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ABSTRACT 

Service composition is a fundamental facet of Service Oriented 

Architecture to burst the creation of new services and knowledge 

throughout the Internet. Automating this aspect has been for many 

years an interesting research topic for people working in several 

research areas. In spite of the several scientific results already 

achieved, generating a concrete and runnable service composition 

from the semantic descriptions of the domain services and the 

problem to solve is still an open issue. This paper presents an 

approach to automatic service composition in the context of 

autonomic workflows and a related tool developed for an IT 

industrial context. The tool is able to retrieve service descriptions 

from a repository, to support the definition of the problem to 

solve, to generate an abstract plan and to translate it into an 

executable process language, such as WS-BPEL. This way, the 

tool covers the planning and re-planning phases of autonomic 

workflows. The paper compares the approach with other proposals 

and shows its effectiveness through a case study that exploits 

automatic service composition to handle an emergency situation 

caused by a hydrogeological disaster. 
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1. INTRODUCTION 

The adoption of Web services and Service Oriented Architectures 

is promoting a novel approach for developing web applications, 

since they can be created by composing distributed services hosted 

by servers in different administration domains. We refer to this 

new kind of large-scale, distributed application as “multi-

organization Web application”.  

With the term large-scale, we intend the involvement of a large 

numbers of services available throughout the Internet. Services 

can be modified or replaced; they can disappear, and new services 

with different features may become available.  

This class of applications needs a new level of exception 

handling to address the variability of execution context. 

To handle this level of dynamicity, autonomic computing (AC) 

represents a viable solution. As it allows systems to manage 

themselves, service compositions can benefit from this approach 

to properly react to external events in order to change their 

structure accordingly, reducing human intervention to the 

minimum. 

In this direction, we have defined the concept of autonomic 

workflow [1][27], a composition of automatic or manual services 

that is able to proceed towards the goal even if external events 

significantly change the execution context. To survive the 

changes, a service composition needs to be modified, taking into 

account the new environment. 

An important role is performed by the configurator, a 

component of an autonomic composition engine that is in charge 

of implementing self-configuration of service compositions 

through the knowledge coded at design-time or collected at run-

time. The configurator acts on every aspect of a concrete service 

composition by changing the overall composition graph to make it 

runnable within the new conditions. To this end, it can: change a 

link between an activity and a concrete service (re-bind); insert, 

delete or replace an activity; change the endpoints of a transition; 

substitute an activity with a sub-process that is able to perform the 

same actions and to produce the same effects on the external 

world. 

The configurator exploits some internal components to generate 

or change compositions (see Fig. 1). 

 
Figure 1. Configurator component of a workflow engine 

An important component of the configurator is the composer. It 

can be used either for the initial definition (plan) of a service 

composition or to re-plan an already defined composition, which 

could need to be changed completely or in part to react to external 

events.  

The composer exploits planners to transform the descriptions of 

a goal and a domain in an abstract process. This can be further 

concretized through the binder, a component in charge of linking 

an abstract activity with a concrete service. Moreover, domain 

rules can be exploited to validate automatic compositions 

generated by the composer. 

As Fig. 1 shows, the approach needs several information to 

support its autonomy during execution. In particular, the Domain 

refers to a formalized knowledge related to the specific application 

domain where a service composition takes place. It is an ensemble 

of (1) concepts and relations (ontology) that enrich service 

descriptions and (2) causal constraints (e.g. pre- and post- 
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conditions) that cause services to be correctly ordered in a service 

composition. Domain rules, instead, represent higher-level 

knowledge that is useful to express some constraints that 

invalidate or validate the generated plans, so reducing the space of 

admissible solutions. Finally, context rules are used to observe the 

external world during execution in order to generate new 

knowledge that potentially can enrich domain ontology and rules.  

For illustrating the idea of service composition, we introduce an 

example scenario related to emergency handling in natural disaster 

management. The example considered, which will be detailed in 

Section 4, is about population alert by using multiple 

communication channels like mobile networks, SMS, MMS, 

automatic calls, TV, etc.  

A possible service composition for alerting people, living in the 

specific geographic area where the disaster occurred, could consist 

in the following subprocesses (each constituted by one or more 

services), to be executed concurrently: 

 TV BROADCAST: executing a service to transmit a 

broadcast alert message on TV channels; 

 MOBILE ALERT: executing a service to retrieve the 

personal details of all the people living in the area; then 

getting their mobile numbers (MSISDN) from telecom 

companies, by means of one or more concurrent services, and 

finally sending SMS (another service); 

 LAND LINE ALERT: getting the list of home telephones in 

the area using a White Pages service; then executing an 

automatic call center service to call the retrieved phone 

numbers while concurrently producing a list of citizens 

without home phone; notifying the local police station with 

the list of citizens that were not warned (as they do not have 

home phone or because they did not answered the call) in 

order to physically alert them at their habitations. 

 

Fig. 2 graphically represents the service composition. 

This paper mainly focuses on automatic service composition in 

the context of autonomic workflow by presenting a tool able to 

generate concrete and runnable compositions starting from a 

repository of service descriptions, a domain ontology and 

constraints. In particular, the domain is expressed as a set of 

WDSL service descriptions annotated with OWL-S, whereas the 

target runnable compositions can be generated either in WS-BPEL 

or in XPDL. 

 
Figure 2. An example service composition for people alert  

in natural disaster management 

The rest of the paper is organized as follows. Section II 

discusses the related work on tools for automatic service 

composition. Section III presents the process for automatic 

generation of service compositions, the proposed tool and its 

architecture. A detailed description of the WS-BPEL serializer is 

provided. Section IV analyzes an example of automatic service 

composition in the context of emergency handling, reporting also 

a performance analysis for the composition problem considered. 

Finally, Section V concludes the paper. 

2. RELATED WORK 

To generate an executable business process description starting 

from a general, and possibly formal, description of user business 

requirements and service domain is a complex problem, whose 

solution needs: (1) a support for formally describing service 

domain and business problems; (2) an efficient technique for 

finding a service or combinations of multiple services from the 

domain, satisfying the specified problem; (3) the automatic 

generation of a formal business process description, possibly in a 

standard language (e.g. BPEL, XPDL), from the abstract plan.  

In spite of the plethora of efforts devoted to theoretic aspects, 

up to now only a few proposals have addressed the problem in a 

comprehensive way and very few tools to generate an executable 

business process description exist. 

In relation to the first problem, the OWL Web Ontology 

Language [2] allows for representing domain knowledge through 

a formal and shared XML-based specification of concepts and 

relations among them. OWL-S [3] supplies Web service providers 

with a core set of markup language constructs for describing 

properties and capabilities of their Web services in unambiguous, 

computer-interpretable form, by referencing concepts and 

properties from OWL ontologies.  

SAWSDL [4] is another W3C recommendation for 

semantically describing services. It introduces a set of extension 

attributes to be directly used in WSDL service descriptions to 

semantically annotate WSDL elements. WSMO-lite [5] is a 

lightweight set of semantic service descriptions in RDFS for 

annotating various WSDL elements, using the SAWSDL 

annotation mechanism. 

Regarding the second problem, several approaches, techniques 

and tools [6-8] have been proposed in literature to efficiently 

tackle the automation of the composition process. Many of the 

proposed approaches are based on the use of AI planning 

techniques, handling the Web service composition problem as a 

state-space, constraints satisfaction, situation-calculus or other 

kind of planning problems. Semantics is considered an important 

support for the automation of the composition process [9].  

The Planning Domain Definition Language (PDDL) [10] is 

considered the de-facto standard for classical planning problems 

input languages. A PDDL planning problem is described in two 

sections: domain definition and problem specification. The 

domain describes the possible actions, in terms of inputs, outputs, 

preconditions and effects, and predicates. The problem essentially 

describes initial and final states, by specifying the set of predicates 

assumed to be true in the initial state and the set of predicates to 

be satisfied in the goal state. Several planners have been 

developed which use PDDL as input language. 

SHOP2 [11], is an HTN (Hierarchical Task Networks) planner, 

which exploits hierarchical relations among tasks for composing 

Web services. These relations have to be provided in advance to 

the planner by designers when describing the planning domain. 

The planning problem is solved by translating its OWL-S 

description into a SHOP2 description and by converting the 

SHOP2 generated plan to an OWL-S runnable process. As pointed 

in [12], SHOP2 performs well where complete and detailed 
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knowledge on at least partially hierarchically structured action 

execution patterns is available, but, when no concrete set of 

methods and decomposition rules are available, an HTN planner is 

not able to find the solution. This problem inherently limits the 

planning ability of an HTN planner to the availability of 

decomposition methods designed by human experts. 

In [12,13], Klush et al. proposes the OWLS-Xplan planner, 

which combines graph-based (by using Graphplan [14]) and HTN 

planning, using OWL-S descriptions (of both domain and 

problem) as input, translating them into an XML version of the 

PDDL language, called PDDXML. The output is a sequence of 

activities described in PDDXML. The approach combines both the 

advantages of task decomposition available with HTN planning 

and the Graphplan capability of always finding a solution, when 

present. The authors also propose a replanning component, able to 

update plans during execution.  

Another recent composition framework is PORSCE II [15]. 

Like OWLS-Xplan, the framework input consists of OWL-S 

service descriptions, which are translated into PDDL. The 

framework combines a domain-independent planning component 

(e.g. JPlan, LPG-td) and an ontology concept relevance module 

for semantic awareness and relaxation during planning. Several 

plans, with different semantic accuracy levels, can be generated 

and presented to the user through a graphical component. 

Moreover, the graphical component can be used to request 

replanning by selecting a task and asking the system to find an 

alternative equal or semantically similar service or composition. 

Subsume relationships among service pre- and post-conditions are 

considered to find such alternatives. 

Other notable planning solutions for service composition are 

based on the Golog language. Golog is a logical programming 

language and has been extended in [16] to support customized 

constraints and non-determinism in sequential executions and 

have been used in order to support service composition, by means 

of a translation into PDDL. In [17], a process for translating 

OWL-S descriptions into situation calculus has been proposed, 

while, in [18], DL reasoning techniques are used together with 

extended Golog to calculate conditional Web service 

compositions. 

The Haley framework [19, 20] includes a Golog-based planning 

system for Web service composition. The system uses SAWSDL 

semantically described services as input, contains a planning 

Golog-domain generator and the eDT-Golog planner. Differently 

from the previous described framework, Haley is able to generate 

a WS-BPEL description of the plan and execute it on a WS-BPEL 

engine. However, Haley tackles the service composition problem 

from the perspective of generating complete business processes 

from user business requirements, by assuming the presence of 

concrete services with specified QoS parameters. In this sense, 

scalability is a very important problem and the hierarchical 

approach, as in SHOP2, is a way to reduce the planning effort, but 

requires a designer to know how to decompose tasks in subtasks. 

From our perspective, planning has to be a support especially to 

the generation of small business sub-processes, which concretize 

tasks from an already defined main workflow and is guided by the 

Binder component of the Configurator (Fig. 1). Consequently, the 

scalability problem is reduced in our perspective. Moreover, our 

proposed composition tool is also able to work with already 

composite service. Haley’s authors believe classical planning 

techniques are not well suited to the Web service domain, because 

of its inner non-determinism. As presented in [1], we argue that 

non-determinism can be handled through events observation and 

proper reaction: this way, the autonomic approach can be 

exploited to fill the gap with the classical planning techniques in 

Web service composition. Another important difference between 

Haley and our composition tool is that Haley is not able to 

generate concurrent sub-processes. 

Finally, in relation to the third problem, the generation of 

formal and standard business process representation of the service 

compositions, several languages have been proposed. Among 

these, Business Process Modeling Notation (BPMN) [21], Xml 

Process Definition Language (XPDL) [22] and Web Service 

Business Process Execution Language (WS-BPEL) [23] are the 

most important and widespread ones. In the following, we focus 

our attention on WS-BPEL (v. 2.0) which can be considered the 

de-facto standard for business process description languages in the 

web service domain. 

In the following we propose a composition tool based on: (1) 

the use of OWL and the OWL-S ontology for the semantic 

descriptions of domain services; (2) a classical planning-based 

approach for creating service compositions, using the PDDL 

language for domain and problem specification; (3) autonomic 

workflows to handle non-determinism and enact proper service re-

composition as a reaction mechanism; (4) WS-BPEL as the 

language for describing the resulting service composition. 

3. COMPOSITION TOOL 

The proposed tool is intended to support the initial plan of a 

service composition or to re-plan an already defined one.  

3.1 Composition Process 

Fig. 3 shows a graphical representation of the notion of Web 

service composition in workflow design. In the top part of the 

figure, workflow tasks represent complex activities, which can be 

implemented as service compositions. Automatic support for 

generating executable service compositions is the focus of this 

paper.  

 
Figure 3. Web service Composition Process 

Starting from a task description (the problem, e.g. task 4 in the 

picture), a set of candidate Web services (the service domain) is 

inspected in order to find a chain of services (a plan), which is 

consistent with the task description. Consistency means that, 

starting from a provided description of the initial state (i.e. the set 

of predicates which are true before the task beginning), the chain 

is able to reach the goal state (i.e. the predicates in the goal state 

have to be true at the end of the service chain). 

The initial state includes a description of all the input data 

available at the beginning of the execution, while the goal state 

specifies the desired outputs to be obtained by the task execution. 
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The problem task may correspond to a single task in an already 

defined business process or to the whole business process. The 

first case can be related to a re-planning process, where an activity 

of the process is replaced by a service composition, while the 

second case relates to the planning process, that is the definition of 

a new complete business process, satisfying some user’s specific 

business needs. 

We assume both the service domain and the problem to solve 

are described by using the OWL-S ontology, according to the 

IOPE semantics. The set of semantically described services (the 

domain) has to be known before starting the composition process 

and provided as an input to the system together with the semantic 

description of the problem. The service domain can be retrieved 

manually or in a (semi-) automatic way, by relying on a service 

registry and exploiting the semantic description of the goal to 

reach during a matchmaking process. 

Any service operation is associated to an OWL-S file, which 

includes the definition of an OWL-S atomic process 

(<process:AtomicProcess>), specifying the inputs, the outputs, 

the preconditions and the effects (IOPE) of the specific operation 

performed by a service. Inputs and outputs may refer to concepts 

imported from OWL ontologies or XML-Schema data types. 

Preconditions and effects are specified within the OWL-S process 

description in the <process:hasPrecondition> and the 

<process:hasResult> sections respectively. Semantic Web Rule 

Language (SWRL) [24] expressions are used to define these 

conditions. 

The problem is considered as a desired operation and is 

specified as an OWL-S process with inputs, outputs, preconditions 

and effects, like a service operation. Inputs and preconditions 

make up the initial state, which is data known to be available and 

predicates known to be true when the related task starts, while 

outputs and effects make up the goal state, that is desired data 

outcomes and true predicates at the end of task execution. 

Fig. 4 describes the main logic flow associated to our 

composition tool.  

 
Figure 4. Planner-based composition process 

The OWL-S service domain and problem descriptions represent 

the main inputs for the composer. Also, it is possible to specify 

simple business rules that have to be validated on the generated 

plans. Provided inputs are then processed and transformed into 

proper internal data structures. 

The processed information (service domain and rules) is 

captured into internal incremental knowledge bases, used to 

quickly solve future requests related to the same domain or 

business rules. The internal input data are then supplied to the 

planner component to find some solution plan, or abstract plan, 

(set of activities) from the domain, satisfying the specified 

problem and business rules (through the plan validator). If the 

validation fails, a new plan may be found. The generated abstract 

plan is finally bound to concrete Web services and transformed 

into a standard business process representation (e.g. BPEL, 

XPDL), or concrete plan. The produced description can be 

executed on standard execution engines, like RiftSaw [25], 

Apache ODE [26], SAWE [27]. 

Since the focus of the paper is not on devising a new planning 

approach, but on providing the highest automatic support to 

discovery executable service composition as a result of an 

adaptation rule, we focused our attention on the well-known 

Graphplan algorithm to produce the abstract plan. In the following 

we briefly describe the approach used in the Graphplan planner, 

which has been adopted in the implementation of the proposed 

tool, as will be described in Section 3.2.  

The Graphplan algorithm [14] was proposed by Blum and Furst 

in 1997 to efficiently solve planning problems in STRIPS-like 

domains (made of objects, operators and propositions). It consists 

of two interleaved phases: a forward phase, where a data structure 

called “planning-graph” is incrementally extended, and a 

backward phase where the planning-graph is searched to extract a 

valid plan. The planning graph can be created in a polynomial 

time, with respect to the size of the problem domain, while the 

search phase has an exponential complexity in the worst-case.  

The planning graph structure is organized in multiple levels, 

each containing proposition or action nodes, connected by three 

kinds of edges: pre-condition, add and delete edges. The 0-level is 

a propositional list, containing one node for each proposition in 

the initial state of the problem. Each other level contains both a 

proposition and an action node list. The 1-level action list will 

contain all the actions which can be executed given the 0-level 

propositions, while the 1-level proposition list will include all the 

effects of the 1-level actions. In general, given a k-level planning 

graph, the extension of the structure to level k+1 involves 

introducing all actions (no-operations included), whose 

preconditions are present in the k-th level proposition list. The k+1 

propositional list includes all the propositions added or deleted as 

effect of the actions belonging to the k+1 level. Since no-

operations (a.k.a. persist operations) are included in the k-th action 

list, all the proposition from level k will also be contained in level 

k+1 proposition list. The planning graph construction takes into 

account mutual exclusion constraints among actions and 

propositions, which are propagated over the levels of the graph. 

The search phase on a k-level planning-graph starts by 

searching, at level k, the propositions corresponding to problem 

goals. If all the goals are not present, or if they are present but a 

pair of them are marked mutually exclusive, the search is 

abandoned right away, and planning-graph is grown another level. 

For each of the goal propositions, an action from the level k action 

list, supporting it with its effects, is selected. Mutual constraints 

are considered in this step, in order not to select actions for 

supporting two different goals which are mutually exclusive. If 

they are, backtracking is performed to select new pairs of actions. 

At this point, the search process is recursively called on the k-1 

level planning-graph, with the preconditions of the actions 

selected at level k as the goals for the k-1 level search. The search 

succeeds when level 0 is reached and the selected actions for each 

level represent a partially ordered plan.  

3.2 Tool Architecture 

The main composition process, described in the previous 

paragraph, has led to a specific architecture for composition tool 

that is detailed in Fig. 7. 

The most relevant components are: 

 The OWL-S Analyzer 

 The Planner 

 The Plan Validator 
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 The Plan Converters (or serializers) 

In order to introduce flexibility in the proposed planning-based 

approach to composition, we have defined a meta-model for 

describing all concepts, and their relationships, which define our 

notion of autonomic workflow.  

Fig. 5 represents a Domain and a related Problem, while Fig. 6 

gives a detailed description of the concept of Plan, composed of a 

Workflow, which includes simple or complex (composite) 

Activities and several control flow structures as Parallel and 

Sequence. The Plan element joins the two models.  

 
Figure 5. Problem and Domain Model 

 
Figure 6. Workflow Model 

The meta-model is used to define abstract representations of 

the service domain, the problem under analysis and workflow 

plans for solving it in the domain. By defining converters 

(problem and domain serializers) from the meta-model to planning 

specific representation languages, it is easy to support several 

planners. This way, the composer is independent from specific 

planning tools and languages. Since PDDL represents the de-facto 

standard for classical planning problems and there are several 

planning systems supporting this language, including PDDL4J, in 

the current implementation of our tool, we focused our attention 

on this language and implemented specific converters from the 

meta-model to the PDDL 3.0 specification (Section 3.3). 

The OWL-S Analyzer is the component responsible of 

analyzing both the OWL-S files, which describe the available 

services in the planning domain, and the OWL-S of the problem to 

solve. This component parses the provided inputs and converts 

them to an instance of the meta-model. It also integrates reasoning 

capabilities about semantic concepts referred in service and 

problem descriptions. 

The main rules used by the analyzer to generate a meta-model 

instance from OWL-S files are the following: 

 The service operation name (<service:Service>) defines the 

name of a new Action; 

 The name of input and output parameters (<process:Input> 

and <process:Output>) of the atomic process describing the 

service operation defines the name of the action Parameters. 

Associations between the Action instance and its input/output 

Parameters are introduced;  

 The types of input and output parameters 

(<process:parameterType>), possibly referring ontology 

concepts, define new Types of the domain object and are 

associated to the corresponding Parameter objects. 

 SWRL conditions, defining preconditions or effects of a 

service operation over its parameters and constants 

(<process:hasPrecondition> and <process:hasEffect>), are 

used to define domain Predicates, related to action 

Parameters and associated to action objects as preconditions 

or effects respectively. 

 Any action input parameter, retrieved from an OWL-S 

process, generates a hasKnowledge predicate, added as 

precondition for the relative action object and having the 

input parameter associated as a predicate variable. 

 Any action output parameter, retrieved from an OWL-S 

process, generates a hasKnowledge predicate, added as effect 

for the relative action object and having the input parameter 

associated as a predicate variable. The hasKnowledge 

predicates for the input/output parameters are added in order 

to consider parameter dependencies among planning actions 

during the plan generation, when strips-like planners as 

Graphplan are used. 

 Any element in the OWL-S description, different from input 

or output parameter, or type names, defines a new domain 

Constant. 

 References to WSDL information, required in the later phase 

of Plan Serialization for describing an action plan in an 

executable standard business process representation, are 

available in the OWL-S grounding section (<grounding: 

WsdlAtomicProcessGrounding>). This section contains 

information like a WSDL document URI, a portType, an 

operation, an inputMessageMap and an outputMessageMap, 

which specifies how an OWL-S atomic process maps to a 

concrete Web service. This information is retrieved by the 

OWL-S Analyzer and stored in an AtomicGrounding object 

associated to the action related to the OWL-S described 

service operation.  

 

In a very similar manner, it is possible to build the meta-model 

Problem object, by applying the previous specified parsing rules 

to the problem OWL-S description. Obviously, no grounding 

section is supposed to be available for the OWL-S problem 

description, since the problem is still to be solved with a concrete 

(combination) of web service(s). For this reason, the last rule does 

not apply to the case of the OWL-S problem parsing. 

The Planner is the component deputed to the processing of 

domain and problem inputs in order to produce a plan of domain 

actions satisfying the problem. To this end, several solutions are 

available. We implemented a PDDL problem serializer, which 

take as input the meta-model representation of the problem and 

produce a PDDL 3.0 compliant serialization of it. Similarly, we 

implemented a PDDL domain serializer, which does the same on 

the domain meta-model object built by the OWL-S Analyzer. By 

having the PDDL representation of both the domain and the 
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problem, a PDDL planner can be used for generating plans. 

 
Figure 7. Detailed Composer Architecture 

The current implementation of the tool uses PDDL4J [28] for 

planning, a product released under the GNU General Public 

License (GPL), which is based on a Java implementation of the 

Graphplan algorithm, described in Section 3.1. The PDDL4J 

output plan is represented in a PDDL-like representation, which is 

converted back to its meta-model representation (the Plan object 

in Fig. 6), through the PlanDeserializer component. 

The grammar described in Table 1 defines the language 

supported by the Composer to express business rules that has to be 

satisfied by the generated plans. In the current implementation, the 

rule language only supports the definition of dependency (<-> in 

the table) and mutual exclusion constraints (->!) between pairs of 

activity. As an example of these constraints, rule A <-> B means 

that if the plan contains the A activity, B has to be present too and 

vice-versa (whereas the order is inferred by IOPE descriptions). 

Rule A ->! B means that A and B activities have never to be 

both present in the same plan. 

 
Table 1. An excerpt of the rule language grammar 

EXP ::= EXP_TYPE ; | ; 

EXP_TYPE ::= RULE | CONSTRAINT 

CONSTRAINT ::= ACTIVITY <-> ACTIVITY |  

ACTIVITY ->! ACTIVITY 

ACTIVITY ::= IDENTIFIER 

RULE ::= … 

 

The PlanValidator component has the role to check if the 

business rules, specified by the user as input to the composer, are 

satisfied by a plan produced by the Planner. 

If these rules are present and the plan does not satisfy them, a 

new plan has to be searched by the Planner component until rules 

are satisfied or there are no other feasible plans. 

The behavior of the composer, in relation to the described 

components, is shown in the UML sequence diagram of Fig. 8. 

The architecture described in this section has been implemented 

using the Java language. The Meta-model in Figures 5 and 6 has 

been implemented through a set of Java interfaces and classes. 

The Domain and Problem classes have been equipped with proper 

methods for serialization into a PDDL 3.0 language representation 

(PDDL Problem/Domain serializers in Fig. 4).  

A PDDL plan deserializer has been developed in order to 

analyze the PDDL plan produced by the PDDL4J planner and 

generate a corresponding instance of the Plan class. The 

associated instance of the Workflow class contains the Meta-model 

representation of the control flow for the plan (see Fig. 6). 

 
Figure 8. Plan generation and validation 

The workflow is generated by analyzing the partially ordered 

plans (POPs) produced by PDDL4J and, if the plan contains more 

than one action, by properly constructing a composite activity. 

This activity can be a sequence or a parallel, containing other 

parallels or sequences at any level. Since the POPs produced by 

GraphPlan are simply lists of steps, each containing a list of 

actions to be performed, any list of actions for a specific step is 

analyzed in order to identify parallel branches possibly ranging 
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over more than one single step. This condition occurs when, in the 

steps following the one currently being analyzed, there is no 

action whose input parameters or pre-conditions depend from the 

output parameters or post-conditions of the action in the current 

step. This analysis is done in order to optimize the plans produced 

by the PDDL4J planner (i.e. maximize the parallelism) in the final 

control flow of the business process (i.e. the produced Workflow 

instance for the Plan object). 

The current implementation of the tool has been equipped with 

two main serializers: a WS-BPEL Serializer and an XPDL 

Serializer (Fig. 9). 

 
Figure 9. Plan serialization to a BP representation language  

In the next section, the WS-BPEL Serializer is presented. The 

XPDL serializer is quite similar, using the XPDL language for the 

process representation. 

3.3 WS-BPEL serializer 

A serializer for a business process representation language is 

responsible to retrieve all the information required by the 

corresponding language specification, and possibly demanded by 

the business process execution engine, to generate a compliant 

representation of the plan, executable on that engine. For example, 

the WS-BPEL representation of a process to be executed on the 

RiftSaw business process engine is composed of a .bpel file, a 

.wsdl artifacts file, a deploy .xml file and the set of imported .wsdl 

files. The first file (.bpel) contains, among other details, the WS-

BPEL language description of the business process control flow 

and data flow. The second one (.wsdl artifacts file) contains any 

WSDL information needed to expose the WS-BPEL process as a 

Web service (e.g. portType, operation, input/output messages, 

XML Schema types, partnerLinkTypes). The third one is a file 

describing how to deploy the business process on the engine by 

associating endpoints to any provided or invoked service over a 

partner link and specifying other details for the deploy process 

(e.g. if the process is active or not). Finally, the set of the .wsdl 

imported files refers to the Web service descriptions used within 

the .bpel file. 

In the following, we describe the process of generating a 

concrete WS-BPEL process definition (concrete plan), executable 

on the RiftSaw engine, from a non-empty Plan object (abstract 

plan). With these assumptions, the class diagram in Fig. 10 

contains classes for a BPELFile, a BPELDeployFile, a 

BPELArtifactsFile and a set of imported WSDL descriptions. 

These classes are the object representation of the files required for 

building a complete BPEL description. They provide methods for 

their own construction, whose invocation is coordinated by the 

BPELSerializer and, in turn, by the BPELProcessDefinition 

objects, according to a two-levels builder pattern approach. 

 
Figure 10. WS-BPEL serializer architecture 

In order to execute a plan generated by the planner engine on 

common business process execution engines, it is necessary to 

convert its meta-model representation (the Plan object) to a 

standard business process representation language (e.g. WS-

BPEL, XPDL, etc.).  

To this purpose, according to the architecture depicted in Fig. 7, 

several Plan Converters can be defined, which serialize the meta-

model Plan object to a specific language representation (Fig. 9). 

More details about Plan Converters are given in Section 3.3. 

In the design of our tool, the BPELSerializer class is in charge 

of creating the BPELProcessDefinition object (and the component 

objects) and invoking its methods in order to create a complete 

and executable specification of the BPEL process, corresponding 

to the activity plan found by the planner component. The create 

method triggers the process generation from the specified instance 

of the Plan meta-model class. The write method generates files for 

the process description, by triggering the write methods provided 

by the component objects. The main sources of information 

available to the BPELSerializer are:  

1. the Plan meta-model object and, in particular, the associated 

Workflow instance;  

2. the domain/problem OWL-S files;  

3. the WSDL service files, containing the endpoints required to 

make executable the final business process representation.  

 

The association between the plan actions, the OWL-S and 

WSDL files lies in the OWL-S grounding section. It is retrieved 

during the OWL-S parsing and is stored in the Grounding of the 

Action class in the meta-model (Fig. 7).  

WSDL files have been handled (see Fig. 10) by using the 
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EasyWSDL libraries [29], which offers support for parsing and 

generating WSDL 1.1 or WSDL 2.0 compliant service 

descriptions. Also, the EasyWSDL4BPEL library enables the 

handling of partner links BPEL extensions in service description. 

The main steps for the generation of the 

BPELProcessDefinition  are described in the following (Fig. 11). 

 
Figure 11. WS-BPEL process generation, main sequence of actions 

1. initProcessDefinition() initializes the object representing the 

concrete BPEL process. The generated WS-BPEL process is 

exposed as a WSDL service, offering one operation and one 

portType for executing the activity plan. Also the partnerLink 

and the partnerLinkType for interacting with the WS-BPEL 

process are created. 

2. initProcessInputOutput(:Problem) by using the Problem 

Meta-model instance, available input data are used to 

initialize the process input message, while requested output 

data are used to initialize the output message of the process. 

Since the WS-BPEL process is exposed as a web service, 

input and output messages for the provided operation are 

associated with simple or complex XML types specified in 

the WSDL artifacts file. The concrete structure of the types 

for the input/output messages is created later (see the 

buildInvokeActivity(…) description), when analyzing the 

concrete services to be invoked by the process using as input 

(parts of) the process input message and producing as output 

(parts of) the process output message, respectively; 

3. initControlFlow(:Plan) from the Meta-model Plan instance, 

initializes the basic control flow of the process: an initial 

receive input message activity and a final reply output 

message activity are added to the main sequence of activity 

of the process, which will contain also the whole workflow 

associated to the plan; 

4. createProcessWorkflow() adds to the control flow skeleton, 

built by the initControlFlow() method, the BPEL activities 

corresponding to the plan instance. The activities can be 

sequences and parallels (in any combination) of invocation of 

web services (BPEL <invoke> activities). Also, the 

createProcessWorkflow() method handles the construction of 

the data flow among web services. By using the binding 

component (BPELBinder), which relies on the grounding 

information extracted by the OWL-S semantic descriptions of 

the services to be invoked, partner link and partner link type 

definition is completed: the former are included in the BPEL 

file, the latter in the WSDL artifacts file. 

5. completeProcessDefinition(), completes the definition of the 

process by generating the binding information for the 

invoked and provided partner links of the process, inserting 

them into the deploy file (bpel-deploy.xml). 

 

In the following subsections, the two most relevant phases of 

the business process generation, i.e. control flow generation and 

data flow generation, are described in details. 

3.3.1 Control Flow generation 

The skeleton of the workflow structure is created by the 

initControlFlow() method and consists in a sequence of two 

activities: a receive input message activity followed by a reply 

output message activity (by assuming the process will interact 

with a requestor by at least requiring an input message and 

returning an output).  

This structure is refined in the createProcessWorkflow() step, 

by introducing the activities of the generated plan in between the 

receive/reply ones. To this end, the createPlanActivities, provided 

by the BPELFile object, is invoked. The method relies on the use 

of the browseActivity(…) method which is applied to the Workflow 

instance of the Plan object, as described in Fig. 12. 

 
Figure 12. WS-BPEL process generation, main sequence of actions 

The method analyzes the type of the Meta-model Workflow 

instance (Sequence, Parallel, Activity), containing the control flow 

definition of the business process, and builds a new sequence 

(<bpel:sequence>), parallel (<bpel:flow>) or an external Web 

service invocation (<bpel:invoke>) activity to the BPEL process 

accordingly. To this purpose, the proper methods from the 

BPELProcess class have to be invoked, depending on the type of 

the current Workflow instance. Any time a sequence or a parallel 

is added to the BPEL process (i.e.: when the workflow parameter 

is a CompositeActivity), a recursive invocation of the 

browseActivity method has to be performed over any component 

Workflow instance, in order to add to the control flow the 

activities inside the current parallel or sequence (which can be 

both CompositeActivity or Activity). This way, proper nestings of 

<bpel:sequence>s and <bpel:flow>s of basic Web service 

invocations are produced in the final BPEL process, according to 
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the control flow structure in the Workflow object of the Plan. 

The buildInvokeActivity(…) (Fig. 13) is the method used for 

adding an external web service invocation to the BPEL process. 

This method is invoked any time an atomic Activity is found in the 

Workflow. In the current implementation of the tool, only 

synchronous invocations of Web services are addressed. In the 

BPEL process, this corresponds to introduce an <invoke> activity 

with both the input and the output variables specified, if present.  

 
Figure 13. Generation of an <invoke> activity, main sequence of 

actions 

The <invoke> activity specification has to include any detail 

for the correct invocation of the Web service (binding 

information) like: partnerLink, portType, input and output 

variables for data exchanges between the process and the WS.  

As shown in Fig. 13 (retrieveWSDLDataFromOWLS-

Grounding(…)), the binding information can be retrieved from the 

WSDL-grounding information of the OWL-S description of the 

concrete action performing the activity. In the Meta-model, each 

atomic activity is linked to an action (a virtualization of the 

service to be invoked) which contains, among other information, 

the mapping between its own OWL-S semantic description and 

the WSDL description. From the OWL-S WSDL grounding, it is 

possible to retrieve the service WSDL description URI, the 

PortType, the specific operation performing the OWL-S atomic 

process. Also, the mappings between the semantic description of 

the OWL-S process input/output parameters and the WSDL 

operation input/output messages are retrieved and used for data 

flow generation (see Section 3.2.2).  

Also, by using proper naming conventions, information about 

partnerLinks and partnerLinkTypes is retrieved and included in 

the <bpel:invoke> specification or, if not already available, 

automatically generated and added to the business process 

artifacts file (updatePartnerLinkTypes(…)) and to the bpel file 

(updatePartnerLinks()). The binder will use instead the WSDL 

URI and the portType retrieved from the WSDL-grounding to get 

service endpoints, storing them, in association with the 

partnerLinks, in order to use them later during the deploy file 

generation. 

3.3.2 Data Flow generation 

 To generate an executable WS-BPEL process it is fundamental 

that a proper data flow among the services to invoke is built. This 

can be performed by taking into account the semantic data 

dependencies among the web service activities, which has driven 

the plan generation. It is worth to note that the plan, both in the 

PDDL and in the Meta-model representations, does not contain an 

explicit description of the data flow among the composing 

activities, while a WS-BPEL process requires its formal definition 

in terms of variable declarations, initializations, value transfers 

and assignments (<bpel:assign>). 

In the current implementation of the tool, we assume that each 

Web Service operation has, at most, one input message and one 

output message and that the type of the exchanged messages can 

only be a simple or complex XML Schema [30] data type. In the 

latter case, we only consider sequences of simple XML Schema 

types (string, integer, float, etc.). In the following discussion, we 

will refer to the most general case of service operations with both 

input and output messages specified and typed with a complex 

XML Schema. Also, in the grounding section of the OWL-S 

descriptions, parameters of the atomic process are considered to 

be explicitly mapped to simple typed parts of the message of the 

web service corresponding operation. This process should 

naturally take place during the semantic description of the web 

service in its OWL-S file and can rely on the use of the 

<grounding:WsdlInput(Output)MessageMap>, <grounding: 

owlsParameter> and <grounding:wsdlMessage-Part> elements 

provided by the OWL-S grounding ontology. 

When a new <bpel:invoke> is processed (browseActivity(…) in 

Fig. 13), the retrieveInMSGStructure(…) and retrieveOut-

MSGStructure(…) methods are used to retrieve the XML Schema 

structure of the input and the output variables respectively, from 

the WSDL description of the service operation to invoke. Then, a 

new couple of variables with the retrieved type structure are added 

to the WS-BPEL process as global variables (addVariable(…) 

method) and referred inside the inputVariable and outputVariable 

fields of the <bpel:invoke> specification. 

In order to properly build the data flow, the input variable of 

the invoke activity has to be initialized by using a <bpel:assign> 

activity, placed just before the <bpel:invoke>. We call this step 

prepareInvokeActivity(…) (Fig. 14).  

The input variable may in general be complex and the values of 

the composing elements can come from both the process input 

variable or the output of any previously executed activity. 

By knowing the structure of the input variable (inMsgStructure 

in Fig. 13), it is possible to retrieve, for each simple type 

parameter of the service input message, its semantic description 

(the process:parameterType, i.e. an ontological concept) by using 

the message map in the grounding section of the OWL-S service 

description. The BPELVariable class is an abstraction of the 

concept of BPEL variable and contains both the structure of the 

complex type variable (e.g. inMsgStructure) and the mapping 

between each simple field of the complex variable and the 

corresponding ontological concept (e.g. owlsWSDLInMSGMap). 

A process memory data structure (ProcessMemory in Fig. 13, 

hold by the BPELFile object) has been used to progressively store, 

for each different ontological concept discovered during the 
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generation of the <bpel:invoke> activity, the references to the 

BPEL global variable and the specific simple type field from a 

complex WSDL message containing the most updated value for 

that parameter type. This information can be used by the 

addCopyElement(…) method as the source value for a 

<bpel:copy> inside the <bpel:assign> prepare activity for the 

corresponding input variable field of the <bpel:invoke> activity, 

used as the <bpel:copy> destination.  

 
Figure 14. Generation of an <invoke> activity, details on the 

prepareInvokeActivity(…) operation 

It is important to consider that, when an ontological concept is 

encountered for the first time (no entry is defined in the 

ProcessMemory for a specific input field ontological description), 

the reference is assumed to be retrieved from the process input 

variable (the variable specified in the first <receive> activity of 

the process). Also, since the concrete structure of the business 

process input variable could still be not completely defined (in the 

bpel artifacts), the knowledge of the destination variable type (i.e. 

the input variable of the service to be invoked) can be used to 

complete this definition, updating the artifacts file. 

 After this last step, the specification of the <bpel:invoke> is 

complete and the ProcessMemory can be updated with the 

structural information coming from the output variable used for 

the external Web service invocation. This way, the updated 

memory entry can be used for any next <bpel:invoke> generation 

working on the same ontological data (process:parameterType).  

It is worth to note that the proposed approach requires a unique 

semantic characterization of each message field used by the 

services: if a service message contains multiple fields referring to 

the same conceptual data, the semantic description should 

distinguish the two fields anyway (e.g. referring to the ordering of 

the fields to distinguish them as related to two different concepts). 

This is required both to have a correct plan generation with a 

STRIPS-like planner (like Graphplan) and to correctly reconstruct 

the data flow during the WS-BPEL process generation. 

The updateProcessOutputDefinition(…) is required to complete 

the structure definition of the process output variable, used inside 

the last <bpel:reply> process activity. 

4. AN APPLICATION EXAMPLE 

To evaluate the potential of the tool, we tested automatic 

service composition on the specific application scenario 

(population alert)  introduced in Section 1. 

4.1 Domain description and problem solution 

The proposed scenario is about the handling of a 

hydrogeological disaster (e.g. extreme rain, flooding, inundations, 

etc.) that strikes a human community (city, town, rural village, 

etc…). Our tool can be used to plan emergency management flows 

of actions to be executed by a standard workflow engine. 

Disaster response management is a particularly meaningful test 

bed for the tool since action flows must be timely planned and 

executed. Such actions may be concerned with the use of specific 

resources (such as telecommunication facilities) and/or the 

coordination of static and mobile resources (volunteers, 

policemen, ambulances).  

Planning has to take in account resources capabilities, 

availability and readiness. To this end, the proposed tool is able to 

generate, automatically, quickly and almost effortlessly, all the 

planning processes needed. E.g. variations in services availability 

in the domain, changes in the state of resources, changes in the 

overall goal, can be immediately considered to get updated plans.  

The specific example is about population alert by using 

multiple communication channels (mobile networks, SMS, MMS, 

automatic calls, TV, etc.). To design a realistic scenario, we have 

derived it from the analysis of real disaster management plans 

defined by the organization and emergency procedures of the 

Italian Protezione Civile, the national body in charge of 

prevention and management of disaster events. The Protezione 

Civile adopts a specific model (“metodo Augustus”); such model 

emphasizes operational flexibility by using to the largest possible 

extent resources located close to the emergency, and involving all 

organizations (institutional or not) that can be useful in the 

specific situation.  

The assumption is that such cooperating organizations would 

have made some or all of their disaster management resources or 

capabilities available as web services. Such web services could be 

used to access resources, to get info, to alert volunteers. Each 

service would have a WSDL and an OWL-S semantic description 

of its behavior. OWL-S description refers to a general domain 

ontology that describes the emergency context. 

We considered as cooperating organizations local police, fire 

brigade, telecom companies, white pages, register offices, 

community volunteering etc. For each considered organization, we 

defined a specific OWL domain ontology to classify the concepts 

involved and their inner relationships. The whole set of domain 

services refer to several dozens of entities. Some concepts 

included in the ontology are: citizen, address, personal data, 

message, mobile or fixed-line telephone number, deliver status of 

a message, etc. The semantic OWL-S descriptions of each web 

service refer to concepts described in the defined domain 

ontology. Some examples of the domain services are: 

 register office service, to get personal data of the people that 

must be warned; 

 white pages service, to get personal data of people that could 
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be involved in the alert process;  

 SMS/MMS broadcast (telecom companies) to alert people in 

a specific neighborhood; 

 SMS/MMS send to specific people directory; 

 send phone calls, using prerecorded messages or via human 

call center (telecom companies); 

 alert local police or fire brigade, 

 

In Fig. 15, we report a representation of OWL-S ontology for 

the “Send SMS” service, which is the archetype of a service made 

available by a mobile telecom company to send SMS to a list of 

users.  

 
Figure 15. Ontological description of the service SendSMS 

OWL-S descriptions are converted into PDDL, the internal 

language used by the PDDL4J planner. In Table 2, we report a 

sample of PDDL translation, related to the Send SMS service. By 

using the backward strategy of the Graphplan algorithm, if the 

problem goal is equal to (or contains in conjunction with other 

predicates) the effects of the SendSMS service, the PDDL4J 

planner may include the above PDDL action in the plan and try to 

reach the specified precondition through a single service, or a 

service chain, beginning with the specified initial state.  

As the aim of the whole scenario is about alerting the 

population living in a specific area, the goal includes the following 

post-conditions: to get home phone numbers of all people living in 

the area and to alert them by phone calls, by SMS, using TV 

channel, etc. 

Table 2. PDDL code generated by the PDDL Domain serializer 

(:action SendSMS 

    :parameters (?userList ?message ?result)     

    :precondition (and (hasKnowledge ?userList)  

                       (hasKnowledge ?message)  

                       (isWorking OperatorANetwork)) 

    :effect       (and (hasKnowledge ?result)  

           (isDelivered ?message)) 

) 

 

The resulting plan process includes several services and three 

different parallel branches. The three branches contain the 

following actions:  

1. Alert using land line phones: 

 get the list of  home telephones in the area using a White 

Pages service; 

 give such phone numbers to a call center for automatic call 

procedure;  

 get a list of citizens without home phone; 

 send the list of citizens that were not warned (as they do 

not have home phone or because they did not answered the 

call) to local police. 

2. Broadcast an alert message using a specific service made 

available by TV corporations. 

3. Alert using SMS channel: 

 use a service made available by the birth register to get the 

names of all people living in the area; 

 get mobile numbers (MSISDN) from telecom companies; 

 send SMS to everyone. 

 

Fig. 2, which has been already discussed in Section 1, is the 

graphical representation of the solution (abstract) plan produced 

by the Graphplan component, which includes ten services 

(WPGetUsers, GetHomePhoneUsers, GetNoHomePhoneUsers, 

SendToCallCenter, WPGetUsersNames, SendToPolice, 

EmergencyTVChannel, RegisterGetUsers, GetMsisdn, SendSMS) 

to perform the activity described above.  

In Fig. 16, an excerpt of the corresponding WS-BPEL process 

(concrete plan) automatically generated by the WS-BPEL 

serializer is shown.  

<bpel:process ... name="alertingPopulationPlan" targetNamespace= 
"http://ing.unisannio.dslab.it/bpel/alertingPopulationPlan"> 

  ... 
  <bpel:partnerLinks>...</bpel:partnerLinks> 
  <bpel:variables>...</bpel:variables> 
  <bpel:sequence name="sequence"> 

    <bpel:receive name="receiveInput" partnerLink="client"  

portType="tns:alertingPopulationPlanPortType" 

operation="alertingPopulationPlanOperation" variable="input" createInstance="yes" /> 
    <bpel:flow> 
      <bpel:sequence> 
        <bpel:assign name="WPGetUsersServicePrepareActivity" validate="no">...</bpel:assign> 

        <bpel:invoke name="WPGetUsersService" partnerLink="WPGetUsersServicePL" 

portType="ns4:WPGetUsersService" 

operation="WPGetUsers" inputVariable="WPGetUsersRequestVariable" 

outputVariable="WPGetUsersResponseVariable" /> 
        <bpel:flow> 
          <bpel:sequence> 
            <bpel:assign name="GetHomePhoneUsersServicePrepareActivity" validate="no">...  

 </bpel:assign> 

            <bpel:invoke name="GetHomePhoneUsersService" partnerLink= 
"GetHomePhoneUsersServicePL" portType="ns5:GetHomePhoneUsersService"  

operation="GetHomePhoneUsers"  

inputVariable="GetHomePhoneUsersRequestVariable" 

outputVariable="GetHomePhoneUsersResponseVariable" /> 
            <bpel:assign name="SendToCallCenterServicePrepareActivity" validate="no">... 
            </bpel:assign> 

            <bpel:invoke name="SendToCallCenterService" partnerLink= 
   "SendToCallCenterServicePL" 

              portType="ns6:SendToCallCenterService" operation="SendToCallCenter" 

             inputVariable="SendToCallCenterRequestVariable" 

outputVariable="SendToCallCenterResponseVariable" /> 
          </bpel:sequence> 
          <bpel:sequence> 
            ... 

            <bpel:invoke name="GetNoHomePhoneUsersService" ... /> 
          </bpel:sequence> 
        </bpel:flow> 
        ... 

        <bpel:invoke name="WPGetUsersNamesService" .../> 
        ... 

        <bpel:invoke name="SendToPoliceService" ..."/> 
      </bpel:sequence> 
      <bpel:sequence> 
        ... 

        <bpel:invoke name="RegisterGetUsersService" ... /> 
        ... 

        <bpel:invoke name="GetMsisdnService" ... /> 
        ... 

        <bpel:invoke name="SendSMSService" ... /> 
      </bpel:sequence> 
      <bpel:sequence> 
        <bpel:assign name="EmergencyTVChannelServicePrepareActivity" validate="no">... 
        </bpel:assign> 

        <bpel:invoke name="EmergencyTVChannelService" .../> 
      </bpel:sequence> 
    </bpel:flow> 
    <bpel:assign name="replyOutputPrepareActivity" validate="no">... 
    </bpel:assign> 

    <bpel:reply name="replyOutput" partnerLink="client"  

 portType="tns:alertingPopulationPlanPortType" 

      operation="alertingPopulationPlanOperation" variable="output" /> 
  </bpel:sequence> 
</bpel:process>  

 Figure 16. An (excerpt of) automatically generated WS-BPEL process 

for the alert workflow 

The auto-generated code in Fig. 16 contains a main sequence 

composed of a receive activity, a flow, a variable assignment and 

a reply activity, coherently with the considerations about control 

and data flows generation reported in Section 3.3. The first receive 

activity (receiveInput) creates a new instance of the business 

process and stores the request message coming from the invoker 
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in the input variable, declared in the <variables> section. The 

type of the variable is specified in the .wsdl artifacts file 

associated to the bpel file, not reported due to space limitations.  

The variable is composed of the destination area and the 

message text, among other fields. 

The final reply activity (replyOutput) returns a response 

message to the invoker, whose fields (in this case just the outcome 

of the alert) are properly prepared by the assign activity preceding 

it (replyOutputPrepareActivity). The middle flow contains the 

<invoke> activities required to interact with external services, 

implementing the abstract tasks in Fig. 2. Coherently with the 

three-branches structure of the plan, the BPEL flow is composed 

of three sequences. One of them simply invokes a service for 

alerting people by a TV message (EmergencyTVChannelService). 

Another sequence contains the chain of service invocations for 

getting information about people living in the area 

(RegisterGetUsersService), retrieving their mobile numbers 

(GetMsisdnService) and sending SMS to them (SendSMSService). 

The last sequence of the flow is more complex, made up of an 

invocation for the WPGetUsersService followed by a flow 

(containing the sequence of GetHomePhoneUsersService and 

SendToCallCenterService in parallel with GetNoHomePhone-

UsersService) and a final invocation for the SendToPoliceService. 

It is worth to note that each <invoke> activity is preceded by an 

<assign> activity, aimed at preparing the input message of the 

service to invoke. 

Some limitations in the auto-generated BPEL code of Fig. 16 

derive from the assumptions described in Section 3.3. A 

synchronous request-response message exchange pattern is used 

for invoking external services from the BPEL process (each 

<invoke> has both the input and the output variables specified). 

Also, the same synchronous model applies to the interactions 

between the BPEL business process and its invokers (the process 

starts with a receive and terminates with a reply activity). 

Correlation sets are not addressed in the current implementation of 

the tool and the generated flow is related to a normal execution 

flow. Finally, absence of structural mismatches among services 

with the same semantic input/output characterization is assumed, 

when generating the code by exploiting the binding information in 

the OWL-S groundings. These limitations are intended to be 

overcome as future work, for example by means of mediation 

services (for structural mismatches) and callback mechanisms (for 

also supporting asynchronous service interactions). 

4.2 Performance analysis 

Execution times for solving the previously described 

“population alert” composition problem are reported in Fig. 17. It 

is worth to note that performance is not a critical aspect in this 

paper, since our focus is mainly on the problems related to 

automating the generation of an executable service composition 

from a set of semantic service descriptions. Architectural issues 

and flexibility of the proposed solution have been considered as 

the main drivers for tool implementation instead of performance 

or other non-functional criteria. Also, the tool described in this 

paper is still a prototypal implementation, which has been useful 

to demonstrate feasibility and utility of the proposed approach. 

Nevertheless, the performance measures acquired in our analysis 

have confirmed the potential of the tool, which can be effectively 

and efficiently used to support designers in service composition 

and to implement adaptive replanning, especially when the service 

domain is not particularly large. 

The “population alert” problem has been solved in ten test 

cases, each characterized by a different size of the service domain, 

i.e. a different number of OWL-S semantic descriptions available 

for solving the problem (from 10 to 100 descriptions, by tens). For 

each of the test cases considered, the ten services for composing a 

possible solution to the problem (see Section 4.1 and Fig. 2) were 

included in the domain and our tool was always able to find the 

correct composite solution. Also, the BPEL generator was able to 

retrieve a complete WS-BPEL process (.bpel file together with the 

other files required to deploy it), which was correctly executed on 

the RiftSaw workflow engine. 

Total execution time is the sum of four main contributions: (1) 

domain conversion time, (2) problem conversion time, (3) 

planning time and (4) WS-BPEL generation time. Domain 

conversion time represents the time needed to access, parse and 

convert to PDDL each semantic service description, referred by a 

URI from the set of the OWL-S files constituting the planning 

domain; problem conversion time is the time required to access, 

parse and convert to PDDL the OWL-S description of the problem 

to solve; planning time is the time required for Graphplan to find a 

solution to the PDDL problem in the PDDL domain; WS-BPEL 

time is the time required to produce the set of files making up a 

complete and executable BPEL process from the abstract plan and 

the WSDL files referred in the OWL-S grounding section, by 

using the BPEL serializer. 

The four time contributions have been measured by using 

system time, with nanosecond resolution. The machine used for 

executing the test cases was an Intel Core 2 Duo CPU, with 3 GB 

RAM, running a Linux Debian distribution. Semantic descriptions 

and WSDL files were deployed locally to the machine on an 

Apache server.  

 

The total execution time and the four contributions that 

compose it are reported, on a log scale, in Fig. 17(a). The points in 

the figure are the median values obtained after 100 iterations for 

each test case. Also, 10 initial iterations per test were executed, 

whose times have not been accounted in order to evaluate tool 

performance during a steady-phase. 

This way, the influence over measured times of dynamic class 

loading, Java Just-In-Time (re-)compilations and other cold-start 

overheads from the Java Virtual Machine has been reduced. For 

each point in Fig. 17, observed minimum and maximum values 

are depicted as error bars around the median value. 

As expected, the predominant contribution to the total 

execution time is domain conversion time, since it includes the 

access to a set of semantic descriptions and ontologies via an 

HTTP server (local to the testing machine) and their parsing by 

means of the OWL-S API (v. 2.0). 

In relation to problem conversion time and BPEL generation 

time, we have observed an approximately constant time, since, in 

the case of OWL-S problem conversion, one description has to be 

converted into PDDL, while, in the BPEL case, the found solution 

plan to convert to BPEL is the same for all the test cases.  

Finally, as concerning planning time, Graphplan takes an 

approximately exponential trend with respect to the number of 

domain services, as shown in Fig. 17(b). However, on 

small/medium-size domains, Graphplan exhibits very low time 

overhead to compute solutions, even lower than 100 ms, due to its 

efficiency and the fact it works on memory structures only.
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Figure 17. Time analysis for the population alert problem 

5. CONCLUSION AND FUTURE WORK 

This paper proposes a tool for automatic composition of OWL-

S semantically annotated web services. Executable compositions 

are automatically generated by the tool in either WS-BPEL or 

XPDL languages, referencing concrete WSDL services retrieved 

from the OWL-S groundings. 

OWL-S descriptions of both services and problem are analyzed, 

converted into PDDL and fed as input to the Graphplan planner 

PDDL4J. Solution plans are translated into WS-BPEL or XPDL 

and can be executed by any common business process execution 

engine (like RiftSaw). An application scenario about the partial 

handling of hydrogeological disasters has been defined and used 

for testing the potential of the presented tool. Performance 

analysis has confirmed the efficiency of the tool, showing 

execution times in the order of few seconds, in the case of 

small/medium-size domains. 

Instead of optimizing the tool for planning complete 

workflows, we have chosen to take advantage of it for re-planning 

(parts of) already defined (autonomic) workflows, when some 

activities of the original plan are not available and equivalent sub-

processes are required to replace them. 

Despite of its robustness and usefulness, the tool is still 

prototypal and further improvements are possible. Among these, 

current domain services are provided as input by means of a set of 

known OWL-S descriptions, instead we have planned to introduce 

more flexibility by integrating the tool with a registry. The registry 

should be able to automatically retrieve a set of candidate domain 

services matching the ontology concepts referred within the 

OWL-S problem specification. The registry can also be used for 

retrieving groundings of semantic services to concrete services to 

be referenced in XPDL or WS-BPEL descriptions. 

We also aim at improving the data and control flow generation, 

by introducing support for finer-grained synchronization 

mechanisms, like WS-BPEL <link>, <source> and <target> in 

<flow> activities. However, new semantic constructs to 

semantically specify such synchronization requirements in the 

OWL-S descriptions need to be investigated. 

Moreover, during XPDL or WS-BPEL generation, concrete 

services may ground same ontological concepts to different 

concrete data types, generating data mismatches when they are 

included within the same solution plan and present data 

dependencies over the differently grounded concepts. A possible 

solution consists of providing a set of Web service data adapters to 

the composer, to perform data conversions between different 

representations: they can be automatically selected and interposed 

between the mismatching services. Finally, when no semantically 

exact solution is available in the service domain, semantically 

relaxed plans for partial goal satisfaction could be proposed and 

ranked. 
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