crossing each node of a graph composed of
n nodes. The fastest algorithm to compute the exact value
of betweenness centrality has been proposed by Brandes
[7]. For a graph G(V,E), it exhibits O(n + m) space
and O(nm) time complexities for unweighted graphs and
O(nm + n2log(n)) for weighted ones, where n = |V | is
the number of nodes and m = |E| the number of edges. To
achieve this performance, Brandes adopts a single-source
shortest-paths (SSSP) algorithm that explores a graph by
using a breadth-first search. Each exploration is computed
with a complexity O(m), which is good for sparse graphs
where m� n2.

However, Brandes’ algorithm is not suitable for real-time
computations needed for monitoring very large networks. In
this paper, we propose a flexible algorithm for computing
approximated values of BC by tuning the performance on
the basis of a tolerable error of the computed index. The
algorithm, inspired by [8] and [9], exploits some topological
characteristics of graphs in order to classify nodes for their
selection as pivots. To this end, it calculates the betweenness
index through four phases: first, the graph is partitioned
in communities by applying a clustering method; then, for
each cluster, the nodes are grouped in classes according to
their equivalent potential contribution for the computation of
the betweenness centrality values of the other nodes of the
graph. By using a representative pivot for each class, we can
calculate an almost exact value of betweenness for several
nodes while keeping a good approximation for the others,
with a computing time that strictly depends on the number
of classes identified.

Unfortunately, the number of classes is typically small for
scale-free1 graphs [10] but could be high for other kinds of
graphs. To address this topology-dependent problem, in this
paper we focus on a two-level clustering fast betweenness
computation, which is able to reduce the number of classes
by aggregating them in super classes, through an additional
clustering inside each community (third phase). In this case,
a pivot is elected for each identified super class. Finally

1A scale-free graph is characterized by a power-law degree distribution,
i.e., a very limited set of nodes in the graph has a very large degree, while
the majority of the nodes has only a few neighbors.

(fourth phase), Brandes’ algorithm is applied to only pivot
nodes, by achieving an ideal speedup n

k , where k is the
number of super classes.

By using this approach, we are able to reduce the number
of pivots as needed by the application requirements on
computation time, taking into account that the growing error
should remain under a tolerable threshold.

To evaluate our algorithm, we propose a case study
related to the continuous detection of vulnerabilities in a
real-world, very large road network. In transportation lit-
erature, vulnerability detection and resilience quantification
are considered crucial aspects to improve transportation
networks robustness [2], [11]–[13]. To identify vulnerable
nodes we use BC, already used in transportation to identify
topological criticalities [2], [13], and traditionally preferred
to other centrality metrics such as degree and closeness
centrality [12]. In particular, we propose to use BC for
performing real-time M -contingency analysis of traffic net-
works, focusing on the road network of Lyon, France. M -
contingency analysis is a simulation-based technique that
considers different qualitative assumptions over M likely
events or phenomena in order to imagine different scenarios
and come up with optimal responses under the considered
circumstances.

Even though, in this paper, we evaluate our algorithm over
transportation networks, many other kinds of networks could
be analyzed. Moreover, we mainly focus on topological bot-
tlenecks while more dynamic aspects could be also explored.
For example, in our application domain, the availability of
real-time information, provided by a growing number of sen-
sors and small devices distributed across geographic areas,
joined with cloud computing and big data techniques and
technologies, allows for a more dynamic and quantitative
analysis of robustness against possible unpredictable events.

The rest of the paper is organized as follows. In Sec. II,
we present related work. Sec. III describes the algorithm
proposed for fast BC calculation. In Sec. IV, we discuss the
large-scale dataset used in our analysis as well as the model
and the metrics used to characterize road-network vulnera-
bility. In Sec. V, we evaluate our approach on the considered
dataset. We conclude in Sec. VI by also discussing future
directions.

II. RELATED WORK

In spite of its significant improvement over the naive ap-
proach, especially for sparse graphs, the algorithm proposed
by Brandes [7] is not sufficient for real-time monitoring of
very large networks. In this direction, several approaches,
aiming at evaluating exact or approximated solutions, have
been developed to further reduce the computation time. The
proposed solutions can be classified according to three main
approaches: (a) exploiting and increasing parallelism, (b)
estimating BC values through a partial exploration of graphs,
(c) calculating BC values of single nodes in dynamically

changed graphs. Of course, mixed approaches are possible:
for instance, an approximated algorithm could be paral-
lelized or applied to dynamic graphs.

In [14], the first parallel implementation for computing
betweenness centrality is presented. It is based on a fine-
grained multi-level parallelism, in which the neighbors of
a given node are traversed concurrently on a shared data
structure with granular locking. The algorithm has been
successively improved [15] by removing the need for locking
in the dependency accumulation stage of Brandes’ algorithm
through the adoption of a successors list instead of a
predecessors list for each node.

The second research trend aims at achieving low compu-
tation time by calculating approximated BC values. These
strategies try to penalize some shortest paths, whose com-
putation is the most expensive task in the whole process.
For example, in [16], the authors only consider paths up
to fixed length k. Brandes and Pich [8] also proposed an
approximated algorithm for faster BC calculation by choos-
ing only k � n pivots as sources for the SSSP algorithm
through different strategies, showing that random selection
of pivots can achieve an approximation level comparable to
other heuristics. However, this approach overestimates the
BC of unimportant nodes that are near a pivot. To overcome
this problem a generalization framework for betweenness
approximation has been proposed in [9]. The idea is to scale
BC values in order to reduce them with reference to nodes
close to pivots. In a recent work [17], another approximated
BC algorithm has been proposed. However, the approach
shows a large fluctuations of accuracy over the top-100
nodes on a scale-free graph.

A third class of approaches (stream-based) tries to avoid
recomputing the BC values of all the nodes of a graph
G′ ≡ G+∆G when they are known for a previous configu-
ration G. Recently, an efficient algorithm for incremental
BC computation [18] has been proposed. The algorithm
performs very well when BC has to be recalculated as a
consequence of adding or removing one node. However, the
high speedup achieved for the scenarios above drastically
reduces when a graph configuration differs from the previous
one in M nodes (M -contingency analysis). M -contingency
analysis considers M different perturbations of the network
to simulate possible critical scenarios as consequence of
large-impact events or phenomena.

In transportation field, BC has been studied for traf-
fic flow prediction (e.g., [11], [19]–[21]) or vulnerability
quantification (e.g., [2], [12], [13]). In this context, some
authors have highlighted limitations of the BC metric in
representing traffic dynamics [19], [21]–[23]. However, such
shortcomings can be overcome by augmenting the graph
representation of the network by taking into account also
spatio-temporal aspects (e.g., congestion, accidents, road
capacity changes, etc.) and geometric properties of the road
network [11], mapping them on a weighted dynamic graph.

2

This additional graphs information contributes to improve
the effectiveness of the analysis but does not impact perfor-
mance for searching relevant nodes in very large networks,
which is the main objective of this work. Moreover, weighted
graphs can be transformed in unweighted ones by using
techniques like virtual nodes [24].

The proposed algorithm is based on and extends a pre-
vious work [10] that introduces the idea of exploiting clus-
tering to identify border nodes, which are considered most
relevant for BC evaluation. The solution can be classified
as an approximated algorithm based on BC estimation
through a partial exploration of graphs, driven by pivot
nodes. Differently from its previous version, the extension
proposed in this paper is able to tune performance for
real-time monitoring applications, taking under control the
approximation error.

III. CLUSTERED BC COMPUTATION

To improve the efficiency of BC computation and sup-
port quasi real-time M-contingency analysis, we propose
an approximated, cluster-based approach aimed at finding
a useful trade-off between computation time and accuracy.
The term useful depends on the specific application domain,
as knowing the exact values of BC is often less important
than discovering the M highest BC-ranked nodes2.

The proposed algorithm is based on Brandes’ one but also
exploits an important property of betweenness: an edge with
a high betweenness is highly traversed by shortest paths;
consequently, it can be considered as a sort of backbone
between two graph areas that identify possible clusters. The
high number of shortest paths crossing the high betweenness
edge also contribute to a high value of BC of the nodes
connected by such link [10]. Consequently, if we are able
to identify clusters inside a graph by using a more efficient
algorithm than edge betweenness, which exhibits a O(nm)
time complexity, then we can focus computation mainly on
border nodes of the clusters to calculate their (almost) exact
BC, whereas BC of the other nodes could be approximated
with an acceptable error.

The approach has been previously studied by some au-
thors of this paper in [10]. Here, we introduce a generaliza-
tion for further reducing the number of pivots identified with
the cluster-based approach, which could be high in some
kinds of graphs (such as non-scale-free ones).

Before illustrating the algorithm, we briefly describe the
Brandes’ one, which is the basis of the proposed approach.

A. Brandes’ Algorithm

We assume the following definition throughout the paper:
for a generic graph G(V, E), a path p(vi, vj), between two
nodes vi and vj , consists of a set of nodes and edges that
connect these two nodes. If this set does not exist, the

2As required by the vulnerability assessment based on M -contingency
analysis.

graph is disconnected in separated components. The length
of a path between any two nodes vi and vj , represented by
len(p(vi, vj)), is the sum of the weights (or hops in case
of unweighted graphs) of the edges (or hops) to reach vj
from vi. If nodes vi and vj are directly connected, then the
path length is the weight of the link, or 1 for unweighted
graphs. A shortest path between any two nodes vi and vj ,
denoted as sp(vi, vj), is a path with the minimum number of
hops among all the paths connecting the two nodes. Multiple
shortest paths may exist between the same pair of nodes,
i.e., all the paths having the same minimum number of
hops. Distance d(vi, vj) = len(sp(vi, vj)) is the length of
the shortest path between nodes vi and vj . We denote as
σvivj the number of shortest paths between vi and vj , while
σvivj (vk) represents the number of shortest paths from vi
to vj that cross node vk.

Given a pair-dependency of a source node s on an another
node v for a destination t of the graph, defined as:

δst(v) =
σst(v)

σst
,

the betweenness centrality of any node v can be expressed in
terms of dependency score δs•(v) =

∑
t∈V δst(v), obtained

by summing the pair-dependencies of each pair of nodes on
v that has s as source node. To compute this score, Brandes’
algorithm exploits a recursive relation that is motivated by
this observation: let W = {w : v ∈ Ps(w)} be the set of
nodes w such that v is a predecessor of w along a shortest
path that starts from node s, and Ps(w) = {v ∈ V :
{v, w} ∈ E, d(s, w) = d(s, v) + d(v, w)} the set of direct
predecessors of a generic node w in the shortest paths from
the source node s to w, for unweighted graphs; then, v is a
predecessor also in any other shortest path starting from s
and passing through a different w ∈ W [7]. Consequently,
we have:

δs•(v) =
∑

w:v∈Ps(w)

σsv
σsw

(1 + δs•(w)), (1)

Finally, the betweenness centrality BC of node v is
obtained by:

BC(v) =
∑
s∈V

δs•(v). (2)

For scaling purpose, BC values are often normalized by
dividing them by (n− 1) · (n− 2)/2 for undirected graphs
and by (n− 1) · (n− 2) for directed ones.

Conceptually, Brandes’ algorithm runs in two phases.
During the first phase, it performs a search on the whole
graph to find all the shortest paths starting from every node
s, considered as source of the breadth-first exploration of
the whole graph. Then, in the second phase, it performs
dependency accumulation by backtracking along the discov-
ered shortest paths. During these two phases, the algorithm

3

maintains four data structures for each node found on the
way: a predecessor list Ps(v), the distance ds(v) from the
source, the number of shortest paths from the source σst(v)
and the dependency accumulation when backtracking at the
end of the search.

B. One-level clustering fast BC

Before describing the proposed two-level clustering (2C-
Fast-BC) algorithm, we first discuss the original one-level
clustering (1C-Fast-BC) technique with the support of the
pseudo-code in Alg. 1 (see Fig. 1).

Given a graph G(V,E), we split it into a set C of clus-
ters by using the Louvain method. This non-parallelizable
heuristic exhibits a very good O(n · log(n)) complexity. It
exploits modularity [25] as a key metric for grouping nodes.
Modularity is the ratio between the density of links inside
communities to the one of the links among them.

The method consists of two phases that are repeated
iteratively until the maximum modularity is reached. In the
first phase, each node is assigned to a different community.
Then, each node is moved to the community of a neighbor
for which the gain of modularity is maximum. If no improve-
ment is possible, the node remains in its current community.
Thus, the first phase terminates when no other modularity
improvement is possible, i.e., a local maximum has been
reached. The second phase of the algorithm generates a new
graph where the nodes are the clusters detected during the
first phase and the weights of the edges between the new
generated nodes are the sums of the weights of the edges
between nodes in the corresponding different clusters [26];
the edges between nodes of the same cluster become self-
loops.

The quality of the detected communities differs according
to the node order followed during the evaluation. To reduce
this effect, we perform multiple runs in parallel of the
method with different initial configurations. The result with
the highest modularity value is selected for the next iteration
and the process is repeated until no modularity variation is
observed between two iterations.

The main result of Louvain clustering is the identification
of border nodes (an array for each cluster - line 3 of Alg. 1).
A border node is a node having at least one neighbor node
in a different cluster.

Then, a parallel execution of Brandes’ algorithm is per-
formed inside each cluster (line 6) to compute the local
BC. This computation generates the partial inner-cluster
contribution to the BC of each node and also additional
information, such as the shortest paths and the distances
from a node of a cluster towards each border node of the
same cluster.

The information above is used to identify the nodes inside
each cluster that equally contribute to the dependency score
of each node of the graph. To this end, we introduce a class

Algorithm 1 Two-level Clustering Fast BC Algorithm
1: procedure CLUSTEREDBRANDES(G,C,KFrac)
2: map i← 1, |C| do
3: bordernodesi ← FINDBORDERNODES(G,Ci)
4: end map
5: map i← 1, |V | do
6: BCgraph← COMPUTELOCALBC(i, C, bordernodes)
7: end map
8: reduce BCgraph.localBCi, Bgraph.localBCj , i = j do
9: BCclusteri ← BCgraph.localBCi + BCgraph.localBCj

10: end reduce
11: map i← 1, |C| do
12: BCgraph.superClassesi ← KMEANSCLUSTERING(Ci,

13: BCgraph.classesi, KFrac)

14: end map
15: map i← 1, (|BCgraph.superClasses|) do
16: Pi ← SELECTPIVOTOF(BCgraph.superClassesi, BCcluster)
17: end map
18: map i← 1, (|BCgraph.superClasses|) do
19: δi ← COMPUTEDEPENDENCYSCORESFROMPIVOT(Pi)
20: δi ← (δi − BCgraph.localB) · |BCgraph.superClassesi|
21: end map
22: reduce δim, δjl,m = l do
23: BCm ← δim + δjl
24: end reduce
25: for i← 1, |V | do
26: BCi ← BCi + BCclusteri
27: end for
28: return BC
29: end procedure

Figure 1. 2C-Fast-BC algorithm. 1C-Fast-BC algorithm is the same
without blue code.

of equivalence (BCgraph.classesi)3 defined according to
the following rule: two nodes v and w belong to the same
class if and only if they have the same normalized distance
from each border node of that cluster and the same amount
of shortest paths towards the border nodes (see Table I). The
normalized distance of node j is the length of the shortest
path for reaching a border node minus the minimum distance
to reach any of the border nodes. Therefore, the smallest
normalized distance is always zero.

Taking into account that nodes belonging to the same
class produce the same dependency score on each node of
the graph, one representative node should be identified as a
source node for applying Brandes’ algorithm. This node is
called class pivot4. Since a pivot does not contribute to its
BC, it is selected by considering the lowest BC value among
the class nodes that are not border nodes (line 16).

The partial dependency score calculated for the pivot
(line 19) is then multiplied by the cardinality of the pivot
class (line 20). This method avoids re-applying Brandes’
algorithm to another node of the same class, thus ensuring
fast calculation of BC if k � n, where k = |P | is the
number of pivots belonging to set P of selected pivots and

3By using only one-level clustering, classes and super classes are
equivalent

4The partial contribution on border nodes of the same cluster of the pivot
is the same only if pair-dependencies with t /∈ Cs in Eq. 2 are considered
(where Cs represents the pivot cluster).

4

(a) Clustered simple graph (b) Detail of cluster 1 from Fig. 2a
with a different color for each class

Figure 2. Clustering example with classes detection

Table I
EXAMPLE OF CLASSES FOUND IN THE CLUSTER IN FIG.2B.

N N. d. to 28 N. d. to 26 S. p. to 28 S. p. to 26
21 0 1 1 2
22 0 0 1 1
23 0 1 1 1
24 0 1 1 1
25 0 1 1 2
26 1 0 1 1
27 0 1 2 3
28 0 1 1 1

n represents the number of nodes of the graph.
For example, let us consider the class of nodes 23−24−28

in Fig. 2b: for electing a pivot, we discard border node 28.
Among the remaining, we select node 24, due to lowest local
betweenness centrality. The normalized distances and the
number of shortest paths are reported in Tab. I; each node has
a color assigned, which represents the class the node belongs
to. Finally, according to Eq. 1, the partial contribution of
node 24 to all other nodes of the graph is calculated and
multiplied by 3 (the cardinality of the class).

The final value of BC is obtained for each node (line 26)
by summing up all partial contributions (produced by the
reduce operation) with local BC values (to compensate the
partial local contribution subtracted at line 20).

C. Two-level clustering fast BC

The algorithm above exhibits very good performance [10]
when the overall number of classes in the graph is � n,
being n the number of nodes. This is observable with scale-
free graphs (the distribution in Fig. 3b refers to the graph
considered in [10]) that contribute to generate clusters with a
small amount of border nodes. Unfortunately, our case study
dataset, introduced in Section IV, does not produce a scale-
free graph, as demonstrated by Fig. 3a. The effect of this
distribution is the generation of a number of classes that is
almost 2

3 · n. Therefore, the reduction in computation time
could be marginal if compared to the initial requirements of
performing almost real-time computation for efficient M -
contingency analysis.

To further reduce the computation time, we propose an
extension of 1C-Fast-BC that significantly improves perfor-
mance also for non-scale-free graphs at the price of a larger

1 2 3 4 5 6 7 8
Degree

100

101

102

103

104

105

106

C
o
u
n
t

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

Normalized Histogram with
best-fit PDF (foldcauchy)

(a) Degree distribution for GLyon

0 100 200 300 400 500 600 700 800 900
Degree

100

101

102

103

104

105

106

C
o
u
n
t

0 100 200 300 400 500 600 700 800
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Normalized Histogram with
best-fit PDF (powerlaw)

(b) Degree distribution for GScale-free

Figure 3. GLyon and GScale-free degree distributions and matching PDFs

but tolerable error. The idea we propose is to extend the
concept of class by introducing super classes (see Alg. 1 -
blue text) through an additional clustering operation inside
each initial Louvain-derived cluster (see Alg. 1 - line 12).

A super class Bgraph.superClassj is a group of classes
belonging to the same cluster. This grouping is performed by
using the Euclidean distance among the vectors generated
by considering, for each node, the normalized distances
from the cluster border nodes and the amount of shortest
paths towards them. By this approach, nodes are considered
equivalent even when they belong to different classes but
are very close (Euclidean distance near zero) in the vector
space built from the classes table. For example, in Tab. I,
the class identified by rows 21 and 25 could be grouped
with the class identified by nodes 23, 24 and 28, since the
distance between the vectors is close to zero.

To perform this grouping, we exploit a parallel K-means
algorithm by using a different K for each initial Louvain
cluster. K is defined as a fraction of the initial number of
classes belonging to each Louvain cluster. For example, by
considering a fraction equals to 0.4, the algorithm adopts a
0.4 fraction of the number of classes in each Louvain cluster.
By this approach, we are able to drive the behavior of the
algorithm towards the desired computation time. However,
when the computation time decreases the approximation
worsens, as deeply illustrated in the evaluation section.

IV. CASE STUDY

In our case study, we focus on reducing the computational
effort required to compute network metrics for vulnerability
analysis, in light of proposing a solution for on-line and
continuous monitoring over large-scale networks.

A. Road network representation

We assume that road networks are in steady state and
modeled as unweighted and undirected graphs. This as-
sumption has been adopted also in other studies [2], [12],
[13]. Some of them have tried to understand the effect of
breakage on transportation networks in various parts of the
world, such as Toronto [2], Melbourne [27], Sweden [28]
and other metropolitan cities [13]. Our case study focuses
on Lyon metropolitan road network, which, differently from
most other studied cases, is a non scale-free large graph.

5

The related graph will be denoted as G(V , E), where V is
the set of nodes and E ⊆ V ×V the set of edges. Each node
vi represents an intersection in the network and an edge eij
between nodes vi and vj represents a road.

B. Nodes removal strategies

To analyze the impact of unpredictable events on network
vulnerability, we can consider different nodes removal strate-
gies, depending on the scenarios we intend to simulate for
the analysis. In this paper, we target the worst case scenario,
by removing nodes that are the most critical according to a
centrality index; they represent possible vulnerabilities of a
road network. As a metric to establish a criticality ranking of
nodes, we consider BC [29], since it measures the number
of shortest paths crossing a node. Nodes with higher BC
correspond to central intersections from an infrastructural
perspective, being usually selected by commuters to reach
their destinations and naturally prone to breakdown com-
pared to other nodes.

C. Resilience metrics

To quantify the resilience of a road network, we consider
the following metrics:

1) Global Efficiency (GE): represents the ability to effi-
ciently exchange information in the network [30]. It
is defined as:

GE(G) =
1

n(n− 1)

∑
i 6=j

1

d(vi, vj)
. (3)

2) Vulnerability: is the drop in information exchange due
to removal of a node and all corresponding edges [31].
Formally it is defined as:

Vvi =
GE −GEvi

GE
, (4)

where GE is the global efficiency of the original net-
work as from Eq. 3 and GEvi is the global efficiency
after the removal of node vi and all the edges incident
on it.

D. Road-network dataset

For our analysis, we consider a graph corresponding to the
road network of the Grand Lyon metropolitan area, France,
and its surroundings, covering an area of approximately
3,000 Km2. This dataset was created using digital maps
supplied by the French National Institute of Geographic
Information (IGN). The network consists of 112,567 nodes
and 240,372 edges.

In the original graph, some roads are split in multiple
segments only because of some property changes across the
segments (e.g., street name, road slope, etc.). This means
that a single long road with no real intersections along it
can be actually composed of multiple nodes and edges in
the graph. We decided to filter out this noise, by retaining

only real intersections and actual link endpoints as nodes in
our dataset.

Next, to avoid a disconnected graph, we selected only the
largest connected component (termed GLyon in the rest of
the paper) by filtering out very small isolated subnetworks
that typically include only country roads or cut areas lying
at the border of the analyzed region. Finally, due to partial
available information on road driving direction and number
of lanes, we treat the network as undirected. We remark here
that the solutions described in the next section can be easily
extended to work with directed and weighted graphs.

The final GLyon graph has 75,474 nodes and 96,406 edges.
Nodes with the highest values of BC mostly correspond to
highway interchanges (e.g., the A6 and D383) and roads that
cross bridges. These represent elements of the network with
limited alternative routes, and thus highly vulnerable from
a topological perspective.

The graph has a density of 3.38e−05 and clustering
coefficient of 0.054. Its average path length and diameter
are 84.74 and 244 respectively. The average degree is 2.55.
These properties indicate that GLyon is very sparse in its
nature. Fig. 3a shows its degree distribution, i.e., a Gaussian-
like PDF where the number of road links merging at any
intersection lies between 1 and 8, being 3 the most frequently
observed degree. GE is equal to 0.0148193, a fairly low
value that confirms the generally low degree of connectivity
of the graph. It is important to highlight the exploratory
nature of our work from the graph-topology perspective,
since a Gaussian-like distribution is different from those
usually reported in previous studies on resilience analysis
via BC that mainly considered scale-free topologies [13],
[17], [19].

V. EVALUATION

We implemented our algorithms using Scala programming
language and the Apache-Spark framework, by leveraging
multi-core processing for parallel execution. Apache Spark
was configured to work in local mode, using 10 threads to
partition the execution load of the map-reduce tasks on the
available cores of an Intel Xeon E5 2640 2.4 GHz multi-
core machine, equipped with 56 virtual cores and 128 GB
of DDR4 RAM. We also considered a Scala implementation
of Brandes’ algorithm [7] (referred as Exact-BC), used
as a benchmark in performance evaluation. Exact-BC was
executed in the same testing environment used for Fast-BC,
with 10 threads for parallelism.

From our experiments on the correlation between vul-
nerability and BC (not reported due to lack of space),
we observed that nodes with higher values of betweenness
centrality are the ones that affect most vulnerability of
a road-traffic network, defined as in Eq. 4. Monitoring
should continuously identify these nodes since, if disrupted,
they may significantly reduce network connectivity. On the
other hand, their inhibition may significantly alter network

6

0 20 40 60 80 100
Nodes ranked by Exact-BC (top-100)

0.100
0.125
0.150
0.175
0.200
0.225
0.250
0.275
0.300

No
rm

al
ize

d
BC

Exact-BC (Brandes)
1C-Fast-BC

(a) Values of normalized BC with
1C-Fast-BC and Exact-BC for the
top-100 nodes

0 20 40 60 80 100
Nodes ranked by Exact-BC (top-100)

-0.010%

-0.005%

0.000%

0.005%

0.010%

Pe
rc

. E
rro

r [
%

]

Perc. Error

(b) Percentage error of 1C-Fast-BC
over the top-100 nodes

Figure 4. Accuracy of the 1C-Fast-BC algorithm

topology, forcing to recompute betweenness centrality for
the whole network. To continuously identify the most M
critical nodes (M -contingency analysis), a fast algorithm to
compute BC is needed.

A. M -contingency analysis: 1C-Fast-BC vs Exact-BC

In this section, we compare the performance of 1C-Fast-
BC against that of Exact-BC on the GLyon graph. For the
evaluation, we consider three main indexes: 1) accuracy of
the approximated BC values, measured by considering the
percentage error on each node BC, the global metric of
the mean-Normalized Root-Mean-Square Error (NRMSE)5

and the Euclidean distance of normalized BC vectors, as
in [8], [9]; 2) accuracy of nodes’ ranking, expressed both
as the relative number of nodes not included in the exact
top-N ranking by the tested algorithm and through inversion
distance, as in [8], [9]; 3) execution time.

Given the specific conceptual design of the proposed al-
gorithms and our objective of continuously monitoring only
the most critical intersections of the road-traffic network, the
performance analysis is mainly focused on the most-critical
nodes of the network (e.g., top-100, top-5%, etc.). However,
to compare our approach with the ones proposed in [8], [9],
we also report on Euclidean and inversion distances of all
the nodes of the graph.

Fig. 4 shows the normalized BC values computed by the
two algorithms for the top-100 nodes, ranked according to
their exact value of BC. Fig. 4a highlights an almost perfect
overlap of the two curves, confirmed by the extremely low
percentage error in Fig. 4b, bounded in the range [-0.015%,
0.015%]. Coherently, we observe an extremely low NRMSE
of 2.93887e−5 and 0 missing nodes in the top-100 ranking.
The NRMSE rises to 8e−3 with 341 missing nodes, when
considering the top-30% (i.e., approximately 25,000) nodes,
thus showing an acceptable approximation even on nodes
with low BC values.

5The NRMSE is defined as: 1
σ̄

√
1
n

∑n
i=1 e

2
i , with σ̄ denoting the mean

of the exact BC values and ei representing the difference between exact
and approximated values of BC for node i. NRMSE is generally preferred
to the percentage error when 0-values are present among the expected ones.

Regarding execution time, the algorithm takes 1,688 sec-
onds to complete, a fairly limited improvement with respect
to the 1,982 seconds of the Exact-BC. This is motivated
by the relative high number of classes (48,960) identified
by 1C-Fast-BC , and consequently a high number of pivots
compared to the total number of source nodes (75,475) used
by Exact-BC.

1C-Fast-BC is a powerful solution to precisely compute
BC, even on nodes that exhibit very low values of BC.
However, the surprising performances of this algorithm for
scale-free graphs are not confirmed for road networks that
exhibit a non-scale-free distribution. In these cases, the
number of classes, and consequently the number of pivots,
is quite high and can not be further reduced by increasing
the approximation error.

B. M -contingency analysis: 2C-Fast-BC improvements

2C-Fast-BC (see Sec. III-C) aims at reducing execution
time on non-scale-free graphs, by preserving acceptable
levels of accuracy in BC approximation. This behavior is
desirable when computation time must be very low and er-
rors are tolerated below a specific threshold. This algorithm
extends 1C-Fast-BC by including a Map-reduce parallel
version of the K-means clustering algorithm, based on the
implementation provided in Apache Spark MLlib machine
learning library.

Similar to the previous analysis, we test 2C-Fast-BC on
the GLyon graph by using different fractions (i.e., the K-
Fraction parameter) of the number of classes as the K in
the K-means. Fig. 5a shows that 2C-Fast-BC execution time
stays below 1C-Fast-BC and Exact-BC ones (that do not
depend on the K-Fraction parameter), up to very large values
of K-Fraction (i.e., 0.8). Larger values of the parameter result
in higher execution times (larger than the ones of 1C-Fast-
BC for K-Fraction > 0.8) due to the computation overhead
associated to the K-means clustering. Obviously, lower K-
Fractions introduce a larger approximation that negatively
affects BC values even for critical nodes. As an example,
Fig. 5b presents BC values for the top-100 nodes when using
an extremely low K-Fraction of 0.001. For this configuration,
computation time is very low (69 s) but percentage error is
relatively high (i.e., in the range [-12%, 12%], not reported
due to space limitation) with a NRMSE of 0.04 and 4
missing nodes in the top-100 ranking.

Conversely, by choosing slightly larger K-Fractions (e.g.,
a K-Fraction of 0.3), the algorithm quickly converges to-
wards very good levels of accuracy, as highlighted by the
perfect overlap with the Exact-BC values in Fig. 5c. The
much better quality of the approximation is confirmed by a
percentage error in the range [-0.2%, 0.3%] (see Fig. 5d),
a NRMSE of 0.001 and 0 missing nodes in the top-100
ranking. Also the Euclidean distance (Fig. 5e) and the
percentage of inversions against the maximum number of
possible inversions (Fig. 5f) are good if compared with the

7

0.0 0.2 0.4 0.6 0.8
K-Fraction

0

500

1000

1500

2000

2500

3000

E
x
e
c.

 T
im

e
 [
s]

2C-Fast-BC (10 threads)

1C-Fast-BC (10 threads)

Exact-BC (10 threads)

(a) Execution time of 2C-Fast-BC
with different K-Fractions

0 20 40 60 80 100
Nodes ranked by Exact-BC (top-100)

0.10

0.15

0.20

0.25

0.30

No
rm

al
ize

d
BC

Exact-BC (Brandes)
2C-Fast-BC 0.001

(b) BC values with K-Fraction =
0.001 for the top-100 nodes

0 20 40 60 80 100
Nodes ranked by Exact-BC (top-100)

0.100
0.125
0.150
0.175
0.200
0.225
0.250
0.275
0.300

No
rm

al
ize

d
BC

Exact-BC (Brandes)
2C-Fast-BC 0.3

(c) BC values with K-Fraction = 0.3
for the top-100 nodes

0 20 40 60 80 100
Nodes ranked by Exact-BC (top-100)

-0.200%

-0.100%

0.000%

0.100%

0.200%

0.300%

Pe
rc

. E
rro

r [
%

]

Perc. Error

(d) Percentage error with K-Fraction
= 0.3 over the top-100 nodes

0.0 0.2 0.4 0.6 0.8 1.0
K-Fraction

0.0e+00

1.0e-03

2.0e-03

3.0e-03

4.0e-03

5.0e-03

E
u
cl

id
e
a
n
 D

is
ta

n
ce

 (
to

p
-1

0
0

)

2C-Fast-BC (10 threads)

1C-Fast-BC (10 threads)

Exact-BC (10 threads)

0 5 10 15 20 25 30 35 40 45 50 55 60
Percentage of pivot nodes [%]

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0e+00
2.0e-05
4.0e-05
6.0e-05
8.0e-05
1.0e-04
1.2e-04

(e) Euclidean distance of BC values
with different values of K-Fraction
(top-100 nodes)

0.0 0.2 0.4 0.6 0.8 1.0
K-Fraction

0

1

2

3

4

5

6

7

8

%
 o

f
P
o
ss

ib
le

 I
n
v
e
rs

io
n
s

(t
o
p
-1

0
0

)

2C-Fast-BC (10 threads)

1C-Fast-BC (10 threads)

Exact-BC (10 threads)

0 5 10 15 20 25 30 35 40 45 50 55 60
Percentage of pivot nodes [%]

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.00
0.05
0.10
0.15
0.20
0.25
0.30

(f) % of possible inversions with
different values of K-Fraction (top-
100 nodes)

Figure 5. Accuracy of the 2C-Fast-BC algorithm for the top-100 BC
values

results of similar graphs in [8], [9]. Most importantly, the
2C-Fast-BC with a K-Fraction of 0.3 executed in only 609
seconds, corresponding to a 277% and a 325% decrease in
execution time with respect to the 1C-Fast-BC and Exact-
BC, respectively.

Figures 6a, 6b and 6c present the full trend for different K-
Fractions of the global NRMSE, the Euclidean distance and
the percentage of inversions, respectively. Fig. 6d reports on
the percentage of missing elements over the top-5% nodes.
The results show that by choosing a K-Fraction equals
to 0.3 (18% of pivots), the global Euclidean distance is
3.2e−4 whereas the percentage of inversions is about 2.3%6,
whereas for the top-100 ranked nodes the same metrics
exhibit the following values: 1e−4 and 0.25%, respectively.
The difference between the two scenarios confirms that our
approach privileges top-ranked nodes; however, the precision
of the algorithm is high even considering a limited number

6The low value of % inversions in Fig. 6c for small values of K-Fractions
depends on the presence of the high number of very small BC values where
the ranking error is limited.

0.0 0.2 0.4 0.6 0.8
K-Fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
R

M
S
E

2C-Fast-BC (10 threads)

1C-Fast-BC (10 threads)

Exact-BC (10 threads)

(a) Global NRMSE with different
values of K-Fraction

0.0 0.2 0.4 0.6 0.8 1.0
K-Fraction

0.0e+00

1.0e-03

2.0e-03

3.0e-03

4.0e-03

5.0e-03

E
u
cl

id
e
a
n
 D

is
ta

n
ce

2C-Fast-BC (10 threads)

1C-Fast-BC (10 threads)

Exact-BC (10 threads)

0 5 10 15 20 25 30 35 40 45 50 55 60
Percentage of pivot nodes [%]

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0e+00
5.0e-05
1.0e-04
1.5e-04
2.0e-04
2.5e-04
3.0e-04
3.5e-04
4.0e-04

(b) Euclidean distance of BC values
with different values of K-Fraction

0.0 0.2 0.4 0.6 0.8
K-Fraction

0.0

0.5

1.0

1.5

2.0

2.5

%
 o

f
P
o
ss

ib
le

 I
n
v
e
rs

io
n
s

2C-Fast-BC (10 threads)

1C-Fast-BC (10 threads)

Exact-BC (10 threads)

(c) % of possible inversions with
different values of K-Fraction

0.0 0.2 0.4 0.6 0.8
K-Fraction

0

2

4

6

8

10

12

M
is

si
n
g
 E

le
m

e
n
ts

 [
%

]
(t

o
p
-5

%
) 2C-Fast-BC (10 threads)

1C-Fast-BC (10 threads)

Exact-BC (10 threads)

(d) Percentage of missing nodes in
top-5% node-ranking

Figure 6. Accuracy of the 2-Fast-BC algorithm for the whole graph and
top 5% nodes

(18% of the whole set) of pivots.
By properly selecting the value of the K-Fraction, 2C-

Fast-BC can produce high-accurate approximation of BC
values while significantly reducing execution time, when
compared to both the Exact-BC and the 1C-Fast-BC algo-
rithms. The algorithm is very useful when the application
domain tolerates small errors but requires quick responses
for real-time M-contingency analysis.

C. A synthetic index of performance

Since our algorithm generates approximated BC values in
a time depending on the error we can tolerate, an aggregated
index for evaluating both performance and accuracy is
useful. To this end, we propose the following index:

P (x) = 0.5

(
1− tx − tideal

tMax − tideal

)
+ 0.5

(
1− ex

eMax

)
(5)

The equation depends on two variables that are computed
after executing 2C-Fast-BC in configuration x: 1) the time
taken (tx) for BC calculation; 2) the NRMSE error (ex)
of the approximated BC values. The equation includes
three parameters tideal, tMax and eMax that can be fixed
according to the specific domain requirements. Specifically,
tMax is the maximum tolerated execution time. Similarly,
ex represents the maximum allowed NRMSE. Finally, tideal
constitutes the minimum amount of time allowed to the
execution of the algorithm.

In the first setting of the P metric, represented in Fig. 7a,
we defined tideal equal to the execution time of the fastest
2C-Fast-BC configuration, i.e., 60 seconds with a K-Fraction

8

0.0 0.2 0.4 0.6 0.8
K-Fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
e
rf

o
rm

a
n
ce

2C-Fast-BC (10 threads)

1C-Fast-BC (10 threads)

Exact-BC (10 threads)

(a) eMax = 0.25, tMax = 1982s

0.0 0.2 0.4 0.6 0.8
K-Fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
e
rf

o
rm

a
n
ce

2C-Fast-BC (10 threads)

1C-Fast-BC (10 threads)

Exact-BC (10 threads)

(b) eMax = 0.1, tMax = 1982s

0.0 0.2 0.4 0.6 0.8
K-Fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
e
rf

o
rm

a
n
ce

2C-Fast-BC (10 threads)

1C-Fast-BC (10 threads)

Exact-BC (10 threads)

(c) eMax = 0.05, tMax = 1982s

0.0 0.2 0.4 0.6 0.8
K-Fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
e
rf

o
rm

a
n
ce

2C-Fast-BC (10 threads)

1C-Fast-BC (10 threads)

Exact-BC (10 threads)

(d) eMax = 0.25, tMax = 600s

Figure 7. Performance

of 0.001. We set tMax to the execution time of the Exact-
BC algorithm (i.e., 1,982 seconds) and eMax to 0.25. This
setting rewards computing times below the one of Exact-BC
and errors below 25% NRMSE. Fig. 7a clearly shows the
values of K-Fraction satisfying these performance require-
ments, i.e., K-Fraction should be selected within the range
[0.05, 0.7], with the most performing configuration being
associated to a K-Fraction of 0.15. A comparison with the
performance of the Exact-BC and the 1C-Fast-BC is also
visually reported in the figure.

Different settings of eMax and tMax are depicted in
Figs. 7b:7d. Such settings correspond to more stringent
requirements on the tolerated NRMSE (Figs. 7b and Fig. 7c)
and execution time (Fig. 7d), respectively. Interestingly, a
configuration with an extremely low tolerated execution time
of 600 seconds and maximum NRMSE of 0.25 (Fig.. 7d) can
be satisfied only by using the 2C-Fast-BC with a K-Fraction
between 0.001 and 0.25.

In Fig. 8, we exploit 3D plots to represent the surfaces
generated by varying the two parameters tMax and eMax

in Eq. 5, for both 1C-Fast-BC and 2C-Fast-BC. Fig. 8a
compares the performance of 1C-Fast-BC to that of Exact-
BC. The two surfaces are mostly overlapping, thus showing
very similar performance on the GLyon graph. In particular,
performance is slightly better with 1C-Fast-BC when a larger
maximum error (i.e., larger than 0.4) can be tolerated. Exact-
BC should instead be preferred whenever the maximum
tolerated time is large enough (i.e., larger than 1600 seconds)
for the algorithm to complete and the maximum tolerated
error is smaller than 0.2. Different configurations of 2C-Fast-
BC are compared to 1C-Fast-BC in Figs. 8b:8d. Specifically,
Fig. 8b is related to the lowest values of K-Fractions (i.e.,
0.001) considered in our evaluation. Good performance can

tmax0 1000200030004000500060007000

e
m
ax

0.0

0.2

0.4

0.6
0.8

1.0

P
erform

a
n
ce

0.0

0.2

0.4

0.6

0.8

1.0

1C-Fast-BC

Exact

(a) Exact-BC vs 1C-Fast-BC

tmax0 1000200030004000500060007000

e
m
ax

0.0

0.2

0.4

0.6
0.8

1.0

P
erform

a
n
ce

0.0

0.2

0.4

0.6

0.8

1.0

2C-Fast-BC (0.001)

1C-Fast-BC

(b) 2C-Fast-BC (K-Fraction 0.001)
vs 1C-Fast-BC

tmax0 1000200030004000500060007000

e
m
ax

0.0

0.2

0.4

0.6
0.8

1.0

P
erform

a
n
ce

0.0

0.2

0.4

0.6

0.8

1.0

2C-Fast-BC (0.3)

1C-Fast-BC

(c) 2C-Fast-BC (K-Fraction 0.3) vs
1C-Fast-BC

tmax0 1000200030004000500060007000

e
m
ax

0.0

0.2

0.4

0.6
0.8

1.0

P
erform

a
n
ce

0.0

0.2

0.4

0.6

0.8

1.0

2C-Fast-BC (0.9)

1C-Fast-BC

(d) 2C-Fast-BC (K-Fraction 0.9) vs
1C-Fast-BC

Figure 8. 3-d Performance curves with different values of tmax and emax
(tideal = 0s)

be achieved with this configuration when the maximum
tolerated execution time is significantly low (e.g., lower
than 100 seconds) and a fairly large error on BC values
can be tolerated (e.g., larger than 0.5-0.6). Configurations
with larger K-Fractions (e.g., 0.3 in Figs 8c) appear to be
generally preferable when requirements are not particularly
stringent both on BC error and computation time. Finally,
configurations with larger K-Fractions tend to exhibit perfor-
mance that are very close to that of 1C-Fast-BC (see Fig. 8d).

VI. CONCLUSION

In this paper, we proposed a new algorithm for fast
computation of approximated betweenness centrality values.
The algorithm reduces the computation time by identifying
k pivots for single-source shortest-paths explorations, so
achieving an ideal speedup n

k . Differently from other similar
approaches based on pivot selection, the proposed approach
focuses on the border nodes of clusters and selects pivots
by considering topological properties of graphs, taking into
account the formula for evaluating dependency score.

We applied the proposed algorithms for vulnerability
analysis of a large, real-world road network. The encour-
aging results suggest the adoption of our algorithms for M -
contingency analysis over both scale-free and non-scale-free
graphs, by rapidly locating the most M critical nodes of a
snapshot of a dynamically evolving road network.

In order to generalize the approach to dynamic networks,
two main extensions are planned: 1) adapting 1C/2C-Fast-
BC algorithms to weighted and directed graphs; 2) enriching
network modeling by taking into account additional struc-
tural properties of road networks.

9

In this perspective, our work constitutes the foundation
for building a framework aimed at vulnerability continuous
monitoring. Such framework should provide the necessary
software infrastructure to: 1) collect and analyze large-scale,
real-time, heterogeneous data; 2) handle dynamic, weighted,
directed graphs; 3) adaptively change the settings of the
2C-Fast-BC algorithm according to dynamically evolving
domain requirements (e.g., the framework could run in an
emergency mode, requiring low computation time and larger
tolerated error, or alternatively in a maintenance mode,
demanding smaller error but allowing for more execution
time).

REFERENCES

[1] S. P. Borgatti, A. Mehra, D. J. Brass, and G. Labianca,
“Network analysis in the social sciences,” Science, vol. 323,
no. 5916, pp. 892–895, 2009.

[2] D. King and A. Shalaby, “Performance metrics and analysis
of transit network resilience in Toronto,” Transportation
Research Record, 2016.

[3] D. Koschützki and F. Schreiber, “Centrality analysis methods
for biological networks and their application to gene regula-
tory networks,” Gene regulation and systems biology, vol. 2,
pp. 193–201, 2008.

[4] P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, “Attack vul-
nerability of complex networks,” Physical Review E, vol. 65,
no. 5, p. 056109, 2002.

[5] S. Jin, Z. Huang, Y. Chen, D. Chavarra-Miranda, J. Feo, and
P. C. Wong, “A novel application of parallel betweenness
centrality to power grid contingency analysis,” in 2010 IEEE
International Symposium on Parallel Distributed Processing
(IPDPS), 2010, pp. 1–7.

[6] T. Carpenter, G. Karakostas, and D. Shallcross, “Practical
issues and algorithms for analyzing terrorist networks,” Pro-
ceedings of the Western Simulation MultiConference, 2002.

[7] U. Brandes, “A faster algorithm for betweenness centrality,”
Journal of Mathematical Sociology, vol. 25, no. 163, 2001.

[8] U. Brandes and C. Pich, “Centrality estimation in large
networks,” International Journal of Bifurcation and Chaos,
vol. 17, no. 07, pp. 2303–2318, 2007.

[9] R. Geisberger, P. Sanders, and D. Schultes, “Better approxi-
mation of betweenness centrality.” in ALENEX. SIAM, 2008,
pp. 90–100.

[10] P. Suppa and E. Zimeo, “A clustered approach for fast
computation of betweenness centrality in social networks,” in
2015 IEEE International Congress on Big Data, June 2015,
pp. 47–54.

[11] S. Zhao, P. Zhao, and Y. Cui, “A network centrality measure
framework for analyzing urban traffic flow: A case study
of Wuhan, China,” Physica A: Statistical Mechanics and its
Applications, vol. 478, pp. 143 – 157, 2017.

[12] Y. Zhang, X. Wang, P. Zeng, and X. Chen, “Centrality char-
acteristics of road network patterns of traffic analysis zones,”
Transportation Research Record: Journal of the Transporta-
tion Research Board, vol. 2256, pp. 16–24, 2011.

[13] B. Berche, C. von Ferber, T. Holovatch, and Y. Holovatch,
“Resilience of public transport networks against attacks,” The
European Physical Journal B, vol. 71, no. 1, pp. 125–137,
2009.

[14] D. A. Bader and K. Madduri, “Parallel algorithms for eval-
uating centrality indices in real-world networks,” in Parallel

Processing, 2006. ICPP 2006. International Conference on.
IEEE, 2006, pp. 539–550.

[15] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and
D. Chavarria-Miranda, “A faster parallel algorithm and effi-
cient multithreaded implementations for evaluating between-
ness centrality on massive datasets,” in Parallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International Sympo-
sium on. IEEE, 2009, pp. 1–8.

[16] S. White and P. Smyth, “Algorithms for estimating relative
importance in networks,” in Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2003, pp. 266–275.

[17] K. Ohara, K. Saito, M. Kimura, and H. Motoda, Accelerating
Computation of Distance Based Centrality Measures for
Spatial Networks.

[18] N. Kourtellis, G. D. F. Morales, and F. Bonchi, “Scalable
online betweenness centrality in evolving graphs,” 2016 IEEE
32nd International Conference on Data Engineering (ICDE),
vol. 00, pp. 1580–1581, 2016.

[19] P. Holme, “Congestion and centrality in traffic flow on
complex networks,” Advances in Complex Systems (ACS),
vol. 06, no. 02, pp. 163–176, 2003.

[20] Y. Altshuler, R. Puzis, Y. Elovici, S. Bekhor, and A. Baglion-
iPentland, “Augmented betweenness centrality for mobility
prediction in transportation networks,” Finding Patterns of
Human Behaviors in Network and Mobility Data (NEMO),
2011.

[21] S. Gao, Y. Wang, Y. Gao, and Y. Liu, “Understanding urban
traffic-flow characteristics: a rethinking of betweenness cen-
trality,” Environment and Planning B: Planning and Design,
vol. 40, no. 1, pp. 135–153, 2013.

[22] A. Kazerani and S. Winter, “Can betweenness centrality
explain traffic flow?” AGILE, 2009.

[23] A. Jayasinghe, K. Sano, and H. Nishiuchi, “Explaining traffic
flow patterns using centrality measures,” International Jour-
nal for Traffic & Transport Engineering, vol. 5, no. 2, pp.
134–149, 2015.

[24] J. Yang and Y. Chen, “Fast computing betweenness centrality
with virtual nodes on large sparse networks,” PLoS One,
2011.

[25] M. E. Newman, “Analysis of weighted networks,” Physical
Review E, vol. 70, no. 5, p. 056131, 2004.

[26] A. Arenas, J. Duch, A. Fernández, and S. Gómez, “Size
reduction of complex networks preserving modularity,” New
Journal of Physics, vol. 9, no. 6, p. 176, 2007.

[27] G. Leu, H. Abbass, and N. Curtis, “Resilience of ground
transportation networks: a case study on melbourne,” 33rd
Australasian Transport Research Forum Conference, 2010.

[28] E. Jenelius and L.-G. Mattsson, “Road network vulnerability
analysis of area-covering disruptions: A grid-based approach
with case study,” Transportation Research Part A: Policy and
Practice, vol. 46, no. 5, pp. 746–760, 2012.

[29] L. C. Freeman, “A set of measures of centrality based on
betweenness,” Sociometry, vol. 25, pp. 35–41, 1997.

[30] V. Latora and M. Marchiori, “Efficient behavior of small-
world networks,” Phys. Rev. Lett., vol. 87, no. 19, Oct. 2001.

[31] L. Costa, F. Rodrigues, G. Travieso, and P. Boas, “Charac-
terization of complex networks: A survey of measurements,”
Advances in Physics, vol. 56, no. 1, pp. 167–242, 2007.

10

