

AUTOMATIC GENERATION OF CONCRETE

COMPOSITIONS IN ADAPTIVE CONTEXTS

Luca Bevilacqua2, Angelo Furno1, Vladimiro Scotto di Carlo2, Eugenio Zimeo1

1 Department of Engineering, University of Sannio, Benevento, 82100 Italy

2 Engineering, Napoli, 80142 Italy

ABSTRACT

Service composition is a fundamental facet of Service Oriented

Architecture to burst the creation of new services and knowledge

throughout the Internet. Automating this aspect has been for many

years an interesting research topic for people working in several

research areas. In spite of the several scientific results already

achieved, generating a concrete and runnable service composition

from the semantic descriptions of the domain services and the

problem to solve is still an open issue. This paper presents an

approach to automatic service composition in the context of

autonomic workflows and a related tool developed for an IT

industrial context. The tool is able to retrieve service descriptions

from a repository, to support the definition of the problem to

solve, to generate an abstract plan and to translate it into an

executable process language, such as WS-BPEL. This way, the

tool covers the planning and re-planning phases of autonomic

workflows. The paper compares the approach with other proposals

and shows its effectiveness through a case study that exploits

automatic service composition to handle an emergency situation

caused by a hydrogeological disaster.

KEYWORDS

SOA, Semantic Web services, Automatic Composition,

Autonomic Workflow, Business Process Generation.

1. INTRODUCTION

The adoption of Web services and Service Oriented Architectures

is promoting a novel approach for developing web applications,

since they can be created by composing distributed services hosted

by servers in different administration domains. We refer to this

new kind of large-scale, distributed application as “multi-

organization Web application”.

With the term large-scale, we intend the involvement of a large

numbers of services available throughout the Internet. Services

can be modified or replaced; they can disappear, and new services

with different features may become available.

This class of applications needs a new level of exception

handling to address the variability of execution context.

To handle this level of dynamicity, autonomic computing (AC)

represents a viable solution. As it allows systems to manage

themselves, service compositions can benefit from this approach

to properly react to external events in order to change their

structure accordingly, reducing human intervention to the

minimum.

In this direction, we have defined the concept of autonomic

workflow [1][27], a composition of automatic or manual services

that is able to proceed towards the goal even if external events

significantly change the execution context. To survive the

changes, a service composition needs to be modified, taking into

account the new environment.

An important role is performed by the configurator, a

component of an autonomic composition engine that is in charge

of implementing self-configuration of service compositions

through the knowledge coded at design-time or collected at run-

time. The configurator acts on every aspect of a concrete service

composition by changing the overall composition graph to make it

runnable within the new conditions. To this end, it can: change a

link between an activity and a concrete service (re-bind); insert,

delete or replace an activity; change the endpoints of a transition;

substitute an activity with a sub-process that is able to perform the

same actions and to produce the same effects on the external

world.

The configurator exploits some internal components to generate

or change compositions (see Fig. 1).

Figure 1. Configurator component of a workflow engine

An important component of the configurator is the composer. It

can be used either for the initial definition (plan) of a service

composition or to re-plan an already defined composition, which

could need to be changed completely or in part to react to external

events.

The composer exploits planners to transform the descriptions of

a goal and a domain in an abstract process. This can be further

concretized through the binder, a component in charge of linking

an abstract activity with a concrete service. Moreover, domain

rules can be exploited to validate automatic compositions

generated by the composer.

As Fig. 1 shows, the approach needs several information to

support its autonomy during execution. In particular, the Domain

refers to a formalized knowledge related to the specific application

domain where a service composition takes place. It is an ensemble

of (1) concepts and relations (ontology) that enrich service

descriptions and (2) causal constraints (e.g. pre- and post-

The Mediterranean Journal of Computers and Networks, Vol. 8, No. 4, 2012

Copyright © 2012 SoftMotor Ltd. ISSN: 1744-2397 163

conditions) that cause services to be correctly ordered in a service

composition. Domain rules, instead, represent higher-level

knowledge that is useful to express some constraints that

invalidate or validate the generated plans, so reducing the space of

admissible solutions. Finally, context rules are used to observe the

external world during execution in order to generate new

knowledge that potentially can enrich domain ontology and rules.

For illustrating the idea of service composition, we introduce an

example scenario related to emergency handling in natural disaster

management. The example considered, which will be detailed in

Section 4, is about population alert by using multiple

communication channels like mobile networks, SMS, MMS,

automatic calls, TV, etc.

A possible service composition for alerting people, living in the

specific geographic area where the disaster occurred, could consist

in the following subprocesses (each constituted by one or more

services), to be executed concurrently:

 TV BROADCAST: executing a service to transmit a

broadcast alert message on TV channels;

 MOBILE ALERT: executing a service to retrieve the

personal details of all the people living in the area; then

getting their mobile numbers (MSISDN) from telecom

companies, by means of one or more concurrent services, and

finally sending SMS (another service);

 LAND LINE ALERT: getting the list of home telephones in

the area using a White Pages service; then executing an

automatic call center service to call the retrieved phone

numbers while concurrently producing a list of citizens

without home phone; notifying the local police station with

the list of citizens that were not warned (as they do not have

home phone or because they did not answered the call) in

order to physically alert them at their habitations.

Fig. 2 graphically represents the service composition.

This paper mainly focuses on automatic service composition in

the context of autonomic workflow by presenting a tool able to

generate concrete and runnable compositions starting from a

repository of service descriptions, a domain ontology and

constraints. In particular, the domain is expressed as a set of

WDSL service descriptions annotated with OWL-S, whereas the

target runnable compositions can be generated either in WS-BPEL

or in XPDL.

Figure 2. An example service composition for people alert

in natural disaster management

The rest of the paper is organized as follows. Section II

discusses the related work on tools for automatic service

composition. Section III presents the process for automatic

generation of service compositions, the proposed tool and its

architecture. A detailed description of the WS-BPEL serializer is

provided. Section IV analyzes an example of automatic service

composition in the context of emergency handling, reporting also

a performance analysis for the composition problem considered.

Finally, Section V concludes the paper.

2. RELATED WORK

To generate an executable business process description starting

from a general, and possibly formal, description of user business

requirements and service domain is a complex problem, whose

solution needs: (1) a support for formally describing service

domain and business problems; (2) an efficient technique for

finding a service or combinations of multiple services from the

domain, satisfying the specified problem; (3) the automatic

generation of a formal business process description, possibly in a

standard language (e.g. BPEL, XPDL), from the abstract plan.

In spite of the plethora of efforts devoted to theoretic aspects,

up to now only a few proposals have addressed the problem in a

comprehensive way and very few tools to generate an executable

business process description exist.

In relation to the first problem, the OWL Web Ontology

Language [2] allows for representing domain knowledge through

a formal and shared XML-based specification of concepts and

relations among them. OWL-S [3] supplies Web service providers

with a core set of markup language constructs for describing

properties and capabilities of their Web services in unambiguous,

computer-interpretable form, by referencing concepts and

properties from OWL ontologies.

SAWSDL [4] is another W3C recommendation for

semantically describing services. It introduces a set of extension

attributes to be directly used in WSDL service descriptions to

semantically annotate WSDL elements. WSMO-lite [5] is a

lightweight set of semantic service descriptions in RDFS for

annotating various WSDL elements, using the SAWSDL

annotation mechanism.

Regarding the second problem, several approaches, techniques

and tools [6-8] have been proposed in literature to efficiently

tackle the automation of the composition process. Many of the

proposed approaches are based on the use of AI planning

techniques, handling the Web service composition problem as a

state-space, constraints satisfaction, situation-calculus or other

kind of planning problems. Semantics is considered an important

support for the automation of the composition process [9].

The Planning Domain Definition Language (PDDL) [10] is

considered the de-facto standard for classical planning problems

input languages. A PDDL planning problem is described in two

sections: domain definition and problem specification. The

domain describes the possible actions, in terms of inputs, outputs,

preconditions and effects, and predicates. The problem essentially

describes initial and final states, by specifying the set of predicates

assumed to be true in the initial state and the set of predicates to

be satisfied in the goal state. Several planners have been

developed which use PDDL as input language.

SHOP2 [11], is an HTN (Hierarchical Task Networks) planner,

which exploits hierarchical relations among tasks for composing

Web services. These relations have to be provided in advance to

the planner by designers when describing the planning domain.

The planning problem is solved by translating its OWL-S

description into a SHOP2 description and by converting the

SHOP2 generated plan to an OWL-S runnable process. As pointed

in [12], SHOP2 performs well where complete and detailed

The Mediterranean Journal of Computers and Networks, Vol. 8, No. 4, 2012

Copyright © 2012 SoftMotor Ltd. ISSN: 1744-2397 164

knowledge on at least partially hierarchically structured action

execution patterns is available, but, when no concrete set of

methods and decomposition rules are available, an HTN planner is

not able to find the solution. This problem inherently limits the

planning ability of an HTN planner to the availability of

decomposition methods designed by human experts.

In [12,13], Klush et al. proposes the OWLS-Xplan planner,

which combines graph-based (by using Graphplan [14]) and HTN

planning, using OWL-S descriptions (of both domain and

problem) as input, translating them into an XML version of the

PDDL language, called PDDXML. The output is a sequence of

activities described in PDDXML. The approach combines both the

advantages of task decomposition available with HTN planning

and the Graphplan capability of always finding a solution, when

present. The authors also propose a replanning component, able to

update plans during execution.

Another recent composition framework is PORSCE II [15].

Like OWLS-Xplan, the framework input consists of OWL-S

service descriptions, which are translated into PDDL. The

framework combines a domain-independent planning component

(e.g. JPlan, LPG-td) and an ontology concept relevance module

for semantic awareness and relaxation during planning. Several

plans, with different semantic accuracy levels, can be generated

and presented to the user through a graphical component.

Moreover, the graphical component can be used to request

replanning by selecting a task and asking the system to find an

alternative equal or semantically similar service or composition.

Subsume relationships among service pre- and post-conditions are

considered to find such alternatives.

Other notable planning solutions for service composition are

based on the Golog language. Golog is a logical programming

language and has been extended in [16] to support customized

constraints and non-determinism in sequential executions and

have been used in order to support service composition, by means

of a translation into PDDL. In [17], a process for translating

OWL-S descriptions into situation calculus has been proposed,

while, in [18], DL reasoning techniques are used together with

extended Golog to calculate conditional Web service

compositions.

The Haley framework [19, 20] includes a Golog-based planning

system for Web service composition. The system uses SAWSDL

semantically described services as input, contains a planning

Golog-domain generator and the eDT-Golog planner. Differently

from the previous described framework, Haley is able to generate

a WS-BPEL description of the plan and execute it on a WS-BPEL

engine. However, Haley tackles the service composition problem

from the perspective of generating complete business processes

from user business requirements, by assuming the presence of

concrete services with specified QoS parameters. In this sense,

scalability is a very important problem and the hierarchical

approach, as in SHOP2, is a way to reduce the planning effort, but

requires a designer to know how to decompose tasks in subtasks.

From our perspective, planning has to be a support especially to

the generation of small business sub-processes, which concretize

tasks from an already defined main workflow and is guided by the

Binder component of the Configurator (Fig. 1). Consequently, the

scalability problem is reduced in our perspective. Moreover, our

proposed composition tool is also able to work with already

composite service. Haley’s authors believe classical planning

techniques are not well suited to the Web service domain, because

of its inner non-determinism. As presented in [1], we argue that

non-determinism can be handled through events observation and

proper reaction: this way, the autonomic approach can be

exploited to fill the gap with the classical planning techniques in

Web service composition. Another important difference between

Haley and our composition tool is that Haley is not able to

generate concurrent sub-processes.

Finally, in relation to the third problem, the generation of

formal and standard business process representation of the service

compositions, several languages have been proposed. Among

these, Business Process Modeling Notation (BPMN) [21], Xml

Process Definition Language (XPDL) [22] and Web Service

Business Process Execution Language (WS-BPEL) [23] are the

most important and widespread ones. In the following, we focus

our attention on WS-BPEL (v. 2.0) which can be considered the

de-facto standard for business process description languages in the

web service domain.

In the following we propose a composition tool based on: (1)

the use of OWL and the OWL-S ontology for the semantic

descriptions of domain services; (2) a classical planning-based

approach for creating service compositions, using the PDDL

language for domain and problem specification; (3) autonomic

workflows to handle non-determinism and enact proper service re-

composition as a reaction mechanism; (4) WS-BPEL as the

language for describing the resulting service composition.

3. COMPOSITION TOOL

The proposed tool is intended to support the initial plan of a

service composition or to re-plan an already defined one.

3.1 Composition Process

Fig. 3 shows a graphical representation of the notion of Web

service composition in workflow design. In the top part of the

figure, workflow tasks represent complex activities, which can be

implemented as service compositions. Automatic support for

generating executable service compositions is the focus of this

paper.

Figure 3. Web service Composition Process

Starting from a task description (the problem, e.g. task 4 in the

picture), a set of candidate Web services (the service domain) is

inspected in order to find a chain of services (a plan), which is

consistent with the task description. Consistency means that,

starting from a provided description of the initial state (i.e. the set

of predicates which are true before the task beginning), the chain

is able to reach the goal state (i.e. the predicates in the goal state

have to be true at the end of the service chain).

The initial state includes a description of all the input data

available at the beginning of the execution, while the goal state

specifies the desired outputs to be obtained by the task execution.

The Mediterranean Journal of Computers and Networks, Vol. 8, No. 4, 2012

Copyright © 2012 SoftMotor Ltd. ISSN: 1744-2397 165

The problem task may correspond to a single task in an already

defined business process or to the whole business process. The

first case can be related to a re-planning process, where an activity

of the process is replaced by a service composition, while the

second case relates to the planning process, that is the definition of

a new complete business process, satisfying some user’s specific

business needs.

We assume both the service domain and the problem to solve

are described by using the OWL-S ontology, according to the

IOPE semantics. The set of semantically described services (the

domain) has to be known before starting the composition process

and provided as an input to the system together with the semantic

description of the problem. The service domain can be retrieved

manually or in a (semi-) automatic way, by relying on a service

registry and exploiting the semantic description of the goal to

reach during a matchmaking process.

Any service operation is associated to an OWL-S file, which

includes the definition of an OWL-S atomic process

(<process:AtomicProcess>), specifying the inputs, the outputs,

the preconditions and the effects (IOPE) of the specific operation

performed by a service. Inputs and outputs may refer to concepts

imported from OWL ontologies or XML-Schema data types.

Preconditions and effects are specified within the OWL-S process

description in the <process:hasPrecondition> and the

<process:hasResult> sections respectively. Semantic Web Rule

Language (SWRL) [24] expressions are used to define these

conditions.

The problem is considered as a desired operation and is

specified as an OWL-S process with inputs, outputs, preconditions

and effects, like a service operation. Inputs and preconditions

make up the initial state, which is data known to be available and

predicates known to be true when the related task starts, while

outputs and effects make up the goal state, that is desired data

outcomes and true predicates at the end of task execution.

Fig. 4 describes the main logic flow associated to our

composition tool.

Figure 4. Planner-based composition process

The OWL-S service domain and problem descriptions represent

the main inputs for the composer. Also, it is possible to specify

simple business rules that have to be validated on the generated

plans. Provided inputs are then processed and transformed into

proper internal data structures.

The processed information (service domain and rules) is

captured into internal incremental knowledge bases, used to

quickly solve future requests related to the same domain or

business rules. The internal input data are then supplied to the

planner component to find some solution plan, or abstract plan,

(set of activities) from the domain, satisfying the specified

problem and business rules (through the plan validator). If the

validation fails, a new plan may be found. The generated abstract

plan is finally bound to concrete Web services and transformed

into a standard business process representation (e.g. BPEL,

XPDL), or concrete plan. The produced description can be

executed on standard execution engines, like RiftSaw [25],

Apache ODE [26], SAWE [27].

Since the focus of the paper is not on devising a new planning

approach, but on providing the highest automatic support to

discovery executable service composition as a result of an

adaptation rule, we focused our attention on the well-known

Graphplan algorithm to produce the abstract plan. In the following

we briefly describe the approach used in the Graphplan planner,

which has been adopted in the implementation of the proposed

tool, as will be described in Section 3.2.

The Graphplan algorithm [14] was proposed by Blum and Furst

in 1997 to efficiently solve planning problems in STRIPS-like

domains (made of objects, operators and propositions). It consists

of two interleaved phases: a forward phase, where a data structure

called “planning-graph” is incrementally extended, and a

backward phase where the planning-graph is searched to extract a

valid plan. The planning graph can be created in a polynomial

time, with respect to the size of the problem domain, while the

search phase has an exponential complexity in the worst-case.

The planning graph structure is organized in multiple levels,

each containing proposition or action nodes, connected by three

kinds of edges: pre-condition, add and delete edges. The 0-level is

a propositional list, containing one node for each proposition in

the initial state of the problem. Each other level contains both a

proposition and an action node list. The 1-level action list will

contain all the actions which can be executed given the 0-level

propositions, while the 1-level proposition list will include all the

effects of the 1-level actions. In general, given a k-level planning

graph, the extension of the structure to level k+1 involves

introducing all actions (no-operations included), whose

preconditions are present in the k-th level proposition list. The k+1

propositional list includes all the propositions added or deleted as

effect of the actions belonging to the k+1 level. Since no-

operations (a.k.a. persist operations) are included in the k-th action

list, all the proposition from level k will also be contained in level

k+1 proposition list. The planning graph construction takes into

account mutual exclusion constraints among actions and

propositions, which are propagated over the levels of the graph.

The search phase on a k-level planning-graph starts by

searching, at level k, the propositions corresponding to problem

goals. If all the goals are not present, or if they are present but a

pair of them are marked mutually exclusive, the search is

abandoned right away, and planning-graph is grown another level.

For each of the goal propositions, an action from the level k action

list, supporting it with its effects, is selected. Mutual constraints

are considered in this step, in order not to select actions for

supporting two different goals which are mutually exclusive. If

they are, backtracking is performed to select new pairs of actions.

At this point, the search process is recursively called on the k-1

level planning-graph, with the preconditions of the actions

selected at level k as the goals for the k-1 level search. The search

succeeds when level 0 is reached and the selected actions for each

level represent a partially ordered plan.

3.2 Tool Architecture

The main composition process, described in the previous

paragraph, has led to a specific architecture for composition tool

that is detailed in Fig. 7.

The most relevant components are:

 The OWL-S Analyzer

 The Planner

 The Plan Validator

The Mediterranean Journal of Computers and Networks, Vol. 8, No. 4, 2012

Copyright © 2012 SoftMotor Ltd. ISSN: 1744-2397 166

 The Plan Converters (or serializers)

In order to introduce flexibility in the proposed planning-based

approach to composition, we have defined a meta-model for

describing all concepts, and their relationships, which define our

notion of autonomic workflow.

Fig. 5 represents a Domain and a related Problem, while Fig. 6

gives a detailed description of the concept of Plan, composed of a

Workflow, which includes simple or complex (composite)

Activities and several control flow structures as Parallel and

Sequence. The Plan element joins the two models.

Figure 5. Problem and Domain Model

Figure 6. Workflow Model

The meta-model is used to define abstract representations of

the service domain, the problem under analysis and workflow

plans for solving it in the domain. By defining converters

(problem and domain serializers) from the meta-model to planning

specific representation languages, it is easy to support several

planners. This way, the composer is independent from specific

planning tools and languages. Since PDDL represents the de-facto

standard for classical planning problems and there are several

planning systems supporting this language, including PDDL4J, in

the current implementation of our tool, we focused our attention

on this language and implemented specific converters from the

meta-model to the PDDL 3.0 specification (Section 3.3).

The OWL-S Analyzer is the component responsible of

analyzing both the OWL-S files, which describe the available

services in the planning domain, and the OWL-S of the problem to

solve. This component parses the provided inputs and converts

them to an instance of the meta-model. It also integrates reasoning

capabilities about semantic concepts referred in service and

problem descriptions.

The main rules used by the analyzer to generate a meta-model

instance from OWL-S files are the following:

 The service operation name (<service:Service>) defines the

name of a new Action;

 The name of input and output parameters (<process:Input>

and <process:Output>) of the atomic process describing the

service operation defines the name of the action Parameters.

Associations between the Action instance and its input/output

Parameters are introduced;

 The types of input and output parameters

(<process:parameterType>), possibly referring ontology

concepts, define new Types of the domain object and are

associated to the corresponding Parameter objects.

 SWRL conditions, defining preconditions or effects of a

service operation over its parameters and constants

(<process:hasPrecondition> and <process:hasEffect>), are

used to define domain Predicates, related to action

Parameters and associated to action objects as preconditions

or effects respectively.

 Any action input parameter, retrieved from an OWL-S

process, generates a hasKnowledge predicate, added as

precondition for the relative action object and having the

input parameter associated as a predicate variable.

 Any action output parameter, retrieved from an OWL-S

process, generates a hasKnowledge predicate, added as effect

for the relative action object and having the input parameter

associated as a predicate variable. The hasKnowledge

predicates for the input/output parameters are added in order

to consider parameter dependencies among planning actions

during the plan generation, when strips-like planners as

Graphplan are used.

 Any element in the OWL-S description, different from input

or output parameter, or type names, defines a new domain

Constant.

 References to WSDL information, required in the later phase

of Plan Serialization for describing an action plan in an

executable standard business process representation, are

available in the OWL-S grounding section (<grounding:

WsdlAtomicProcessGrounding>). This section contains

information like a WSDL document URI, a portType, an

operation, an inputMessageMap and an outputMessageMap,

which specifies how an OWL-S atomic process maps to a

concrete Web service. This information is retrieved by the

OWL-S Analyzer and stored in an AtomicGrounding object

associated to the action related to the OWL-S described

service operation.

In a very similar manner, it is possible to build the meta-model

Problem object, by applying the previous specified parsing rules

to the problem OWL-S description. Obviously, no grounding

section is supposed to be available for the OWL-S problem

description, since the problem is still to be solved with a concrete

(combination) of web service(s). For this reason, the last rule does

not apply to the case of the OWL-S problem parsing.

The Planner is the component deputed to the processing of

domain and problem inputs in order to produce a plan of domain

actions satisfying the problem. To this end, several solutions are

available. We implemented a PDDL problem serializer, which

take as input the meta-model representation of the problem and

produce a PDDL 3.0 compliant serialization of it. Similarly, we

implemented a PDDL domain serializer, which does the same on

the domain meta-model object built by the OWL-S Analyzer. By

having the PDDL representation of both the domain and the

The Mediterranean Journal of Computers and Networks, Vol. 8, No. 4, 2012

Copyright © 2012 SoftMotor Ltd. ISSN: 1744-2397 167

problem, a PDDL planner can be used for generating plans.

Figure 7. Detailed Composer Architecture

The current implementation of the tool uses PDDL4J [28] for

planning, a product released under the GNU General Public

License (GPL), which is based on a Java implementation of the

Graphplan algorithm, described in Section 3.1. The PDDL4J

output plan is represented in a PDDL-like representation, which is

converted back to its meta-model representation (the Plan object

in Fig. 6), through the PlanDeserializer component.

The grammar described in Table 1 defines the language

supported by the Composer to express business rules that has to be

satisfied by the generated plans. In the current implementation, the

rule language only supports the definition of dependency (<-> in

the table) and mutual exclusion constraints (->!) between pairs of

activity. As an example of these constraints, rule A <-> B means

that if the plan contains the A activity, B has to be present too and

vice-versa (whereas the order is inferred by IOPE descriptions).

Rule A ->! B means that A and B activities have never to be

both present in the same plan.

Table 1. An excerpt of the rule language grammar

EXP ::= EXP_TYPE ; | ;

EXP_TYPE ::= RULE | CONSTRAINT

CONSTRAINT ::= ACTIVITY <-> ACTIVITY |

ACTIVITY ->! ACTIVITY

ACTIVITY ::= IDENTIFIER

RULE ::= …

The PlanValidator component has the role to check if the

business rules, specified by the user as input to the composer, are

satisfied by a plan produced by the Planner.

If these rules are present and the plan does not satisfy them, a

new plan has to be searched by the Planner component until rules

are satisfied or there are no other feasible plans.

The behavior of the composer, in relation to the described

components, is shown in the UML sequence diagram of Fig. 8.

The architecture described in this section has been implemented

using the Java language. The Meta-model in Figures 5 and 6 has

been implemented through a set of Java interfaces and classes.

The Domain and Problem classes have been equipped with proper

methods for serialization into a PDDL 3.0 language representation

(PDDL Problem/Domain serializers in Fig. 4).

A PDDL plan deserializer has been developed in order to

analyze the PDDL plan produced by the PDDL4J planner and

generate a corresponding instance of the Plan class. The

associated instance of the Workflow class contains the Meta-model

representation of the control flow for the plan (see Fig. 6).

Figure 8. Plan generation and validation

The workflow is generated by analyzing the partially ordered

plans (POPs) produced by PDDL4J and, if the plan contains more

than one action, by properly constructing a composite activity.

This activity can be a sequence or a parallel, containing other

parallels or sequences at any level. Since the POPs produced by

GraphPlan are simply lists of steps, each containing a list of

actions to be performed, any list of actions for a specific step is

analyzed in order to identify parallel branches possibly ranging

The Mediterranean Journal of Computers and Networks, Vol. 8, No. 4, 2012

Copyright © 2012 SoftMotor Ltd. ISSN: 1744-2397 168

over more than one single step. This condition occurs when, in the

steps following the one currently being analyzed, there is no

action whose input parameters or pre-conditions depend from the

output parameters or post-conditions of the action in the current

step. This analysis is done in order to optimize the plans produced

by the PDDL4J planner (i.e. maximize the parallelism) in the final

control flow of the business process (i.e. the produced Workflow

instance for the Plan object).

The current implementation of the tool has been equipped with

two main serializers: a WS-BPEL Serializer and an XPDL

Serializer (Fig. 9).

Figure 9. Plan serialization to a BP representation language

In the next section, the WS-BPEL Serializer is presented. The

XPDL serializer is quite similar, using the XPDL language for the

process representation.

3.3 WS-BPEL serializer

A serializer for a business process representation language is

responsible to retrieve all the information required by the

corresponding language specification, and possibly demanded by

the business process execution engine, to generate a compliant

representation of the plan, executable on that engine. For example,

the WS-BPEL representation of a process to be executed on the

RiftSaw business process engine is composed of a .bpel file, a

.wsdl artifacts file, a deploy .xml file and the set of imported .wsdl

files. The first file (.bpel) contains, among other details, the WS-

BPEL language description of the business process control flow

and data flow. The second one (.wsdl artifacts file) contains any

WSDL information needed to expose the WS-BPEL process as a

Web service (e.g. portType, operation, input/output messages,

XML Schema types, partnerLinkTypes). The third one is a file

describing how to deploy the business process on the engine by

associating endpoints to any provided or invoked service over a

partner link and specifying other details for the deploy process

(e.g. if the process is active or not). Finally, the set of the .wsdl

imported files refers to the Web service descriptions used within

the .bpel file.

In the following, we describe the process of generating a

concrete WS-BPEL process definition (concrete plan), executable

on the RiftSaw engine, from a non-empty Plan object (abstract

plan). With these assumptions, the class diagram in Fig. 10

contains classes for a BPELFile, a BPELDeployFile, a

BPELArtifactsFile and a set of imported WSDL descriptions.

These classes are the object representation of the files required for

building a complete BPEL description. They provide methods for

their own construction, whose invocation is coordinated by the

BPELSerializer and, in turn, by the BPELProcessDefinition

objects, according to a two-levels builder pattern approach.

Figure 10. WS-BPEL serializer architecture

In order to execute a plan generated by the planner engine on

common business process execution engines, it is necessary to

convert its meta-model representation (the Plan object) to a

standard business process representation language (e.g. WS-

BPEL, XPDL, etc.).

To this purpose, according to the architecture depicted in Fig. 7,

several Plan Converters can be defined, which serialize the meta-

model Plan object to a specific language representation (Fig. 9).

More details about Plan Converters are given in Section 3.3.

In the design of our tool, the BPELSerializer class is in charge

of creating the BPELProcessDefinition object (and the component

objects) and invoking its methods in order to create a complete

and executable specification of the BPEL process, corresponding

to the activity plan found by the planner component. The create

method triggers the process generation from the specified instance

of the Plan meta-model class. The write method generates files for

the process description, by triggering the write methods provided

by the component objects. The main sources of information

available to the BPELSerializer are:

1. the Plan meta-model object and, in particular, the associated

Workflow instance;

2. the domain/problem OWL-S files;

3. the WSDL service files, containing the endpoints required to

make executable the final business process representation.

The association between the plan actions, the OWL-S and

WSDL files lies in the OWL-S grounding section. It is retrieved

during the OWL-S parsing and is stored in the Grounding of the

Action class in the meta-model (Fig. 7).

WSDL files have been handled (see Fig. 10) by using the

The Mediterranean Journal of Computers and Networks, Vol. 8, No. 4, 2012

Copyright © 2012 SoftMotor Ltd. ISSN: 1744-2397 169

EasyWSDL libraries [29], which offers support for parsing and

generating WSDL 1.1 or WSDL 2.0 compliant service

descriptions. Also, the EasyWSDL4BPEL library enables the

handling of partner links BPEL extensions in service description.

The main steps for the generation of the

BPELProcessDefinition are described in the following (Fig. 11).

Figure 11. WS-BPEL process generation, main sequence of actions

1. initProcessDefinition() initializes the object representing the

concrete BPEL process. The generated WS-BPEL process is

exposed as a WSDL service, offering one operation and one

portType for executing the activity plan. Also the partnerLink

and the partnerLinkType for interacting with the WS-BPEL

process are created.

2. initProcessInputOutput(:Problem) by using the Problem

Meta-model instance, available input data are used to

initialize the process input message, while requested output

data are used to initialize the output message of the process.

Since the WS-BPEL process is exposed as a web service,

input and output messages for the provided operation are

associated with simple or complex XML types specified in

the WSDL artifacts file. The concrete structure of the types

for the input/output messages is created later (see the

buildInvokeActivity(…) description), when analyzing the

concrete services to be invoked by the process using as input

(parts of) the process input message and producing as output

(parts of) the process output message, respectively;

3. initControlFlow(:Plan) from the Meta-model Plan instance,

initializes the basic control flow of the process: an initial

receive input message activity and a final reply output

message activity are added to the main sequence of activity

of the process, which will contain also the whole workflow

associated to the plan;

4. createProcessWorkflow() adds to the control flow skeleton,

built by the initControlFlow() method, the BPEL activities

corresponding to the plan instance. The activities can be

sequences and parallels (in any combination) of invocation of

web services (BPEL <invoke> activities). Also, the

createProcessWorkflow() method handles the construction of

the data flow among web services. By using the binding

component (BPELBinder), which relies on the grounding

information extracted by the OWL-S semantic descriptions of

the services to be invoked, partner link and partner link type

definition is completed: the former are included in the BPEL

file, the latter in the WSDL artifacts file.

5. completeProcessDefinition(), completes the definition of the

process by generating the binding information for the

invoked and provided partner links of the process, inserting

them into the deploy file (bpel-deploy.xml).

In the following subsections, the two most relevant phases of

the business process generation, i.e. control flow generation and

data flow generation, are described in details.

3.3.1 Control Flow generation

The skeleton of the workflow structure is created by the

initControlFlow() method and consists in a sequence of two

activities: a receive input message activity followed by a reply

output message activity (by assuming the process will interact

with a requestor by at least requiring an input message and

returning an output).

This structure is refined in the createProcessWorkflow() step,

by introducing the activities of the generated plan in between the

receive/reply ones. To this end, the createPlanActivities, provided

by the BPELFile object, is invoked. The method relies on the use

of the browseActivity(…) method which is applied to the Workflow

instance of the Plan object, as described in Fig. 12.

Figure 12. WS-BPEL process generation, main sequence of actions

The method analyzes the type of the Meta-model Workflow

instance (Sequence, Parallel, Activity), containing the control flow

definition of the business process, and builds a new sequence

(<bpel:sequence>), parallel (<bpel:flow>) or an external Web

service invocation (<bpel:invoke>) activity to the BPEL process

accordingly. To this purpose, the proper methods from the

BPELProcess class have to be invoked, depending on the type of

the current Workflow instance. Any time a sequence or a parallel

is added to the BPEL process (i.e.: when the workflow parameter

is a CompositeActivity), a recursive invocation of the

browseActivity method has to be performed over any component

Workflow instance, in order to add to the control flow the

activities inside the current parallel or sequence (which can be

both CompositeActivity or Activity). This way, proper nestings of

<bpel:sequence>s and <bpel:flow>s of basic Web service

invocations are produced in the final BPEL process, according to

The Mediterranean Journal of Computers and Networks, Vol. 8, No. 4, 2012

Copyright © 2012 SoftMotor Ltd. ISSN: 1744-2397 170

the control flow structure in the Workflow object of the Plan.

The buildInvokeActivity(…) (Fig. 13) is the method used for

adding an external web service invocation to the BPEL process.

This method is invoked any time an atomic Activity is found in the

Workflow. In the current implementation of the tool, only

synchronous invocations of Web services are addressed. In the

BPEL process, this corresponds to introduce an <invoke> activity

with both the input and the output variables specified, if present.

Figure 13. Generation of an <invoke> activity, main sequence of

actions

The <invoke> activity specification has to include any detail

for the correct invocation of the Web service (binding

information) like: partnerLink, portType, input and output

variables for data exchanges between the process and the WS.

As shown in Fig. 13 (retrieveWSDLDataFromOWLS-

Grounding(…)), the binding information can be retrieved from the

WSDL-grounding information of the OWL-S description of the

concrete action performing the activity. In the Meta-model, each

atomic activity is linked to an action (a virtualization of the

service to be invoked) which contains, among other information,

the mapping between its own OWL-S semantic description and

the WSDL description. From the OWL-S WSDL grounding, it is

possible to retrieve the service WSDL description URI, the

PortType, the specific operation performing the OWL-S atomic

process. Also, the mappings between the semantic description of

the OWL-S process input/output parameters and the WSDL

operation input/output messages are retrieved and used for data

flow generation (see Section 3.2.2).

Also, by using proper naming conventions, information about

partnerLinks and partnerLinkTypes is retrieved and included in

the <bpel:invoke> specification or, if not already available,

automatically generated and added to the business process

artifacts file (updatePartnerLinkTypes(…)) and to the bpel file

(updatePartnerLinks()). The binder will use instead the WSDL

URI and the portType retrieved from the WSDL-grounding to get

service endpoints, storing them, in association with the

partnerLinks, in order to use them later during the deploy file

generation.

3.3.2 Data Flow generation

 To generate an executable WS-BPEL process it is fundamental

that a proper data flow among the services to invoke is built. This

can be performed by taking into account the semantic data

dependencies among the web service activities, which has driven

the plan generation. It is worth to note that the plan, both in the

PDDL and in the Meta-model representations, does not contain an

explicit description of the data flow among the composing

activities, while a WS-BPEL process requires its formal definition

in terms of variable declarations, initializations, value transfers

and assignments (<bpel:assign>).

In the current implementation of the tool, we assume that each

Web Service operation has, at most, one input message and one

output message and that the type of the exchanged messages can

only be a simple or complex XML Schema [30] data type. In the

latter case, we only consider sequences of simple XML Schema

types (string, integer, float, etc.). In the following discussion, we

will refer to the most general case of service operations with both

input and output messages specified and typed with a complex

XML Schema. Also, in the grounding section of the OWL-S

descriptions, parameters of the atomic process are considered to

be explicitly mapped to simple typed parts of the message of the

web service corresponding operation. This process should

naturally take place during the semantic description of the web

service in its OWL-S file and can rely on the use of the

<grounding:WsdlInput(Output)MessageMap>, <grounding:

owlsParameter> and <grounding:wsdlMessage-Part> elements

provided by the OWL-S grounding ontology.

When a new <bpel:invoke> is processed (browseActivity(…) in

Fig. 13), the retrieveInMSGStructure(…) and retrieveOut-

MSGStructure(…) methods are used to retrieve the XML Schema

structure of the input and the output variables respectively, from

the WSDL description of the service operation to invoke. Then, a

new couple of variables with the retrieved type structure are added

to the WS-BPEL process as global variables (addVariable(…)

method) and referred inside the inputVariable and outputVariable

fields of the <bpel:invoke> specification.

In order to properly build the data flow, the input variable of

the invoke activity has to be initialized by using a <bpel:assign>

activity, placed just before the <bpel:invoke>. We call this step

prepareInvokeActivity(…) (Fig. 14).

The input variable may in general be complex and the values of

the composing elements can come from both the process input

variable or the output of any previously executed activity.

By knowing the structure of the input variable (inMsgStructure

in Fig. 13), it is possible to retrieve, for each simple type

parameter of the service input message, its semantic description

(the process:parameterType, i.e. an ontological concept) by using

the message map in the grounding section of the OWL-S service

description. The BPELVariable class is an abstraction of the

concept of BPEL variable and contains both the structure of the

complex type variable (e.g. inMsgStructure) and the mapping

between each simple field of the complex variable and the

corresponding ontological concept (e.g. owlsWSDLInMSGMap).

A process memory data structure (ProcessMemory in Fig. 13,

hold by the BPELFile object) has been used to progressively store,

for each different ontological concept discovered during the

The Mediterranean Journal of Computers and Networks, Vol. 8, No. 4, 2012

Copyright © 2012 SoftMotor Ltd. ISSN: 1744-2397 171

generation of the <bpel:invoke> activity, the references to the

BPEL global variable and the specific simple type field from a

complex WSDL message containing the most updated value for

that parameter type. This information can be used by the

addCopyElement(…) method as the source value for a

<bpel:copy> inside the <bpel:assign> prepare activity for the

corresponding input variable field of the <bpel:invoke> activity,

used as the <bpel:copy> destination.

Figure 14. Generation of an <invoke> activity, details on the

prepareInvokeActivity(…) operation

It is important to consider that, when an ontological concept is

encountered for the first time (no entry is defined in the

ProcessMemory for a specific input field ontological description),

the reference is assumed to be retrieved from the process input

variable (the variable specified in the first <receive> activity of

the process). Also, since the concrete structure of the business

process input variable could still be not completely defined (in the

bpel artifacts), the knowledge of the destination variable type (i.e.

the input variable of the service to be invoked) can be used to

complete this definition, updating the artifacts file.

 After this last step, the specification of the <bpel:invoke> is

complete and the ProcessMemory can be updated with the

structural information coming from the output variable used for

the external Web service invocation. This way, the updated

memory entry can be used for any next <bpel:invoke> generation

working on the same ontological data (process:parameterType).

It is worth to note that the proposed approach requires a unique

semantic characterization of each message field used by the

services: if a service message contains multiple fields referring to

the same conceptual data, the semantic description should

distinguish the two fields anyway (e.g. referring to the ordering of

the fields to distinguish them as related to two different concepts).

This is required both to have a correct plan generation with a

STRIPS-like planner (like Graphplan) and to correctly reconstruct

the data flow during the WS-BPEL process generation.

The updateProcessOutputDefinition(…) is required to complete

the structure definition of the process output variable, used inside

the last <bpel:reply> process activity.

4. AN APPLICATION EXAMPLE

To evaluate the potential of the tool, we tested automatic

service composition on the specific application scenario

(population alert) introduced in Section 1.

4.1 Domain description and problem solution

The proposed scenario is about the handling of a

hydrogeological disaster (e.g. extreme rain, flooding, inundations,

etc.) that strikes a human community (city, town, rural village,

etc…). Our tool can be used to plan emergency management flows

of actions to be executed by a standard workflow engine.

Disaster response management is a particularly meaningful test

bed for the tool since action flows must be timely planned and

executed. Such actions may be concerned with the use of specific

resources (such as telecommunication facilities) and/or the

coordination of static and mobile resources (volunteers,

policemen, ambulances).

Planning has to take in account resources capabilities,

availability and readiness. To this end, the proposed tool is able to

generate, automatically, quickly and almost effortlessly, all the

planning processes needed. E.g. variations in services availability

in the domain, changes in the state of resources, changes in the

overall goal, can be immediately considered to get updated plans.

The specific example is about population alert by using

multiple communication channels (mobile networks, SMS, MMS,

automatic calls, TV, etc.). To design a realistic scenario, we have

derived it from the analysis of real disaster management plans

defined by the organization and emergency procedures of the

Italian Protezione Civile, the national body in charge of

prevention and management of disaster events. The Protezione

Civile adopts a specific model (“metodo Augustus”); such model

emphasizes operational flexibility by using to the largest possible

extent resources located close to the emergency, and involving all

organizations (institutional or not) that can be useful in the

specific situation.

The assumption is that such cooperating organizations would

have made some or all of their disaster management resources or

capabilities available as web services. Such web services could be

used to access resources, to get info, to alert volunteers. Each

service would have a WSDL and an OWL-S semantic description

of its behavior. OWL-S description refers to a general domain

ontology that describes the emergency context.

We considered as cooperating organizations local police, fire

brigade, telecom companies, white pages, register offices,

community volunteering etc. For each considered organization, we

defined a specific OWL domain ontology to classify the concepts

involved and their inner relationships. The whole set of domain

services refer to several dozens of entities. Some concepts

included in the ontology are: citizen, address, personal data,

message, mobile or fixed-line telephone number, deliver status of

a message, etc. The semantic OWL-S descriptions of each web

service refer to concepts described in the defined domain

ontology. Some examples of the domain services are:

 register office service, to get personal data of the people that

must be warned;

 white pages service, to get personal data of people that could

The Mediterranean Journal of Computers and Networks, Vol. 8, No. 4, 2012

Copyright © 2012 SoftMotor Ltd. ISSN: 1744-2397 172

be involved in the alert process;

 SMS/MMS broadcast (telecom companies) to alert people in

a specific neighborhood;

 SMS/MMS send to specific people directory;

 send phone calls, using prerecorded messages or via human

call center (telecom companies);

 alert local police or fire brigade,

In Fig. 15, we report a representation of OWL-S ontology for

the “Send SMS” service, which is the archetype of a service made

available by a mobile telecom company to send SMS to a list of

users.

Figure 15. Ontological description of the service SendSMS

OWL-S descriptions are converted into PDDL, the internal

language used by the PDDL4J planner. In Table 2, we report a

sample of PDDL translation, related to the Send SMS service. By

using the backward strategy of the Graphplan algorithm, if the

problem goal is equal to (or contains in conjunction with other

predicates) the effects of the SendSMS service, the PDDL4J

planner may include the above PDDL action in the plan and try to

reach the specified precondition through a single service, or a

service chain, beginning with the specified initial state.

As the aim of the whole scenario is about alerting the

population living in a specific area, the goal includes the following

post-conditions: to get home phone numbers of all people living in

the area and to alert them by phone calls, by SMS, using TV

channel, etc.

Table 2. PDDL code generated by the PDDL Domain serializer

(:action SendSMS

 :parameters (?userList ?message ?result)

 :precondition (and (hasKnowledge ?userList)

 (hasKnowledge ?message)

 (isWorking OperatorANetwork))

 :effect (and (hasKnowledge ?result)

 (isDelivered ?message))

)

The resulting plan process includes several services and three

different parallel branches. The three branches contain the

following actions:

1. Alert using land line phones:

 get the list of home telephones in the area using a White

Pages service;

 give such phone numbers to a call center for automatic call

procedure;

 get a list of citizens without home phone;

 send the list of citizens that were not warned (as they do

not have home phone or because they did not answered the

call) to local police.

2. Broadcast an alert message using a specific service made

available by TV corporations.

3. Alert using SMS channel:

 use a service made available by the birth register to get the

names of all people living in the area;

 get mobile numbers (MSISDN) from telecom companies;

 send SMS to everyone.

Fig. 2, which has been already discussed in Section 1, is the

graphical representation of the solution (abstract) plan produced

by the Graphplan component, which includes ten services

(WPGetUsers, GetHomePhoneUsers, GetNoHomePhoneUsers,

SendToCallCenter, WPGetUsersNames, SendToPolice,

EmergencyTVChannel, RegisterGetUsers, GetMsisdn, SendSMS)

to perform the activity described above.

In Fig. 16, an excerpt of the corresponding WS-BPEL process

(concrete plan) automatically generated by the WS-BPEL

serializer is shown.

<bpel:process ... name="alertingPopulationPlan" targetNamespace=
"http://ing.unisannio.dslab.it/bpel/alertingPopulationPlan">

 ...
 <bpel:partnerLinks>...</bpel:partnerLinks>
 <bpel:variables>...</bpel:variables>
 <bpel:sequence name="sequence">

 <bpel:receive name="receiveInput" partnerLink="client"

portType="tns:alertingPopulationPlanPortType"

operation="alertingPopulationPlanOperation" variable="input" createInstance="yes" />
 <bpel:flow>
 <bpel:sequence>
 <bpel:assign name="WPGetUsersServicePrepareActivity" validate="no">...</bpel:assign>

 <bpel:invoke name="WPGetUsersService" partnerLink="WPGetUsersServicePL"

portType="ns4:WPGetUsersService"

operation="WPGetUsers" inputVariable="WPGetUsersRequestVariable"

outputVariable="WPGetUsersResponseVariable" />
 <bpel:flow>
 <bpel:sequence>
 <bpel:assign name="GetHomePhoneUsersServicePrepareActivity" validate="no">...

 </bpel:assign>

 <bpel:invoke name="GetHomePhoneUsersService" partnerLink=
"GetHomePhoneUsersServicePL" portType="ns5:GetHomePhoneUsersService"

operation="GetHomePhoneUsers"

inputVariable="GetHomePhoneUsersRequestVariable"

outputVariable="GetHomePhoneUsersResponseVariable" />
 <bpel:assign name="SendToCallCenterServicePrepareActivity" validate="no">...
 </bpel:assign>

 <bpel:invoke name="SendToCallCenterService" partnerLink=
 "SendToCallCenterServicePL"

 portType="ns6:SendToCallCenterService" operation="SendToCallCenter"

 inputVariable="SendToCallCenterRequestVariable"

outputVariable="SendToCallCenterResponseVariable" />
 </bpel:sequence>
 <bpel:sequence>
 ...

 <bpel:invoke name="GetNoHomePhoneUsersService" ... />
 </bpel:sequence>
 </bpel:flow>
 ...

 <bpel:invoke name="WPGetUsersNamesService" .../>
 ...

 <bpel:invoke name="SendToPoliceService" ..."/>
 </bpel:sequence>
 <bpel:sequence>
 ...

 <bpel:invoke name="RegisterGetUsersService" ... />
 ...

 <bpel:invoke name="GetMsisdnService" ... />
 ...

 <bpel:invoke name="SendSMSService" ... />
 </bpel:sequence>
 <bpel:sequence>
 <bpel:assign name="EmergencyTVChannelServicePrepareActivity" validate="no">...
 </bpel:assign>

 <bpel:invoke name="EmergencyTVChannelService" .../>
 </bpel:sequence>
 </bpel:flow>
 <bpel:assign name="replyOutputPrepareActivity" validate="no">...
 </bpel:assign>

 <bpel:reply name="replyOutput" partnerLink="client"

 portType="tns:alertingPopulationPlanPortType"

 operation="alertingPopulationPlanOperation" variable="output" />
 </bpel:sequence>
</bpel:process>

 Figure 16. An (excerpt of) automatically generated WS-BPEL process

for the alert workflow

The auto-generated code in Fig. 16 contains a main sequence

composed of a receive activity, a flow, a variable assignment and

a reply activity, coherently with the considerations about control

and data flows generation reported in Section 3.3. The first receive

activity (receiveInput) creates a new instance of the business

process and stores the request message coming from the invoker

The Mediterranean Journal of Computers and Networks, Vol. 8, No. 4, 2012

Copyright © 2012 SoftMotor Ltd. ISSN: 1744-2397 173

in the input variable, declared in the <variables> section. The

type of the variable is specified in the .wsdl artifacts file

associated to the bpel file, not reported due to space limitations.

The variable is composed of the destination area and the

message text, among other fields.

The final reply activity (replyOutput) returns a response

message to the invoker, whose fields (in this case just the outcome

of the alert) are properly prepared by the assign activity preceding

it (replyOutputPrepareActivity). The middle flow contains the

<invoke> activities required to interact with external services,

implementing the abstract tasks in Fig. 2. Coherently with the

three-branches structure of the plan, the BPEL flow is composed

of three sequences. One of them simply invokes a service for

alerting people by a TV message (EmergencyTVChannelService).

Another sequence contains the chain of service invocations for

getting information about people living in the area

(RegisterGetUsersService), retrieving their mobile numbers

(GetMsisdnService) and sending SMS to them (SendSMSService).

The last sequence of the flow is more complex, made up of an

invocation for the WPGetUsersService followed by a flow

(containing the sequence of GetHomePhoneUsersService and

SendToCallCenterService in parallel with GetNoHomePhone-

UsersService) and a final invocation for the SendToPoliceService.

It is worth to note that each <invoke> activity is preceded by an

<assign> activity, aimed at preparing the input message of the

service to invoke.

Some limitations in the auto-generated BPEL code of Fig. 16

derive from the assumptions described in Section 3.3. A

synchronous request-response message exchange pattern is used

for invoking external services from the BPEL process (each

<invoke> has both the input and the output variables specified).

Also, the same synchronous model applies to the interactions

between the BPEL business process and its invokers (the process

starts with a receive and terminates with a reply activity).

Correlation sets are not addressed in the current implementation of

the tool and the generated flow is related to a normal execution

flow. Finally, absence of structural mismatches among services

with the same semantic input/output characterization is assumed,

when generating the code by exploiting the binding information in

the OWL-S groundings. These limitations are intended to be

overcome as future work, for example by means of mediation

services (for structural mismatches) and callback mechanisms (for

also supporting asynchronous service interactions).

4.2 Performance analysis

Execution times for solving the previously described

“population alert” composition problem are reported in Fig. 17. It

is worth to note that performance is not a critical aspect in this

paper, since our focus is mainly on the problems related to

automating the generation of an executable service composition

from a set of semantic service descriptions. Architectural issues

and flexibility of the proposed solution have been considered as

the main drivers for tool implementation instead of performance

or other non-functional criteria. Also, the tool described in this

paper is still a prototypal implementation, which has been useful

to demonstrate feasibility and utility of the proposed approach.

Nevertheless, the performance measures acquired in our analysis

have confirmed the potential of the tool, which can be effectively

and efficiently used to support designers in service composition

and to implement adaptive replanning, especially when the service

domain is not particularly large.

The “population alert” problem has been solved in ten test

cases, each characterized by a different size of the service domain,

i.e. a different number of OWL-S semantic descriptions available

for solving the problem (from 10 to 100 descriptions, by tens). For

each of the test cases considered, the ten services for composing a

possible solution to the problem (see Section 4.1 and Fig. 2) were

included in the domain and our tool was always able to find the

correct composite solution. Also, the BPEL generator was able to

retrieve a complete WS-BPEL process (.bpel file together with the

other files required to deploy it), which was correctly executed on

the RiftSaw workflow engine.

Total execution time is the sum of four main contributions: (1)

domain conversion time, (2) problem conversion time, (3)

planning time and (4) WS-BPEL generation time. Domain

conversion time represents the time needed to access, parse and

convert to PDDL each semantic service description, referred by a

URI from the set of the OWL-S files constituting the planning

domain; problem conversion time is the time required to access,

parse and convert to PDDL the OWL-S description of the problem

to solve; planning time is the time required for Graphplan to find a

solution to the PDDL problem in the PDDL domain; WS-BPEL

time is the time required to produce the set of files making up a

complete and executable BPEL process from the abstract plan and

the WSDL files referred in the OWL-S grounding section, by

using the BPEL serializer.

The four time contributions have been measured by using

system time, with nanosecond resolution. The machine used for

executing the test cases was an Intel Core 2 Duo CPU, with 3 GB

RAM, running a Linux Debian distribution. Semantic descriptions

and WSDL files were deployed locally to the machine on an

Apache server.

The total execution time and the four contributions that

compose it are reported, on a log scale, in Fig. 17(a). The points in

the figure are the median values obtained after 100 iterations for

each test case. Also, 10 initial iterations per test were executed,

whose times have not been accounted in order to evaluate tool

performance during a steady-phase.

This way, the influence over measured times of dynamic class

loading, Java Just-In-Time (re-)compilations and other cold-start

overheads from the Java Virtual Machine has been reduced. For

each point in Fig. 17, observed minimum and maximum values

are depicted as error bars around the median value.

As expected, the predominant contribution to the total

execution time is domain conversion time, since it includes the

access to a set of semantic descriptions and ontologies via an

HTTP server (local to the testing machine) and their parsing by

means of the OWL-S API (v. 2.0).

In relation to problem conversion time and BPEL generation

time, we have observed an approximately constant time, since, in

the case of OWL-S problem conversion, one description has to be

converted into PDDL, while, in the BPEL case, the found solution

plan to convert to BPEL is the same for all the test cases.

Finally, as concerning planning time, Graphplan takes an

approximately exponential trend with respect to the number of

domain services, as shown in Fig. 17(b). However, on

small/medium-size domains, Graphplan exhibits very low time

overhead to compute solutions, even lower than 100 ms, due to its

efficiency and the fact it works on memory structures only.

The Mediterranean Journal of Computers and Networks, Vol. 8, No. 4, 2012

Copyright © 2012 SoftMotor Ltd. ISSN: 1744-2397 174

Figure 17. Time analysis for the population alert problem

5. CONCLUSION AND FUTURE WORK

This paper proposes a tool for automatic composition of OWL-

S semantically annotated web services. Executable compositions

are automatically generated by the tool in either WS-BPEL or

XPDL languages, referencing concrete WSDL services retrieved

from the OWL-S groundings.

OWL-S descriptions of both services and problem are analyzed,

converted into PDDL and fed as input to the Graphplan planner

PDDL4J. Solution plans are translated into WS-BPEL or XPDL

and can be executed by any common business process execution

engine (like RiftSaw). An application scenario about the partial

handling of hydrogeological disasters has been defined and used

for testing the potential of the presented tool. Performance

analysis has confirmed the efficiency of the tool, showing

execution times in the order of few seconds, in the case of

small/medium-size domains.

Instead of optimizing the tool for planning complete

workflows, we have chosen to take advantage of it for re-planning

(parts of) already defined (autonomic) workflows, when some

activities of the original plan are not available and equivalent sub-

processes are required to replace them.

Despite of its robustness and usefulness, the tool is still

prototypal and further improvements are possible. Among these,

current domain services are provided as input by means of a set of

known OWL-S descriptions, instead we have planned to introduce

more flexibility by integrating the tool with a registry. The registry

should be able to automatically retrieve a set of candidate domain

services matching the ontology concepts referred within the

OWL-S problem specification. The registry can also be used for

retrieving groundings of semantic services to concrete services to

be referenced in XPDL or WS-BPEL descriptions.

We also aim at improving the data and control flow generation,

by introducing support for finer-grained synchronization

mechanisms, like WS-BPEL <link>, <source> and <target> in

<flow> activities. However, new semantic constructs to

semantically specify such synchronization requirements in the

OWL-S descriptions need to be investigated.

Moreover, during XPDL or WS-BPEL generation, concrete

services may ground same ontological concepts to different

concrete data types, generating data mismatches when they are

included within the same solution plan and present data

dependencies over the differently grounded concepts. A possible

solution consists of providing a set of Web service data adapters to

the composer, to perform data conversions between different

representations: they can be automatically selected and interposed

between the mismatching services. Finally, when no semantically

exact solution is available in the service domain, semantically

relaxed plans for partial goal satisfaction could be proposed and

ranked.

ACKNOWLEDGEMENTS

The work described in this paper has been partly developed

during SIEGE [31], a research project co-funded by the Italian

Ministry of Research, which adopted the proposed tool to build

specific workflows of services in an e-Government context. We

thank Roberto Pratola and Ivano De Furio for their contributions

in implementing and validating the tool.

REFERENCES

[1] G. Tretola, E. Zimeo, "Autonomic Internet-scale

Workflows", in Proceedings of the 3rd International

Workshop on Monitoring Adaptation and Beyond, ACM

New York, USA, 2010,

[2] D. L. McGuinness, F. van Harmelen “OWL: Ontology Web

Language,” W3C Recommendation, [Online]

http://www.w3.org/TR/owl-features/, 2004.

[3] D. Martin, M. Burstein, and J. Hobbs et al, “OWL-S:

Semantic Markup for Web Services,” W3C Member

Submission, [Online] http://www.w3.org/Submission/OWL-

S/, 2004.

[4] J. Farrell, H. Lausen, “Semantic Annotations for WSDL and

XML Schema,” W3C Recommendation, [Online]

http://www.w3.org/TR/sawsdl/, 2007.

[5] D. Fensel, F. Fischer, and J. Kopecký et al “WSMO-Lite:

Lightweight Semantic Descriptions for Services on the

Web,” W3C Member Submission, [Online]

http://www.w3.org/Submission/2010/SUBM-WSMO-Lite-

20100823/, 2010.

[6] J. Rao and X. Su, “A Survey of Automated Web Service

Composition Methods,” in Proceedings of the First

International Workshop on Semantic Web Services and Web

The Mediterranean Journal of Computers and Networks, Vol. 8, No. 4, 2012

Copyright © 2012 SoftMotor Ltd. ISSN: 1744-2397 175

http://www.w3.org/TR/owl-features/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/TR/sawsdl/
http://www.w3.org/Submission/2010/SUBM-WSMO-Lite-20100823/
http://www.w3.org/Submission/2010/SUBM-WSMO-Lite-20100823/

Process Composition, SWSWPC 2004, San Diego,

California, USA, July 6th, 2004.

[7] S. Dutsdar and W. Schreiner, “A Survey on Web Service

Composition,” in International Journal of Web and Grid

Services, vol. 1, pp. 1-30, August 2005.

[8] Z. Li, L. O'Brien, J. Keung and Xi Xu, “Effort-Oriented

Classification Matrix of Web Service Composition,” in

Proceedings of the 2010 Fifth International Conference on

Internet and Web Applications and Services (ICIW), pp. 357

- 362 , May 2010.

[9] B. Medjahed, A. Bouguettaya, A. K. Elmagarmid,

“Composing Web Services on the Semantic Web,” in the

VLDB Journal vol. 12 no. 4, November 2003.

[10] M. Ghallab, A. Howe, C. Knoblock, and D. McDermott, et

al, “PDDL: The Planning Domain Definition Language,” in

AIPS98 planning committee (1998), Volume: 78, Issue: 4,

Publisher: Citeseer, Pages: 1-27 DOI: 10.2307/3729517.

[11] D. S. Nau, T. C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D.

Wu and F. Yaman “SHOP2: An HTN Planning System,” in

Journal of Artificial Intelligence Research, Vol. 20, pp.379-

404, 2003.

[12] M. Klusch, A. Gerber “Semantic Web Service Composition

Planning with OWLS-XPlan,” in Proceedings of the 1st Int.

AAAI Fall Symposium on Agents and the Semantic Web,

2005.

[13] M. Klusch, K. U. Renner, “Fast Dynamic Re-Planning of

Composite OWL-S Services,” in Proceedings of 2nd IEEE

Intl Workshop on Service Composition (SerComp), IEEE CS

Press, Hongkong, China, 2006.

[14] A. Blum, M. Furst, “Fast Planning Through Planning Graph

Analysis,” Journal of Artificial Intelligence, vol. 90, pp. 281-

300, 1997.

[15] O. Hatzi, D. Vrakas, N. Bassiliades, D. Anagnostopoulos, I.

Vlahavas, “Semantic Awareness in Automated web service

Composition through Planning,” in 6th Hellenic Conference

on Artificial Intelligence (SETN 2010), Springer, LNCS Vol.

6040, Athens, Greece, May 2010.

[16] S. A. McIlraith, T. C. Son, “Adapting Golog for Composition

of Semantic Web Services,” D. Fensel, F. Giunchiglia, D. L.

McGuinness, and M.-A. Williams, editors, KR, pp. 482-496,

2002.

[17] M. Phan, F. Hattori, “Automatic Web Service Composition

Using ConGolog,” in ICDCS Workshops, p. 17, 2006.

[18] F. Lecue, A. Leger, A. Delteil, “DL Reasoning and AI

Planning for Web Service Composition,” in Web Intelligence

IEEE 2008, pp. 445-453, 2008.

[19] H. Zhao, P. Doshi, “Haley: An End-to-End, Scalable Web

Service Composition Tool: A Hierarchical Framework for

Logical Composition of Web Services,” in Proceedings of

IEEE International Conference on Web Services, ICWS07,

Salt Lake City, Utah, 2007.

[20] H. Zhao and P. Doshi, “Haley, A Hierarchical Framework for

Logical Composition of Web Services,” in Service Oriented

Computing and Applications, pp. 285-306, 2009.

[21] OMG, “Business Process Modeling Notation (BPMN)

Specification v. 2.0,”, [online]

http://www.omg.org/spec/BPMN], 2011.

[22] WfMC, “XML Process Definition Language (XPDL) v. 2.1”,

[online] http://www.wfmc.org/xpdl.html, 2008.

[23] OASIS Standard, “Web Service Business Process Execution

Language (WS-BPEL) Specification 2.0,” [online]

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-

OS.html], 2007.

[24] I. Horrocks, P. F. Patel-Schneider, and H. Boley et al,

“SWRL: A Semantic Web Rule Language Combining OWL

and RuleML,” W3C Member Submission, [online]

http://www.w3.org/Submission/SWRL/, 2004.

[25] Jboss Community, http://www.jboss.org/riftsaw, v. 2.3.0,

2011.

[26] The Apache Software Foundation, http://ode.apache.org/, v.

1.3.5, 2011.

[27] M. Polese, G. Tretola, E. Zimeo, “Self-Adaptive

Management of Web Processes,” in Proceedings of the IEEE

International Conference on Web Systems Evolution (WSE),

2010.

[28] D. Pellier, “PDDL4J”, [Online] http://sourceforge.net/

projects/pdd4j/, 2011.

[29] OW2 Consortium, “EasyWSDL toolbox” [Online]

http://easywsdl.ow2.org/

[30] W3C, “XML Schema” [Online]

http://www.w3.org/XML/Schema

[31] S. Pierno, L. Romano, L. Capuano, M. Magaldi, L.

Bevilacqua, “Software Innovation for E-Government

Expansion,” in Move to Meaningful Internet Systems: OTM

2008, pp. 822-832, 2008.

BIOGRAPHIES

Luca Bevilacqua, got his degree in

Electronic Engineering in 1989, and his

Master in Business Administration

Degree in 1992. He has been working in

IT leading companies (Olivetti, Sema,

Atos Origin, Engineering Ingegneria

Informatica). Since the year 2000 he has

been responsible for several R&D

projects dealing with topics such as web services and their

orchestration, advanced user interfaces (multimedia, perceptual,

affective). Today he works in Engineering group, as R&D

Director, for all R&D projects co-funded by Italian public

funds/bodies.

Angelo Furno is a Ph. D. Student in the

Department of Engineering at the

University of Sannio (Italy). His research

interests are in the fields of software

engineering and distributed computing

systems, with special emphasis on SOA-

based systems. Automatic service

composition, self-adaptive workflow

systems, semantic Web Services, Context-aware, P2P, and cloud

computing are the main specific areas of his current research. He

received his master degree at University of Sannio in 2010 and

was a research assistant at the same university before joining the

Ph.D. program.

The Mediterranean Journal of Computers and Networks, Vol. 8, No. 4, 2012

Copyright © 2012 SoftMotor Ltd. ISSN: 1744-2397 176

http://www.omg.org/spec/BPMN
http://www.wfmc.org/xpdl.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/Submission/SWRL/
http://www.jboss.org/riftsaw
http://ode.apache.org/
http://sourceforge.net/%20projects/pdd4j/
http://sourceforge.net/%20projects/pdd4j/
http://sourceforge.net/%20projects/pdd4j/
http://easywsdl.ow2.org/
http://www.w3.org/XML/Schema

Vladimiro Scotto di Carlo had is degree in

Physics in 1998. Since 2005 he has been

working as researcher in IT companies

(Atos Origin, Engineering Ingegneria

Informatica). His main interests are in the

area of advanced user interfaces. In recent

years he has had the role of technical

coordinator in R&D projects about natural

language interpretation, multimodal

interface in mobile devices and innovation for e-Government.

Eugenio Zimeo received the PhD degree

in Computer Science from the University

of Naples in 1999. Currently he is an

assistant professor at the University of

Sannio in Benevento (Italy). His primary

research interests are in the areas of

software architectures, frameworks and

middleware for distributed systems,

service oriented, grid, cloud and P2P computing, autonomic

computing, wireless sensor networks and mobile computing. He

has published about 80 scientific papers in journals and

conferences of the field and led many large research projects.

The Mediterranean Journal of Computers and Networks, Vol. 8, No. 4, 2012

Copyright © 2012 SoftMotor Ltd. ISSN: 1744-2397 177

