
Reducing pivots of approximated
betweenness computation by
hierarchically clustering complex
networks

Angelo Furno, Nour-Eddin El Faouzi, Rajesh Sharma and Eugenio Zimeo

Abstract Betweenness centrality is a widely adopted metric to analyze
the impact of critical nodes of graphs in several domains (social, biological,
transportation, service, computer networks). Its exact computation is very
demanding due to an O(nm) time complexity on a graph with n nodes and
m edges. This represents an obstacle to the adoption of betweenness cen-
trality for continuous monitoring of critical nodes in very large networks. In
this paper, we analyze the performance of a parametric two-level clustering
algorithm for computing approximated values of betweenness with different
kinds of graph. The analysis aims at evaluating how the properties of differ-
ent complex networks impact the reduction of the number of single-source
shortest-paths explorations of Brandes’ algorithm. The results confirm that
one-level clustering strongly reduces the number of pivots (and consequently
the computation time) on scale-free graphs, while small-world (and random)
graphs need an additional level of clustering to achieve acceptable results.

1 Introduction

Betweenness centrality (BC) is a popular graph metric to characterize node’s
network centrality as a measure of the extent to which a node has control
over information flow between any other pair of nodes in the network.

This metric has been widely adopted to identify opinion leaders in so-
cial networks [2], critical intersections in transportation networks [9], critical
nodes in biological networks [10] vulnerabilities in computer networks [7] and
power grids [8], threats from terrorist networks [5]. In spite of its usefulness,
high computation time limits the applicability of BC especially for real-time
monitoring of very large infrastructures modeled as graphs.

Angelo Furno, Nour-Eddin El Faouzi
Univ. Lyon, IFSTTAR, ENTPE, Lyon, France. e-mail: name.surname@ifsttar.fr

Rajesh Sharma

University of Tartu, Tartu, Estonia. e-mail: rajesh.sharma@ut.ee

Eugenio Zimeo
University of Sannio, Benevento, Italy. e-mail: zimeo@unisannio.it

1

Computing BC requires exhaustive path traversals. The fastest algorithm
for exact betweenness centrality computation has been proposed by Brandes
[3]. For a graph G(V,E), it exhibits a time complexity of O(nm), where
n = |V | is the number of nodes and m = |E| is the number of edges.

However, Brandes’ algorithm is not suitable for real-time computations
needed for monitoring, especially on very large networks. In this paper, we
propose an algorithm for computing approximated values of BC that can be
guided to tune its performance on the basis of a tolerable error of the com-
puted index. The algorithm, inspired by [4] and [6], exploits some topological
characteristics of graphs in order to classify nodes for their selection as pivots.
To this end, it calculates the betweenness index through four phases: first, the
graph is partitioned in communities by applying a clustering method; then,
for each cluster, the nodes are grouped into classes according to their equiva-
lent potential contribution for the computation of the betweenness centrality
values of the other nodes of the graph. By using a representative pivot for
each class, we can calculate an almost exact value of betweenness for several
nodes while keeping a good approximation for the others, with a computing
time that strictly depends on the number of classes identified.

Unfortunately, the number of classes is typically small for scale-free1

graphs [16] but can be large for other kinds of graphs. To address this
topology-dependent problem, we consider a two-level clustering fast between-
ness computation aimed at reducing the number of classes by aggregating
them in super classes, through an additional clustering inside each commu-
nity (third phase). In this case, a pivot is elected for each identified super
class. Finally (fourth phase), Brandes’ algorithm is applied to pivot nodes,
by achieving an ideal speedup n

k
, where k is the number of super classes.

By this approach, we can reduce the number of pivots as needed by the
application requirements on computation time, as well as keeping the growing
error under a tolerable threshold. In this paper, we analyze the accuracy of
the two cluster-based algorithms on different complex networks.

The rest of the paper is organized as follows. In Sec. 2, we present related
work. Sec. 3 describes the algorithm proposed for fast BC calculation. In
Sec. 5, we first discuss the different kinds of complex networks used in our
analysis. Then, we evaluate our approach on the considered datasets. We
conclude in Sec. 6 by also discussing future directions.

2 Related Work

In spite of its significant improvement over the naive approach, especially
for sparse graphs, the algorithm proposed by Brandes [3] is not adequate for
real-time monitoring of very large networks due to high computation time. In
this direction, several approaches for fast evaluating exact or approximated
solutions have been proposed. They can be classified in three groups.

1 A scale-free graph is characterized by a power-law degree distribution, i.e., few nodes
have a very large degree, while the majority of the nodes has only a few neighbors.

2

In the first set of approaches, parallel implementations are leveraged for
computing betweenness centrality. In [1], a solution based on a fine-grained
multi-level parallelism is proposed. The neighbors of a given node are tra-
versed concurrently on a shared data structure with granular locking. The
algorithm has been successively improved [12] by removing the need for lock-
ing in the dependency accumulation stage of Brandes’ algorithm through the
adoption of a successor list instead of a predecessor list for each node.

The second research trend aims at achieving low computation time by
calculating approximated BC values. These strategies try to penalize some
shortest paths, whose computation is the most expensive task in the whole
process. For example, in [18], the authors only consider paths up to fixed
length k. Brandes and Pich [4] also proposed an approximated algorithm
for faster BC calculation by selecting only k � n pivots as sources for the
computation of single-source shortest-paths (SSSP). To this purpose, different
strategies are considered, showing that random selection of pivots can achieve
accuracy levels comparable to other heuristics. However, this approach over-
estimates the BC of unimportant nodes that are near a pivot. To overcome
this problem a generalization framework for betweenness approximation has
been proposed in [6]. The idea is to scale BC values in order to reduce them
with reference to nodes close to pivots. In a recent work [14], another approx-
imated BC algorithm has been proposed. However, the approach shows large
fluctuations of accuracy over the top-100 nodes on a scale-free graph.

A third class of approaches (stream-based) tries to avoid recomputing the
BC values of all the nodes of a graphG′ ≡ G+∆G when they are known for
a previous configuration G. Recently, an efficient algorithm for incremental
BC computation [11] has been proposed. The algorithm performs very well
when BC has to be recalculated as a consequence of adding or removing one
node. However, the high speedup achieved for the scenarios above drastically
reduces when a graph configuration differs from the previous one inM nodes.

The algorithm analyzed in this paper is an extension of our previous
work [16] that selects the pivots by classifying nodes with reference to border
nodes of communities, which are considered most relevant for BC evaluation.
The solution can be classified as an approximated algorithm based on BC
estimation through a partial exploration of graphs, driven by pivot nodes.
While the original version identifies the number of pivots on the basis of
graph properties, the extended version is able to reduce this number through
a further clustering based on K-means.

3 Background: Fast BC computation based on clustering

The algorithm analyzed in this paper reduces the number of pivots by exploit-
ing clustering. As previously proved [16], border nodes of clusters represent
the most significant nodes of a graph to compute betweenness centrality,
since they are the most traversed ones. Therefore, finding the nodes inside
each cluster that exhibit the same (or very similar) properties with reference

3

to border nodes allows for reducing the number of single source shortest paths
computations of Brandes’ algorithm. In particular, the algorithm is hierar-
chical: (a) at the first level, it exploits Louvain clustering to find communities
and border nodes; (b) at the second level, it adopts K-means clustering to
force pivots reduction. Since the first level finds a number of pivots based on
graph topological properties, the second one is necessary when the identified
number of pivots is not small enough to ensure the desired computation time.
However, forcing the algorithm to reduce the number of pivots may increase
approximation errors.

We assume the following definitions throughout the paper. For a generic
graph G(V,E) a shortest path between any two nodes vi and vj is a path
with the minimum number of hops among all the paths connecting the two
nodes and is denoted as sp(vi, vj). Distance d(vi, vj) = len(sp(vi, vj)) is
the length of a shortest path between nodes vi and vj . We denote σvivj as
the number of shortest paths between vi and vj , while σvivj(vk) represents
the number of shortest paths from vi to vj that cross node vk.

3.1 Brandes’ algorithm
Given a pair-dependency of a source node s on an another node v for a
destination t of the graph, defined as:

δst(v) =
σst(v)

σst
,

the betweenness centrality of any node v can be expressed in terms of de-
pendency score δs•(v) =

∑
t∈V,v 6=t δst(v), obtained by summing the pair-

dependencies of each pair of nodes on v that has s as source node. To compute
this score, Brandes’ algorithm exploits a recursive relation that is motivated
by the following observation: let W = {w : v ∈ Ps(w)} be the set of nodes
w such that v is a predecessor of w along a shortest path that starts from
node s, and Ps(w) = {v ∈ V : {v, w} ∈ E, d(s, w) = d(s, v)+d(v, w)}
the set of direct predecessors of a generic node w in the shortest paths from
the source node s to w, for unweighted graphs; then, v is a predecessor also
in any other shortest path starting from s and passing through a different
w ∈W [3]. Consequently, we have:

δs•(v) =
∑

w:v∈Ps(w)

σsv

σsw
(1 + δs•(w)), (1)

Finally, the betweenness centrality BC of node v is obtained by2:

BC(v) =
∑

s∈V,v 6=s

δs•(v). (2)

Conceptually, Brandes’ algorithm runs in two phases. During the first
phase, it performs a search on the whole graph to find all the shortest paths

2 For scaling purpose, BC values are often normalized by dividing them by (n− 1) · (n−
2)/2 for undirected graphs and by (n− 1) · (n− 2) for directed ones.

4

starting from every node s, considered as the source of a breadth-first ex-
ploration of the whole graph. Then, in the second phase, it performs de-
pendency accumulation by backtracking along the discovered shortest paths.
During these two phases, the algorithm maintains four data structures for
each node found on the way: a predecessor list Ps(v), the distance ds(v)
from the source, the number of shortest paths from the source σst(v) and
the dependency accumulation when backtracking at the end of the search.

3.2 One-level clustering fast BC

In this section, we briefly describe the algorithm based on one-level clustering
(1C-Fast-BC) with the support of the pseudo-code in Alg. 1. We remark that
1C-Fast-BC was originally proposed in [16] by some authors of this paper. It
exploits some principles also introduced in [15], such as structural properties
and partitioning, by using clustering.

Algorithm 1 2C-Fast-BC algorithm
(1C-Fast-BC algorithm is the same without blue code)

1: procedure ClusteredBrandes(G,C,KFrac)
2: map i← 1, |C| do
3: bordernodesi ← findBorderNodes(G,Ci)
4: end map
5: map i← 1, |V | do
6: BCgraph← computeLocalBC(i, C, bordernodes)
7: end map
8: reduce BCgraph.localBCi, Bgraph.localBCj , i = j do
9: BCclusteri ← BCgraph.localBCi + BCgraph.localBCj

10: end reduce
11: map i← 1, |C| do
12: BCgraph.superClassesi ← KMeansClustering(Ci,

13: BCgraph.classesi, KFrac)

14: end map
15: map i← 1, (|BCgraph.superClasses|) do
16: Pi ← selectPivotOf(BCgraph.superClassesi, BCcluster)
17: end map
18: map i← 1, (|BCgraph.superClasses|) do
19: δi ← computeDependencyScoresFromPivot(Pi)
20: δi ← (δi − BCgraph.localBC) · |BCgraph.superClassesi|
21: end map
22: reduce δim, δjl,m = l do
23: BCm ← δim + δjl
24: end reduce
25: for i← 1, |V | do
26: BCi ← BCi + BCclusteri
27: end for
28: return BC
29: end procedure

Given a graph G(V,E), we split it into a set C of clusters by using the
Louvain method3, a non-parallelizable heuristic that exhibits a very good
O(n · log(n)) complexity. The main result of Louvain clustering is the iden-

3 The Louvain method exploits modularity [13] for grouping nodes. Modularity is the ratio
between the density of links inside communities to the one of the links among them.

5

tification of border nodes (an array for each cluster - line 3 of Alg. 1). A
border node is a node having at least one neighbor in a different cluster.

Then, a parallel execution of Brandes’ algorithm is performed inside each
cluster (line 6) to compute the local BC. This computation generates the
partial inner-cluster contribution to the BC of each node and also additional
information, such as the shortest paths and the distances from a node of a
cluster towards each border node of the same cluster.

The information above is used to identify the nodes inside each cluster
that equally contribute to the dependency score of each node of the graph. To
this end, we introduce a class of equivalence (BCgraph.classesi)

4 defined
according to the following rule: two nodes v and w belong to the same class
if and only if they have the same normalized distance from each border node
of that cluster and the same amount of shortest paths towards the border
nodes. The normalized distance of node j is the length of the shortest path
for reaching a border node minus the minimum distance to reach any of the
border nodes. Therefore, the smallest normalized distance is always zero.

Taking into account that nodes belonging to the same class produce the
same dependency score on each node of the graph, one representative node
should be identified as a source node for applying Brandes’ algorithm. This
node is called class pivot5. Since a pivot does not contribute to its BC, it is
selected by considering the lowest BC value among the class nodes that are
not border nodes (line 16).

The partial dependency score calculated for the pivot (line 19) is then
multiplied by the cardinality of the pivot class (line 20). That avoids to
compute the dependency score of the nodes of the same class, thus ensuring
fast calculation of BC if k � n, where k = |P | is the number of pivots
belonging to set P of selected pivots and n is the total number of nodes.

The final value of BC is obtained for each node (line 26) by summing up
all partial contributions (produced by the reduce operation) with local BC
values (to compensate the partial local contribution subtracted at line 20).

4 Beyond 1C-Fast-BC: Two-level clustering fast BC

The algorithm above exhibits very good performance [16] when the over-
all number of classes in the graph is � n. However, this is true only for
some kinds of complex networks (such as scale-free social networks studied
in our previous work [16]). When networks are more regular or exhibit de-
gree gaussian distributions, the 1C-Fast-BC approach fails since the number
of classes inside each cluster is close to the number of nodes in it. How-
ever, we observed that by relaxing the constraints on normalized distance
we can conveniently exploit a weaker equivalence class, where nodes have
not the same normalized distance from border nodes but ”almost” the same

4 By using only one-level clustering, classes and super classes are equivalent.
5 The partial contribution on border nodes of the same cluster of the pivot is the same

only for nodes t /∈ Cs (where Cs is the cluster of pivot s).

6

Network

Type

Network

Name

Diameter APL CC

Scale-Free SF-50K 20 4.526 0

Small World SW-50K-P.0 9999 3333.799 0.6666
SW-50K-P.0001 2728 798.898 0.6662

SW-50K-P.001 1004 211.233 0.6623
SW-50K-P.005 593 77.994 0.6467
SW-50K-P.01 440 49.481 0.6263

SW-50K-P.015 307 37.070 0.6076
SW-50K-P.05 204 19.103 0.4871
SW-50K-P.1 159 13.537 0.3459

SW-50K-P1 25 7.097 0.0002

Table 1: Complex networks dataset

(a) SF-50K

(b) SW-50K-P.005

one. We call super class this kind of class (see Alg. 1 - blue text) and iden-
tify them by using an additional clustering (based on the euclidean distance
among the vectors representing the normalized distances) inside each initial
Louvain-derived cluster (see Alg. 1 - line 12). As a consequence, a super
class BCgraph.superClassesi is a group of classes belonging to the same
cluster: nodes are considered equivalent even when they belong to different
classes but are very close (i.e., Euclidean distance close to zero).

To identify super classes, we exploit the K-means algorithm, using a dif-
ferent K for each initial Louvain cluster. K is defined as a fraction of the
initial number of classes belonging to each Louvain cluster. For example, by
considering a fraction equals to 0.4, the algorithm adopts a 0.4 fraction of
the number of classes in each Louvain cluster. By this approach (2C-Fast-
BC), we are able to drive the behavior of the algorithm towards the desired
computation time.

5 Algorithm analysis with complex networks

We have tested our algorithm with several real-world networks, but, in this
paper, we aim at characterizing both 1C-Fast-BC and 2C-Fast-BC in a more
general setting, by considering different classes of synthetic graphs. This al-
lows for selecting the best configuration of our algorithm depending on the na-
ture of the real networks. In particular, we consider three kinds of widespread
graphs: (a) Scale-Free (SF); (b) Small World (SW); (c) Random, where the
last one is considered as a particular case of small world graphs. To achieve the
objective above, we created two different types of synthetic network datasets
using the R igraph package, namely: 1) Scale-Free (with 50,000 nodes and
49,999 edges); 2) Small World (with 50,000 nodes and 250,000 edges).

For Small World graphs, we considered several configurations by varying
the rewiring probability p in the range [0, 1]. This probability adds random-
ness to a regular graph; when p increases the clustering coefficient and the
average path lengths decrease. With p = 0 we have regular graphs whereas
with p = 1 random graphs are generated [17].

7

(a) Normalized BC with 1C-Fast-BC and
Exact-BC for the top-100 nodes

(b) Percentage error of 1C-Fast-BC over
the top-100 nodes

Fig. 1: Performance of 1C-Fast-BC on the Scale-Free graph

Table 1 reports some other features of the generated graphs, i.e., Diameter,
Clustering Coefficient (CC) and Average Path Length (APL), together with
the degree distribution for some of the networks.

5.1 Performance on Scale-Free graphs

Firstly, we present the results of our performance evaluation of the 1C-Fast-
BC algorithm on the SF graph in Tab. 1. For the evaluation, we consider three
main indexes: 1) accuracy of the approximated BC values, measured by con-
sidering the percentage error on each node BC, the global metric of the mean-
Normalized Root-Mean-Square Error (NRMSE)6 and the Euclidean distance
of the normalized BC vectors, as in [4,6]; 2) accuracy of nodes’ ranking, mea-
sured via the inversion distance (i.e., percentage of possible inversions), as
in [4, 6]; 3) execution time.

As shown in Fig. 1, the 1C-Fast-BC algorithm provides a very good ap-
proximation of the exact BC associated to the top-100 nodes. This can be
appreciated as an almost perfect overlapping of the approximated and exact
values in Fig. 1a, as well as the 0 percentage error associated, on average,
to the nodes in Fig. 1b7. This behavior is also confirmed by low values of
NRMSE on the top-100 and top-5% (0.01 and 0.19) nodes, which rises to 0.4
for the top-30% and 0.7 for the whole set of nodes. The Euclidean distance of
the normalized BC vectors is equal to 0.04. We remark here that computa-
tion took only 29.77 seconds, by using only 277 pivots (distributed over 250
Louvain clusters) out of the 50,000 node-set.

6 The NRMSE is defined as: 1
σ̄

√
1
n

∑n
i=1 e

2
i , with σ̄ denoting the mean of the exact BC

values and ei representing the difference between exact and approximated values of BC for
node i. NRMSE is generally preferred to the percentage error when 0-values are present

among the expected ones. Values close to 0 are representative of good approximation, while

values close to 1 or even larger tend to indicate a bad approximation.
7 Higher percentage errors are related to nodes that are far from the border ones. Typically
these nodes have low values of BC but in a few cases they are highly crossed by intra-cluster

paths and consequently exhibit high BC values.

8

(a) NRMSE of 1C-Fast-BC, 2C-Fast-BC

and Exact over the top-100 nodes

(b) Percentage of inversions for

1C-Fast-BC, 2C-Fast-BC and Exact

(c) Euclidean distance of approximated

BC vectors from exact ones

(d) Execution time for 1C-Fast-BC,

2C-Fast-BC and Exact

Fig. 2: Performance of 2C-Fast-BC, 1C-Fast-BC and Exact on the Scale-Free graph

Secondly, we evaluated the 2C-Fast-BC algorithm on the same SF network
(Fig. 2). As expected, the 2C-Fast-BC reduces the quality of the approxima-
tion. Also, as clearly shown in Figs. 2a, 2b and 2c, no relevant improvement
is achieved by increasing the value of the K-Fraction parameter. This can
be easily explained by considering the #pivots to #clusters ratio (very close
to 1) in the 1C-Fast-BC, which leaves no room for further reduction of the
number of pivots. Furthermore, the overhead due to the K-means clustering
causes the 2C-Fast-BC algorithm to be slightly slower than the 1C-Fast-BC
one, as in Fig. 2d (i.e., an average of 55 seconds against the 29.77 seconds of
1C-Fast-BC and the 966.93 seconds of the Exact).

As previously verified for social networks [16], we confirm here that the 1C-
Fast-BC algorithm represents a very good technique for a fast and accurate
computation of approximated BC values of Scale-Free graphs, especially for
the most critical nodes (i.e., those with the highest BC). Therefore, with
this kind of graph, the performance of 1C-Fast-BC represents a sort of upper
bound that 2C-Fast-BC does not overcome (i.e., computation times with 2C-
Fast-BC is higher for any fraction k).

9

(a) NRMSE of 1C-Fast-BC, 2C-Fast-BC
over the top-100 nodes

(b) Percentage of inversions for
1C-Fast-BC, 2C-Fast-BC and Exact

(c) Euclidean distance of approximated

BC vectors from exact ones

(d) Execution time for 1C-Fast-BC,

2C-Fast-BC and Exact

Fig. 3: Performance of 1C-Fast-BC and 2C-Fast-BC on the SW graph with p=0.005

5.2 Performance on Small-World graphs

To analyze the performance of the 1C-Fast-BC and 2C-Fast-BC on Small-
World networks, we considered several configurations (Tab. 1), corresponding
to different values of the p parameter. Fig. 3 details the performance of both
1C-Fast-BC and 2C-Fast-BC on the SW-50K-P.005 network from Tab. 1,
and is the one with the best performance in terms of inversion distance and
NRMSE when using the 2C-Fast-BC algorithm (see Figs. 4a and 4b).

Interestingly, the number of pivots used by the 1C-Fast-BC algorithm
on the SW-50K-P.005 network is equal to the total number of nodes (i.e.,
50,000 nodes are used as pivots over 138 Louvain cluster). In other words,
when using only one-level of clustering, all nodes are considered pivots as in
Brandes’ algorithm in order to produce a high-quality approximation of BC.
Obviously, as shown in Fig. 3d, this translates to a significant execution time
(1961 seconds), even higher than the one required by the Exact algorithm
(1598 seconds), due to the overhead of performing Louvain clustering. By
reducing the number of pivots, the 2C-Fast-BC can drastically reduce the
execution time up to a 10 factor, by also keeping good levels of accuracy (see

10

(a) NRMSE of 1C-Fast-BC,

2C-Fast-BC (top-100 nodes)

(b) Percentage of inversion of

2C-Fast-BC

(c) Euclidean distance of

approx. and exact BC vectors

Fig. 4: Performance of 2C-Fast-BC on Small-World graphs with different values of p

NRMSE for the top-100 nodes, the inversion and the Euclidean distances in
Figs. 4a, 4b and 4c, respectively).

The results of the previous analysis are confirmed on the whole set of
Small-World networks reported in Tab. 1. Fig. 4 clearly shows that our al-
gorithm suffers with random and very regular networks (p close to 1 and 0,
respectively) while in other small world configurations the accuracy depends
on the clustering coefficient. When the latter is high (close to the maximum
one) and the average path length is low, the 2C-Fast-BC algorithm exhibits
the best accuracy (this is obtained with p = 0.005 in our case), while com-
putation time can be reduced by choosing a proper value of K.

6 Conclusion

We proposed a new algorithm for fast computation of approximated between-
ness centrality. The algorithm reduces the computation time by identifying
k pivots for single-source shortest-paths explorations, thus achieving an ideal
speedup of n

k
with respect to Brandes’ algorithm. Differently from other

similar approaches based on pivot selection, the proposed solution exploits
clustering to identify topological properties of graphs.

Our analysis shows that selecting pivots by means of clustering signifi-
cantly reduces the time for computing the approximated values of BC on
scale-free graphs, which exhibit an ideal topology for the proposed algorithm.
Unfortunately, the number of pivots is too high with small world and random
graphs. In these cases, 2C-Fast-BC forces an artificial reduction that further
decreases the number of pivots and computing time at a cost of a lower ac-
curacy. However, by taking the errors under control (in terms of inversions,
euclidean distance, NRMSE, etc. depending on the application requirements),
our hierarchical two-level clustering algorithm represents a valid alternative
for approximated BC computation.

To quantify the advantages of our solution compared to [4, 6], we have
planned a more exhaustive analysis on additional kinds of graphs and a direct
comparison with their approaches. We are also working on an improvement of
our 1C-Fast-BC strategy to reduce the error on nodes with lower BC values.

11

7 Acknowledgements

This work has been partially supported by the GAUSS national research
project (MIUR, PRIN 2015, Contract 2015KWREMX).

References

1. Bader, D.A., Madduri, K.: Parallel algorithms for evaluating centrality indices in real-
world networks. In: Parallel Processing, 2006. ICPP 2006. International Conference

on, pp. 539–550. IEEE (2006)

2. Borgatti, S.P., Mehra, A., Brass, D.J., Labianca, G.: Network analysis in the social
sciences. Science 323(5916), 892–895 (2009)

3. Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathematical

Sociology 25(163) (2001)
4. Brandes, U., Pich, C.: Centrality estimation in large networks. International Journal

of Bifurcation and Chaos 17(07), 2303–2318 (2007)
5. Carpenter, T., Karakostas, G., Shallcross, D.: Practical issues and algorithms for an-

alyzing terrorist networks. Proceedings of the Western Simulation MultiConference

(2002)
6. Geisberger, R., Sanders, P., Schultes, D.: Better approximation of betweenness cen-

trality. In: ALENEX, pp. 90–100. SIAM (2008)

7. Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks.
Physical Review E 65(5), 056,109 (2002)

8. Jin, S., Huang, Z., Chen, Y., Chavarra-Miranda, D., Feo, J., Wong, P.C.: A novel

application of parallel betweenness centrality to power grid contingency analysis. In:
2010 IEEE International Symposium on Parallel Distributed Processing, pp. 1–7 (2010)

9. King, D., Shalaby, A.: Performance metrics and analysis of transit network resilience

in Toronto. Transportation Research Record (2016)
10. Koschützki, D., Schreiber, F.: Centrality analysis methods for biological networks and

their application to gene regulatory networks. Gene regulation and systems biology 2,

193–201 (2008)
11. Kourtellis, N., Morales, G.D.F., Bonchi, F.: Scalable online between-

ness centrality in evolving graphs. 2016 IEEE 32nd International Con-
ference on Data Engineering (ICDE) 00, 1580–1581 (2016). DOI

doi.ieeecomputersociety.org/10.1109/ICDE.2016.7498421

12. Madduri, K., Ediger, D., Jiang, K., Bader, D.A., Chavarria-Miranda, D.: A faster par-
allel algorithm and efficient multithreaded implementations for evaluating betweenness

centrality on massive datasets. In: Parallel & Distributed Processing, 2009. IPDPS

2009. IEEE International Symposium on, pp. 1–8. IEEE (2009)
13. Newman, M.E.: Analysis of weighted networks. Physical Review E 70(5), 056,131

(2004)

14. Ohara, K., Saito, K., Kimura, M., Motoda, H.: Accelerating Computation of Distance
Based Centrality Measures for Spatial Networks

15. Puzis, R., Zilberman, P., Elovici, Y., Dolev, S., Brandes, U.: Heuristics for speeding

up betweenness centrality computation pp. 302–311 (2012)
16. Suppa, P., Zimeo, E.: A clustered approach for fast computation of betweenness cen-

trality in social networks. In: 2015 IEEE International Congress on Big Data, pp.
47–54 (2015). DOI 10.1109/BigDataCongress.2015.17

17. Watts, D.J., Strogatz, S.H.: Collective dynamics of’small-world’networks. Nature
393(6684), 409–10 (1998)

18. White, S., Smyth, P.: Algorithms for estimating relative importance in networks. In:
Proceedings of the ninth ACM SIGKDD international conference on Knowledge dis-

covery and data mining, pp. 266–275. ACM (2003)

12

