
Efficient Cooperative Discovery of Service Compositions in
Unstructured P2P Networks

Angelo Furno, Eugenio Zimeo
University of Sannio

Department of Engineering
82100, Benevento - Italy

{angelo.furno, eugenio.zimeo}@unisannio.it

Abstract—In this paper, we propose an efficient technique
for improving the performance of automatic and cooperative
compositions in P2P unstructured networks during service
discovery. Since the adoption of flooding to exchange queries
and partial solutions among the peers of unstructured networks
generates a huge amount of messages, the technique exploits a
probabilistic forwarding algorithm that uses different sources
of knowledge, such as network density and service grouping,
to reduce the amount of messages exchanged. The technique,
analyzed in several network configurations by using a simulator
to observe resolution time, recall and message overhead, has
shown good performances especially in dense and large-scale
service networks.

Keywords-Service Discovery; Semantic Overlay Networks;
Service Composition; Semantic Web Services; Peer-to-Peer
Computing.

I. INTRODUCTION

Service discovery enables consumers to find, in a growing
space of available services, the desired ones. It is highly
likely that, as the number of services to handle grows, more
scalable architectures than centralized ones will be needed
to implement service registries and their discovery capabil-
ities. One solution could be the adoption of decentralized
approaches based on a hierarchical architecture similar to
the one adopted by the Domain Name System (DNS).

Since services can be linked together to create solutions
for complex needs, service discovery becomes a very com-
plex process if compared with DNS resolution queries: when
the desired services are not available in isolation, solutions
can still be found by combining multiple services to form
compositions. This way, discovery can exhibit a higher level
of recall (i.e. the number of solutions found with respect
to the number of solutions actually present in the network)
compared to the well-known discovery of atomic services.

Peer to peer (P2P) architectural models are the best
candidates to implement future-generation service registries
and discovery mechanisms. These models, in fact, ensure
high functional and non-functional scalability: (1) by using
a P2P registry on a large-scale network, like the Internet, it
is possible to access to a very large distributed repository
of services, belonging to different organizations; (2) large

repositories can be explored through several discovery pro-
cesses running in parallel over the network peers. Moreover,
P2P service registries enable a new form of collaboration
where the roles of consumers and providers can be used
interchangeably to cooperatively create service compositions
that satisfy consumers’ queries.

Figure 1. Collaborative composition process for the example scenario

As an example (see Fig. 1), a health maintenance orga-
nization could need to inform people suffering from some
illness or at-risk patients to go to a hospital for a check-up
within a specified date. The check-up notification has to be
delivered to people living in a specific geographical area,
within the range of the health organization, and with some
specific age requirement: e.g. alerting people living within
a range of 5 kilometers, older than 40 years or suffering
from heart related illnesses, to contact the nearest hospital
and make an appointment for a cardiovascular check-up.

Fig. 1 shows a P2P service network, including peers with
useful services for solving the complex goal (e.g. e-mail
service provider, etc.), non-relevant peers (P1, P2, . . .) and
the communication links (dashed lines). Also, by means of
numbered labels, a few stages related to the execution of a
possible P2P collaborative composition process are shown.
The gear symbols are used to point out the peers actually
involved in the stages and collaborating to find composite
solutions. Fig. 2 presents the resulting composite service.

In this paper, by exploiting our previous experience on
service composition [1]–[3], we propose an efficient tech-
nique for service composition in unstructured P2P service
networks that is able to take into account several informa-

Figure 2. The resulting composite service and its distributed execution

tion about the networks to strongly reduce the number of
messages exchanged, if compared with optimized flooding.

Comparison with other techniques is only possible from a
conceptual point of view, since very few approaches address
service composition over P2P unstructured networks and, in
most of the cases, the code is not publicly available.

In our model, any peer of a service network can pub-
lish semantically described services in a local registry and
perform local or distributed discovery of both atomic and
composite services, whose parts could be allocated to any
of the peers’ registry. The network dynamically evolves by
changing its virtual topology according to the links among
the services participating to compositions. This knowledge,
together with information about the connectivity graph (e.g.
network density), drives query propagation in a more and
more precise and dynamic way, as long as the network
evolves during its use. This way, a service network can
change from the initial completely unstructured organization
to a semi-structured organization in the steady state phase.

The remaining part of the paper is organized as follows.
Section II presents the main research efforts related to this
work; Section III introduces the concept of distributed and
cooperative composition and the algorithms used for P2P
discovery and composition; Section IV presents the solution
used to create a self-evolving semantic service network;
Section V describes the probabilistic strategy adopted for
avoiding flooding in P2P unstructured networks when for-
warding service requests; in Section VI, simulations and
results are discussed; finally, Section VII concludes the paper
and highlights future work.

II. RELATED WORK

Service discovery often relies on the use of centralized
registries, discovery engines or brokers. To improve scal-
ability, dynamicity and robustness, in recent years, some
researchers [4]–[6] have exploited DHT-based networks (e.g.
Chord [7]). They are relatively simple to handle during
discovery but present some drawbacks: (a) high churn over-
head, especially in networks where peers and services appear
and disappear frequently (e.g. Chord churn complexity is
O(log2(N)) [7]); (b) services are strongly tied to provider
peers; (c) hash functions of DHT-based networks make it
easy ID-based exact matching between queries and contents,

but semantic matching needs complex hash functions.
Consequently, unstructured P2P networks are acquiring

growing consensus [1], [2], [8]–[10] for supporting semantic
service discovery, due to their flexibility, fault tolerance and
semantic matching capabilities: any peer can publish its
services in a local repository and semantic queries of the
desired service may be effectively routed towards the right
registry. However, very few works address the problem of
efficient service composition in unstructured P2P networks,
since most proposed solutions for both service discovery
and composition are based on flooding (e.g. Gnutella [11]),
which generates an important message overhead, causing
high routing costs and low scalability [12].

Semantic overlays have been proposed in [1], [2] to
improve efficiency of P2P discovery of service compositions.
The authors foster the creation of groups of peers, hosting
the services previously used to create compositions. The
groups are managed by superpeers, who are in charge of
addressing the service requests to the groups that host com-
positions, so increasing the probability of finding the desired
service in a shorter time. Service composition is performed
by exploiting traditional approaches typically applied to cen-
tralized repositories [13]: they adopt AI planning techniques,
and semantics to improve automation capabilities.

An approach on semantic P2P overlay networks with
superpeers is also presented in [9]. However, their JXTA [14]
based discovery framework performs only simple service
discovery, with no possibility to retrieve composite solutions.
Also, query propagation is performed by means of simple
flooding inside the groups managed by superpeers.

In [10], the authors propose to use a caching mechanism to
increase efficiency in solving service queries through service
composition. The approach has some similarities with our
solution, but differently, when no entry is present in the
composition cache, the resolution strategy still relies on
flooding, generating a relevant message overhead. Also, no
strategy for propagating service requests towards the most
promising directions (semantic routing) is provided to lower
resolution time, as allowed in our approach by exploiting
multiple semantic overlays managed by superpeers.

III. SERVICE DISCOVERY AND COOPERATIVE
COMPOSITION WORK

In the following, we refer to abstract services and goals:
they are both semantically described, through the use of
OWL ontologies and OWL-S descriptions. A service, and
similarly a service goal, is described as an OWL-S profile,
whose precondition and effect elements represent pre- and
post- conditions of the service and are described by using
SWRL expressions referring to OWL ontologies. More de-
tails on these aspects can be found in our previous work [3],
where a centralized approach for service composition and an
associated tool for automatically generating executable WS-
BPEL processes are described.

Since in this paper we are mainly interested in the
distributed aspects of composition, pre- and post-conditions
will be represented, for the sake of simplicity, with tokens.
Semantics-based representation of pre- and post-conditions
could further support query resolution by improving recall
and/or precision during search.

Each peer of the network is involved in the concurrent
execution of four main protocols: (1) discovery of services
satisfying user goals, allowing for collaborative and dis-
tributed composition; (2) query forwarding for efficiently
propagating service requests in the network; (3) network
reorganization for building semantic service overlays from
already solved service requests; (4) gossiping, as part of the
forwarding strategy, for disseminating knowledge about the
network structure among the peers. The discovery protocol is
described in this section, network reorganization in Section
IV, forwarding and gossiping in Section V.

The protocol executed by each peer to perform P2P
service discovery or composition is organized in two threads
and described in pseudo-code in Listings 1 and 2. The spawn
keyword indicates asynchronous invocation of the associated
procedure (i.e. a new thread is spawned for the procedure).
1 discoveryProtocol(Goal g) [active thread]
2 Query q := createQuery(g);
3 spawn forward(q);
4 spawn solve(q);
5 spawn reorganizeNetwork(g);

Listing 1. Discovery Protocol, active thread

1 discoveryProtocol() [passive thread]
2 do forever
3 receive(q, sols);
4 if sols is nil /*case 1: handle new goal request */
5 if q.TTL <= 0 || q has already been solved
6 continue;
7 else
8 spawn forward(q);
9 spawn solve(q);

10 else //case 2: handle solutions for query q
11 if q.refQuery is not nil /*case 2a: merge partial

solutions*/
12 localPartSols := partialSolsTable[q.refQuery];
13 newSols := merge(q.refQuery, sols, localPartSols);
14 reply (q.refQuery, newSols) to q.refQuery.source;
15 else //case 2b: notify complete solutions
16 add sols to completeSolsTable[q];
17 locally notify sols for q.goal;

Listing 2. Discovery Protocol, passive thread

The active thread generates a new query object from the
user specified goal (createQuery, line 2), by setting informa-
tion like the query’s Time To Live (TTL), a query identifier,
the query goal and the source peer identifier. The query
is then forwarded to other peers according to the forward

procedure (line 3). Since we adopt a top-down approach to
present the algorithms, the reorganizeNetwork and forward

procedures, implementing our self-evolving overlay network
strategy and probabilistic forwarding technique, will be
described in Sections IV and V, respectively. After the query
has been forwarded, the solving procedure (solve algorithm
in Listing 3) is started for the newly generated query.

The procedure localSearch in line 2 of Listing 3, is based
on a semantic matching process (not shown in the paper
because outside its scope) and explores the local peer repos-
itory in order to find complete solutions to the requested

goal. To this end a semantic matching step between the goal
and the locally available service descriptions is performed.
The matchmaking algorithms, used in the search phase, are
extensively described in our previous works [15], [16], but
other algorithms or tools could be used [17], [18].

When no complete solution is available in the peer repos-
itory, partial solutions to the goal query are searched, by us-
ing a backward strategy (line 6). The localBackwardSearch

is essentially a variant of the localSearch one: a partial
solution to the submitted goal g matches its post-conditions,
while having different pre-conditions. The same matchmak-
ing algorithms are used to decide the presence of a match
on post-conditions.
1 solve(Query q)
2 localSols := localSearch(q, localRepo);
3 if localSols is not empty
4 reply(q, localSols) to q.source;
5 else
6 localPartialSols := localBackwardSearch(q, localRepo);
7 add localPartialSols to partialSolsTable[q];
8 foreach partialSol in localPartialSols
9 partialGoalQuery:= createGapQuery(q.goal, partialSol);

10 spawn forward(partialGoalQuery);
11 spawn solve(partialGoalQuery);

Listing 3. Query solving procedure

Whenever a partial solution is found, a new query is
created for the goal ranging from the pre-conditions in
the original goal to the pre-conditions of the found partial
solution (line 9). The newly generated query is forwarded
to other peers according to the forward procedure (line 10).
Also, the solve procedure is called recursively (line 11) to
find other complete or partial solutions to the new query on
the peer that generated it. Partial solutions, when received,
have to be merged to previously found local solutions related
to the same partial query (passive thread, lines 11÷14) and
complete solutions have to be sent back to the query source
peer. The submitter receives the service composition (i.e. the
list of the composing services and the peers hosting them).

The reorganizeNetwork procedure is spawned (line 5) in
the active thread to start the network reorganization phase. It
is a concurrent process that waits for query solutions coming
from the network before starting the network reorganization
according to the inferred knowledge.

The passive thread in Listing 2 is meant to awake a peer
when: (1) a new query has to be solved (lines 5÷9); (2) new
solutions are available (lines 11÷17).

In the first case (1), the peer first starts the forward proce-
dure (line 8) to effectively and efficiently spread the query
through the network, and then starts the solve procedure
(line 9) in order to find solutions.

In the second case (2), the peer verifies whether the
received solutions refer to a partial or a complete goal and
decides the next operations to perform. If the query refers to
a partial goal (lines 11÷14), partial solutions to the referred
query are retrieved from the partialSolsTable and merged
(merge procedure, line 13) with the newly received solutions
to create a new composite solution, which will be a complete
solution for the referred query. The new merged solutions are

sent back to the peer who has generated the referred query
(line 14). Instead, if the solved query refers to a complete
goal (i.e. referred query is nil, line 15), the peer has just
received complete solutions to a local generated goal request
and solutions are stored locally (completeSolsTable), to be
used in the network reorganization phase (Section IV), and
notified to the requesting user (line 17).

IV. SELF-EVOLVING SEMANTIC OVERLAYS

To model the collaborative backward strategy above,
we adopted a P2P superpeer architecture, a special kind
of unstructured P2P networks. Some special peers, called
superpeers, act like proxies, forwarding queries to groups of
managed simple peers.

Each simple node of the network runs the described
protocols, enabling publishing (which presumes a local
repository), discovery and composition mechanisms on it.
Superpeers are needed when new acquired service knowl-
edge to manage exists: solutions are found that can be useful
for successive queries. Each cooperative group is handled by
a superpeer, controlling the cooperating peers, by managing
links to them, storing a description of the group and properly
forwarding queries to the peers in the group when needed.

A node is a computer, a virtual machine and any other
software/hardware device that is able to execute the discov-
ery protocol described in Listings 1 and 2. On the same node,
there can be, in general, multiple peer processes, running
the proposed search and self-evolution algorithms. Some of
them may act as superpeers. At the node abstraction layer,
we assume the existence of a connectivity graph, represent-
ing the links initially known to the nodes of the network.
Graph links can define any complex network topology (a
mesh, a ring, a tree, etc.) and can be associated to physical
proximity or low latency paths among the network nodes.

The reorganizeNetwork procedure, introduced in Section
III, is described in Listing 4.
1 reorganizeNetwork(Query q)
2 wait(networkReorganizationTimeout);
3 solutions := completeSolsTable[q]
4 peersSet := retrieveParticipants(solutions);
5 if peersSet.size <= 1
6 return;
7 foundGroups := new Set<Group>();
8 foreach peer in peersSet
9 peerGroups := retrieveGroups(peer, q.goal);

10 if peerGroups is not empty
11 remove peer from peersSet;
12 add peerGroups to foundGroups;
13 intersections := retrieveIntersections(foundGroups);
14 reorganizeGroups(foundGroups, intersections);
15 if peersSet is not empty
16 createNewGroup(peersSet, solutions);

Listing 4. Network Reorganization Protocol

Starting from the initial connectivity graph, when a com-
posite solution is identified, the network implicitly aggre-
gates the participating peers to form a new group. A timeout
mechanism is used for stopping the reception of solutions for
the locally generated query and starting network reorganiza-
tion. The process is executed continually in the network, giv-
ing rise to several virtual layers of links (service composition

overlay network), placed over the connectivity graph and
managed at the superpeer level. Superpeers maintain both
pointers (peer ID) to the peers making up the new composite
solution and a semantic characterization of the solved goal.
Simple peers maintain pointers to their superpeers and a
semantic characterization of the groups they belong to.
The links of the semantic overlay networks, stored at the
superpeer level, make it possible the routing of new queries
along the most convenient direction for resolution. The self-
evolution algorithm is started and orchestrated by the peer
who submitted a service request (line 5 in Listing 1).

Also, in order to maximize reuse of previously acquired
knowledge, we reorganize overlapping groups by finding
their intersections and storing them into a proper collection
of tree-structured data (the intersections variable in line 13).
To this purpose the retrieveIntersections procedure is
used. Any intersection found is turned into a new group with
its semantic description and superpeer. The superpeer of any
intersection group has to appear as member in any other
group owning that intersection. This way, a hierarchical
structure is given to the overlay.

When new groups are created or existing ones are modi-
fied, new found composite solutions are transferred from the
submitter to the group superpeer, which publishes them on
its local repository. The repository will be explored by the
superpeer when new queries are received, allowing the re-
use of already performed service compositions. This way, it
is possible to more quickly solve queries which are semanti-
cally similar or identical to previously solved ones, without
generating another distributed backward search (even if
propagation in the group would be performed efficiently by
exploiting group semantic links).

V. QUERY SELECTIVE FORWARDING

In a P2P network, avoiding flooding is essential to reduce
the number of messages exchanged for solving discovery
query and to ensure, at the same time, lower composition
times without significantly affecting the ability of finding all
the existing solutions in the network. To this end, we propose
a novel probabilistic forwarding algorithm that exploits
knowledge about both the connectivity network (such as
network density) and the virtual overlay networks, created
to host already found compositions and reduce the number
of messages exchanged in the network.
1 forward(Query q)
2 if isSuperpeer(this)
3 foreach group[matching q.goal] in this.groups
4 reply(q, nil) to group.superpeer;
5 else
6 propagateQueryToNeighbors(q);
7 if (isNeighbor(q.sender) and not isSuperpeer(q.sender)) or

query submitted locally
8 foreach group[matching q.goal] in this.groups
9 reply(q, nil) to group.superpeer;

Listing 5. Query forwarding procedure

The overall forwarding algorithm (Listing 5) distin-
guishes two cases: (1) Superpeers forward queries to the

other known superpeers, managing semantically goal-related
groups (lines 3, 4). This is done to facilitate query propa-
gation to groups having more useful information for query
resolution; when such groups do not exist, superpeer propa-
gation can be completed by forwarding the query to neigh-
bors over the connectivity graph, during the execution of
the superpeerSolve procedure; (2) Simple peers forward
queries to their neighbor nodes on the connectivity graph
(line 6) and to the superpeers of the groups they belong to
(line 9). Specifically, only those groups semantically related
to the goal in the query are considered, in the case the
request has been originated locally to the peer or has been
received from a neighbor simple peer (lines 7, 8).

The algorithms superpeerSolve (Subsection V-A) and
propagateQueryToNeighbors (Subsection V-B) complete
the global forwarding procedure.

A. Superpeer Propagation Algorithm

The superpeerSolve algorithm is the search procedure
executed by superpeers, in place of the solve one in Listing
3, executed by simple peers. The only differences with solve

are: (1) searching is performed over the group solutions
stored in the superpeer repository (i.e., previously found
composite solutions); (2) the algorithm includes propagation
of the received query to the superpeer node’s neighbors,
when no complete solution is found.

As regarding point (2), the propagation over the connec-
tivity graph is not performed immediately upon receiving
the query, as in the case of simple peers, but only when
it has been verified that there is no complete solution
on the superpeer. This avoids message overhead when a
complete solution can be directly found on the superpeer,
by exploiting the larger knowledge available at this level.
This consideration has to be related to the main forwarding
algorithm in Listing 5, where the else body (lines 6÷9,
related to the simple peer case) contains the propagation to
neighbors at line 6, while the if body (lines 3, 4 for the
superpeer case) contains none.

B. Propagation over the Connectivity Graph

The algorithm propagateQueryToNeighbors implements
the forwarding mechanism adopted by every peer on the
nodes of the connectivity graph and represents the core of
the probabilistic forwarding mechanism.

In a traditional flooding approach, every message received
from a peer is forwarded to all the neighbors of the peer.
Even if most of the works addressing service composition
in unstructured P2P networks uses flooding for propagating
messages, we also consider an optimized variant of this basic
flooding approach, that we call optimized flooding in the rest
of the paper, as a technique to compare our probabilistic
approach. With optimized flooding, the query message to
propagate maintains the list of local neighbors the query has
already been forwarded to by the node from which the query

has been received. When another node has to decide about
propagation, the list is considered to exclude local neighbors
that already received the query from the sender. The list of
neighbors in the propagated query is then updated with the
new information about the actual new forwarded nodes.

Our probabilistic forwarding algorithm is based on the
introduction of a propagation threshold, τ in the following,
limiting the number of neighbors to which the query should
be forwarded (forwarded peers). The propagation threshold
represents the fraction of neighbors to select for propagation
and is dynamically computed anytime the algorithm is exe-
cuted, using network information. The number of forwarded
peers (f) is computed according to the formula:

f = dτ · λe, where: λ =

{
l − 1, if sender is a neighbor
l, otherwise ,

being l the neighborhood size for the current node. f
represents the maximum number of neighbors to contact
for query propagation. To select up to f neighbors to
forward the query to, the propagation algorithm takes into
account the information related to the previous forwarded
nodes, like in the optimized flooding approach, coded in
the received query message by the sender. By excluding
the possible common neighbors that has already received
the query from the sender, up to f neighbors are randomly
selected among the whole neighborhood and stored as the
new list of propagated nodes in the query message. Finally
the message is forwarded to them.

We have identified three different kinds of network infor-
mation, which can be computed at any time by a peer for the
dynamic evaluation of τ : (1) Availability of relevant service
composition overlays; (2) Global density of the network; (3)
Number of peers (hops) crossed by the goal query from the
source to the current peer. The information above makes
it possible to distinguish three contributions to threshold τ ,
which we denote as τGroups, τDensity and τHops.

The value of threshold τ is evaluated as a weighted
(the weights ωGroups, ωDensity and ωHops are defined at
configuration time) and normalized (weights sum up to 1)
sum of the three contributions. Each contribution is a thresh-
old itself, is defined in the range [0, 1] and is dynamically
computed when the propagateQueryToNeighbors algorithm
is executed by a peer, using the currently available data.
Additional thresholds could be considered if some other
knowledge may be accessed in the service P2P networks
and used to improve forwarding, by means of a proper
strategy and a specific tuning process. We considered the
most relevant properties of service networks and kept low
the number of thresholds to reduce the overhead tied to the
network knowledge retrieval.

In Section VI, we discuss simulations using different
weights for the thresholds above. In the following, we
explain the semantics of the thresholds and how they are
computed by the system to guide to selecting their weights.

1) Semantic Group Threshold (τGroups): τGroups is com-
puted considering the number of groups participated and/or
controlled by the forwarding peer. Each of these groups is
related to previously found service compositions and has
a semantic characterization, which makes possible to filter
the ones not relevant to the goal resolution. The number of
relevant and reachable groups is denoted as η and represents
the independent variable of the τGroups evaluating function.

The rationale behind the evaluation of this threshold is
simple: the more semantic links are available for query
forwarding, the less it is needed to propagate to neighbors on
the connectivity graph. Propagation can be mainly handled
through superpeers’ connectivity information. Therefore, we
identified the following requirements for the evaluating
function: if there is no useful group (η = 0), τGroups

has to be 1, since the query forwarding cannot rely on
the semantic forwarding; τGroups has to be decreasing with
respect to η; variable η has theoretically no upper bound,
hence τGroups has to asymptotically decrease to 0 when η
increases in the range [0,+∞[. By taking into account these
requirements, we have considered the equilateral hyperbola
function reported below, which has been tested, in terms of
performance indexes, in the simulations of Section VI:

τGroups = 1/(1 + η).

2) Density Threshold (τDensity): τDensity is computed
by means of a gossip protocol, continuously performed
by every node of the P2P network in parallel with the
composition/discovery protocol (Listings 1 and 2). An anti-
entropy protocol, based on the push-pull strategy described
in [19], has been defined in order to make any node compute
the average number of neighbors on the connectivity graph:
(1) each peer p stores a local approximation of the average
number of neighbors in the network as its statep. The
initial value is chosen as the number of node’s neighbors
on the connectivity graph; (2) each peer p performs a
random selection of the neighbor q to gossip with from
its neighborhood; (3) when receiving the gossip information
statep from neighbor p, peer q updates its state to the value:
(statep + stateq)/2. This state update has been proved to
converge to the global state average in [19]. The period
for starting a new gossip iteration has to be quite low with
respect to the average goal query period, in order to make
gossip quickly converge to reliable density information when
the discovery/composition process is inactive.

The active thread of the gossip protocol has been designed
to work during the inactive phases of our system, i.e.
when there are no active goal queries on the peer running
over the network nodes, in order not to introduce message
overhead during the stages of P2P discovery. However,
since the gossip message elaboration overhead is typically
low, network density information are also included by each
peer within the messages regularly exchanged during the
query forwarding messages. This way, it is still possible to

update the node’s local density information, even when the
composition/discovery protocol is active, without generating
specific gossip requests.

Finally, in order to know how much the current state is
a reliable representation of the global network density, we
incrementally compute, on each node, the standard deviation
(σ) of the local density information (δ) at any state update.
At the beginning of the gossip protocol, we assume an
infinite standard deviation. Hence, we introduce a parameter
(δ̄), defined as:

δ̄ =

{
δ − σ, if σ < δ
1, otherwise ,

which we use to compute the τDensity threshold. The
rationale is that the denser is the network (i.e. higher δ̄), the
less propagations will be necessary for the query to reach
the various peers in the network, because of the presence
of many alternative paths. To allow a finer grained control
of the density threshold, we have introduced the following
parameterization of τDensity:

τDensity = K/(δ̄ +K − 1),

with K ≥ 1. By increasing the K coefficient, it is possible
to use a smoother hyperbole in order to softly reduce the
number of messages as δ̄ increases. This can be useful to
manage message reduction when the network is sparse and
a proper number of messages has to be injected to increase
the probability of finding solutions.

3) Traversed Hops Threshold (τHops): τHops is computed
by considering the number of hops that a query has already
crossed. The idea is that the more hops the query has already
crossed the less it is likely a new forward will help in solving
it. Hence, we have introduced the independent variable ρ,
representing the number of traversed hops. This variable is
set to 1 when the query for a goal is first created on a peer,
its value is transported by the query itself and is increased by
one anytime the query is forwarded from a peer to another
one. By using ρ, we have defined the following evaluating
function for τHops:

τHops = 1/ρ.

VI. EVALUATION

To evaluate the techniques and the algorithms discussed
in the previous chapters, we decided to exploit a simulator
for implementing the P2P service network and hosting the
algorithms. PeerSim [20] is a Java open-source P2P net-
work simulator, including an event-based engine, completely
driven by events and node messages, offering concurrency
simulation and a simulated transport layer. Several configu-
rations have been considered, in order to evaluate functional
correctness and performances of the proposed algorithms.
We have focused our attention on three performance indexes:
• Recall: system’s ability to find simple or complex solu-

tions (among the existing ones) to a goal request, when

services published on peers’ repositories make it possible
to satisfy it. In the following experiments, the recall
information is computed as the ratio of the number of
solutions found by our system during the simulation cycles
and the number of existing ones. In most of the following
simulations, only one solution is present in the network at
each simulation cycle. Therefore, recall is evaluated with
respect to the number of simulation cycles;

• Message overhead: the number of request, response and
gossip messages exchanged among the peers in the net-
work to find solutions to a goal request. Messages are
counted considering the whole network until the first
solution to the query under test is received;

• Resolution time: the time required for the submitter to
receive the first solution to the requested goal.
The P2P network is initialized with a specific number

of nodes and a connectivity graph. At the beginning of
any simulation, each node of the simulated network hosts
one single peer process, able to publish, discover and
compose services; no overlay network is available. Service
descriptions are published on each peer in the simulation
initialization phase or cyclically when we want to evaluate
system behavior with respect to different service allocations
on the peers, by shuffling service descriptions on available
peers. To make simulations consistent with realistic usage
scenarios, we introduced three kinds of delay:

• Semantic elaboration delay: models the delay introduced
by a realistic semantic matching between the query re-
ceived by the peer and a service description available on
that peer. For backward partial resolution, we consider half
this delay, since only post-conditions are compared;

• Transmission delay (td): models the delay for placing
a message from the application layer (peer sending a
message) on the network abstraction layer (the node),
when no multicast communication is available. If a peer
on node A has to send at time t0 a message to peers on
nodes B, C and D, the message for B will be sent at t0,
for C at time t0 + td and for D at time t0 + 2 · td;

• Network latency: is the latency delay for the simulated
transport protocol, used for message exchanges among
the network nodes. It represents the time required for a
message sent from a node to reach the destination one.

We simulated our P2P network using the following values
for the parameters above:

• Semantic elaboration delay: 400ms for local complete
solution; 200 ms for partial backward solution. These
delays have been computed by executing a number of
queries towards some of the matchmakers used in the S3
contest, the annual contest on Semantic Service Selection
[17]. In particular, we focused on ISeM [18], since it offers
matching capabilities based on IOPE descriptions;

• Transmission delay: 1ms;
• Network latency: uniform random variable in the range

[10ms, 130ms]. This range refers to latency measured on
the Internet when sending small/medium messages to very
distant destinations (130ms) or very close (10ms) ones.
The technique has been evaluated with different sizes of

the network (and of published services). For the connectivity
graph, we used several topologies, like a star and random
meshes, focusing our attention on a dense topology of the
network (1) and a sparse one (2). In the first case, we used a
random mesh where each node has at least networksize/10
neighbors (the network become denser as the size increases);
in the second one, we used a random mesh with a fixed
average number of neighbors (between 2 and 4 neighbors).

As a reference for the reader, we list here the configura-
tions adopted to set weights and coefficients of the proba-
bilistic forwarding algorithm exploited in our experiments.
K is the coefficient used in the definition of the hyperbolic
function, as described in Section V-B2. Other configurations
have been tested in our experiments (e.g. weights for testing
thresholds in isolation), but, due to space limitations, only
the ones most relevant for the evaluation are reported.

Conf. 1: {ωGroups = 0.4, ωDensity = 0.3, ωHops = 0.3, K = 1}
Conf. 2: {ωGroups = 0.4, ωDensity = 0.3, ωHops = 0.3, K = 2}
Conf. 3: {ωGroups = 0.4, ωDensity = 0.5, ωHops = 0.1, K = 1}
Conf. 4: {ωGroups = 0.4, ωDensity = 0.5, ωHops = 0.1, K = 2}

A. Tested Scenario

One peer submits a query for a specific goal; each peer
hosts one service in its repository and there is only one
composite solution in the network, specifically a chain of
10 services published on different peers of the network.

This scenario has been used firstly to the purpose of
comparing P2P configurations of the service repository with
centralized and hierarchical ones, in order to evaluate the
potential benefits of the P2P approach over them (Fig. 3).

In the centralized configuration, one node contains all the
services available in the network and discovers or composes
services to satisfy requests coming from the other nodes,
acting like a public registry in the network.

In the hierarchical configuration, services are distributed
on a limited (with respect to the network size) number of
nodes (7 in our simulations); registry nodes are intercon-
nected according to a hierarchical topology and queries are
generated from one node connected as a leaf to the hierarchy.

For the P2P configuration, together with the mesh topol-
ogy (2), described before, we have also considered a star
topology of the connectivity graph, where one single node
has links to all the other nodes in the network, as in the cen-
tralized configuration, while services are distributed among
peers. The simulated delays described at the beginning of
this section have been used.

In order to perform a meaningful comparison, the same
composition algorithm has been used in each of the above
configurations (backward resolution). Also, in order to stress
benefits and costs simply coming from the use of our cooper-
ative P2P approach in composition, network reorganization

104

105

106

107

108

 10 20 40 80 160 320 640 1280 2560 5120 10240

T
im

e
[m

s]
 (

lo
g

sc
al

e)

Number of Services - Network Size (log scale)

Centralized (90th percentile)
Hierarchical (90th percentile + min-max)
P2P star and flooding (90th percentile + min-max)
P2P mesh and flooding (90th percentile + min-max)

(a) 10-service composition, resolution time (no semantic reorganization)

100

101

102

103

104

105

106

 10 20 40 80 160 320 640 1280 2560 5120 10240

N
um

be
r

of
 M

es
sa

ge
s

(lo
g

sc
al

e)

Number of Services - Network Size (log scale)

Centralized (90th percentile)
Hierarchical (90th percentile + min-max)
P2P star and flooding (90th percentile + min-max)
P2P mesh and flooding (90th percentile + min-max)

(b) 10-service composition, messages (no semantic reorganization)

Figure 3. Resolution times (left) and number of exchanged messages (right) - comparison of repository architectures

has been disabled and traditional flooding has been adopted
for query propagation instead of the probabilistic forwarding
approach described in Section V.

100 cycles of simulation have been executed. In each
cycle, the same query has been issued by one submitter
and statistical data acquired. Computer performance indexes
are presented as 90th percentiles over the different values
collected at the end of each simulation cycle, together with
min-max confidence intervals.

Fig. 3a compares the considered configurations, showing
the remarkable improvement that can be obtained, in terms
of resolution time, by increasing the degree of distribution of
the service repository: the centralized configuration presents
the highest values; an improvement can be observed when
using a hierarchical registry; P2P configurations offer the
best resolution time. It is worth to note that the mesh
topology exhibits lower values of resolution time, since there
is no bottleneck as in the case of the star configuration.
Obviously, the more distribution is introduced in the com-
position process, the higher is the number of messages to
be exchanged to find a solution (Fig. 3b).

To evaluate the impact of our probabilistic forwarding
technique, the P2P backward composition strategy has been
used in conjunction with the probabilistic forwarding algo-
rithm and network reorganization has been activated in order
to build overlay networks.

Simulations were performed again in multiple cycles, with
one peer issuing a query for the same goal at each cycle.
Every two cycles, services were shuffled on the peers. In
computing our performance indexes, we have distinguished
the average computed over data collected in odd cycles
(indicated as 1st query in the following figures) from the one
related to even cycles (2nd query). Those data are resolution
time, number of messages exchanged and the presence or
absence of a solution for the query. The 1st query (the one
related to odd cycles) has been submitted when no overlay
network has still emerged. Therefore, the only information
available to each peer, for efficiently performing query
propagation, is the one related to the connectivity graph.
If the solution has been found, a corresponding overlay
network is built at the end of the odd cycles, one superpeer

emerges and the 2nd query (which refers to the same goal
of the first one) can be solved by taking advantage of the
overlay network knowledge.

After each pair of cycles, the P2P network is brought back
to the original configuration: the overlay network is cleared,
superpeers are removed, and services are shuffled among
peers, introducing a variance element at each pair of cycles
to collect statistically more relevant data.

Together with the main query, to be solved by a 10-
services composition and issued by one of the network peers,
other nodes concurrently query the system for an unsolvable
goal, in order to produce noise. In the figures, average values
are reported together with min-max confidence intervals.

Fig. 4 is related to topology (1) and compares the case in
which the goal is solved without the overlay network (1st

query) to the one in which the overlay network, built from
the previous composition, is exploited (2nd query).

The graphs in the figures demonstrate that, in topology
(1) (≈ size/10 neighbors per node), with any of the al-
gorithm configurations considered (Alg. Conf. from 1 to
4), the service composition overlay may be effectively re-
used for solving more quickly (lower curve in Fig. 4a) an
already solved goal (higher curve in Fig. 4a). Resolution
time for the 2nd query is lowered by the presence, at the
superpeer’s repository, of the composite service solution
previously found for the 1st query. The presence of the
composition overlay network also reduces the number of
messages exchanged during the resolution of the 2nd query
(Fig. 4b), preserving high levels of recall. Fig. 4c only shows
recall for the 1st query. The 2nd one, submitted in presence
of the service composition overlay built after resolution of
the 1st query, has always been solved in our experiments
(recall is 1, relatively to the number of solutions found for
the 1st query). In Fig. 4b, recall is always equal to the
highest possible value (1) (with the exception of size 20,
where the network is quite sparse, ≈ 2 neighbors per node).

Figures 4d, 4e and 4f compare composition based on prob-
abilistic forwarding with composition based on flooding.
The graphs show the evident benefits of our probabilistic
forwarding approach with respect to flooding and optimized
flooding in relation to resolution time and number of mes-

 0

 20

 40

 60

 80

 100

 120

 10 20 40 80 160 320 640 1280

T
im

e
[s

]

Network Size (1 service per node) (log scale)

2nd query: magnification on a smaller scale
Alg. Conf. 1, 1st q.
Alg. Conf. 2, 1st q.
Alg. Conf. 3, 1st q.
Alg. Conf. 4, 1st q.
Alg. Conf. 1, 2nd q.
Alg. Conf. 2, 2nd q.
Alg. Conf. 3, 2nd q.
Alg. Conf. 4, 2nd q.

 0

 1

 2

 3

 4

 5

 6

 10 20 40 80 160 320 640 1280

(a) Average resolution time - 1st and 2nd query

100

101

102

103

104

105

106

107

 10 20 40 80 160 320 640 1280

N
um

be
r

of
 M

es
sa

ge
s

(lo
g

sc
al

e)

Network Size (1 service per node) (log scale)

Alg. Conf. 1, 1st q.
Alg. Conf. 2, 1st q.
Alg. Conf. 3, 1st q.
Alg. Conf. 4, 1st q.
Alg. Conf. 1, 2nd q.
Alg. Conf. 2, 2nd q.
Alg. Conf. 3, 2nd q.
Alg. Conf. 4, 2nd q.

(b) Average exchanged messages - 1st and 2nd query

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 40 80 160 320 640 1280

R
ec

al
l

Network Size (1 service per node) (log scale)

Recall (optimized) flooding
Alg. Conf. 1
Alg. Conf. 2
Alg. Conf. 3
Alg. Conf. 4

(c) Recall 1st query

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 40 80 160 320 640 1280

T
im

e
[s

]
Network Size (1 service per node) (log scale)

Alg. Conf. 1, 1st q.
Alg. Conf. 4, 1st q.
Simple Flooding, 1st q.
Optimized Flooding, 1st q.
Alg. Conf. 1, 2nd q.
Alg. Conf. 4, 2nd q.
Simple Flooding, 2nd q.
Optimized Flooding, 2nd q.

(d) Average resolution time - comparison with flooding and optimized flooding

100

101

102

103

104

105

106

107

 10 20 40 80 160 320 640 1280

N
um

be
r

of
 M

es
sa

ge
s

(lo
g

sc
al

e)

Network Size (1 service per node) (log scale)

magnification on linear scale

Alg. Conf. 1, 1st q.
Alg. Conf. 4, 1st q.
Simple Flooding, 1st q.
Optimized Flooding, 1st q.
Alg. Conf. 1, 2nd q.
Alg. Conf. 4, 2nd q.
Simple Flooding, 2nd q.
Optimized Flooding, 2nd q.

5.0*105
1.0*106
1.5*106
2.0*106
2.5*106
3.0*106
3.5*106

 320 640 1280

(e) Average exchanged messages - comparison with flooding and optimized flooding

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 10 20 40 80 160 320 640 1280

E
xc

h
M

sg
s

P
er

ce
nt

ag
e

D
iff

er
en

ce

Network Size (1 service per node) (log scale)

1st q., optim. flooding VS Alg. Conf. 1
1st q., optim. flooding VS Alg. Conf. 4
2nd q., optim. flooding VS Alg. Conf. 1
2nd q., optim. flooding VS Alg. Conf. 4

(f) Percentage message difference between opt. flooding and probalistic forwarding

Figure 4. Topology (1), 10-service P2P composition: performance evaluation

sages exchanged (both for the 1st and for the 2nd query).
The same network configuration has been evaluated also

in the case of topology (2), obtaining good performance
results as in the case of topology (1). The left part of Fig.
5 shows a higher and more stable recall (close to 0.9 on
large networks) when using an algorithm configuration with
a higher coefficient for the hyperbole density evaluation
function (specifically, Alg. Conf. 4 gives the best result). The
right part of the figure shows percentage message reduction
with respect to optimized flooding, when using probabilistic
forwarding configurations, in case of both absence and
presence of the service composition overlay network.

VII. CONCLUSION

We proposed a technique to improve discovery and com-
position in P2P unstructured service networks, based on a
probabilistic forwarding algorithm driven by the network
knowledge, such as network density and semantic service
grouping. The technique reduces the messages exchanged

during discovery and composition relying on two considera-
tions: if the network is dense, forwarding can be limited to a
small number of neighbors; if the network is semi-structured
in superpeers and peers, forwarding can be directed to the
superpeers that may own the desired information.

The approach has been validated by using a simulator
to observe resolution time, recall and message overhead
on small and large size P2P networks. The experimental
results show that, when using a traditional backward search
approach, both the time for service composition and the
number of messages exchanged are significantly reduced,
while keeping almost unchanged the recall, especially when
the network is dense.

We are currently working on improving the discovery and
composition process, by using also a distributed bidirectional
search. The expected benefit is twofold: first, it is possible to
have concurrent searches in the P2P service network in both
goal directions, reducing the response time when solutions
are present; second, when there are no complete solutions for

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 40 80 160 320 640 1280 2560 5120

R
ec

al
l

Network Size (1 service per node) (log scale)

Recall (optimized) flooding
Alg. Conf. 1
Alg. Conf. 2
Alg. Conf. 3
Alg. Conf. 4

(a) Recall 1st query

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 10 20 40 80 160 320 640 1280 2560 5120

E
xc

h
M

sg
s

P
er

ce
nt

ag
e

D
iff

er
en

ce

Network Size (1 service per node) (log scale)

Absolute difference of avg values1st q., optim. flooding VS Alg. Conf. 1
1st q., optim. flooding VS Alg. Conf. 4
2nd q., optim. flooding VS Alg. Conf. 1
2nd q., optim. flooding VS Alg. Conf. 4

 0

 10000

 20000

 30000

 40000

 50000

 20 40 80 160 320 640 1280 2560 5120

(b) Percentage message difference between opt. flooding and probalistic forwarding

Figure 5. Topology (2), 10-service P2P composition: performance evaluation

a goal, gaps in partial found solutions can be identified and
suggested to service providers as business opportunities.

REFERENCES

[1] E. Zimeo, A. Troisi, H. Papadakis, P. Fragopoulou,
A. Forestiero, and C. Mastroianni, “Cooperative self-
composition and discovery of grid services in P2P networks,”
Parallel Processing Letters, vol. 18, no. 03, pp. 329–346,
2008.

[2] A. Forestiero, C. Mastroianni, H. Papadakis, P. Fragopoulou,
A. Troisi, and E. Zimeo, “A scalable architecture for discovery
and planning in P2P service networks,” in Grid Computing,
S. Gorlatch, P. Fragopoulou, and T. Priol, Eds. Springer US,
2008, pp. 97–108.

[3] L. Bevilacqua, A. Furno, V. di Carlo, and E. Zimeo, “A tool
for automatic generation of ws-bpel compositions from owl-
s described services,” in Software, Knowledge Information,
Industrial Management and Applications (SKIMA), 2011 5th
International Conference on, sept. 2011, pp. 1–8.

[4] O. D. Sahin, C. E. Gerede, D. Agrawal, A. E. Abbadi, O. H.
Ibarra, and J. Su, “SPiDeR: P2P-based Web Service Discov-
ery,” in Proceedings of the Third International Conference
Service-Oriented Computing (ICSOC 2005). Springer, Dec.
2005, pp. 157–169.

[5] Z. Zhengdong, H. Yahong, L. Ronggui, W. Weiguo, and
L. Zengzhi, “A P2P-based Semantic Web Services Compo-
sition Architecture,” in e-Business Engineering, 2009. IEEE
International Conference on, oct. 2009, pp. 403 –408.

[6] D. Redavid, S. Ferilli, and F. Esposito, “P2P support for
OWL-S discovery,” in Proceedings of the Mining Complex
Patterns Workshop (MCP’11), 2011.

[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications,” in Proceedings of the 2001
conference on Applications, technologies, architectures, and
protocols for computer communications, ser. SIGCOMM ’01.
ACM, 2001, pp. 149–160.

[8] P. Fragopoulou, C. Mastroianni, R. Montero, A. Andrjezak,
and D. Kondo, “Self-* and adaptive mechanisms for large
scale distributed systems,” in Grids, P2P and Services Com-
puting, F. Desprez, V. Getov, T. Priol, and R. Yahyapour, Eds.
Springer US, 2010, pp. 147–156.

[9] M. Bisignano, G. D. Modica, and O. Tomarchio, “JaxSON: A
Semantic P2P Overlay Network for Web Service Discovery.”
in SERVICES I, 2009, pp. 438–445.

[10] M. Gharzouli and M. Boufaida, “PM4SWS: A P2P Model for
Semantic Web Services Discovery and Composition,” Journal
of Advances in Information Technology, vol. 2, no. 1, 2011.

[11] Gnutella Protocol Specification v. 0.4. The Gnutella
Developer Forum. [Online]. Available: http://rfc-gnutella.
sourceforge.net/developer/stable/index.html

[12] J. Risson and T. Moors, “Survey of Research towards Robust
Peer-to-Peer Networks: Search Methods,” Computer Net-
works, vol. 50, pp. 3485–3521, December 2006.

[13] G. Baryannis and D. Plexousakis, “Automated Web Service
Composition: State of the Art and Research Challenges,” ICS-
FORTH, Tech. Rep., 2010.

[14] JXTA. Last accessed on November 2012. [Online]. Available:
http://jxta.kenai.com/

[15] G. Tretola and E. Zimeo, “Structure Matching for Enhanc-
ing UDDI Queries Results,” in Proceedings of the IEEE
International Conference on Service-Oriented Computing and
Applications. IEEE Computer Society, 2007, pp. 21–28.

[16] E. Giallonardo and E. Zimeo, “More Semantics in QoS
Matching,” in Proceedings of the IEEE International Confer-
ence on Service-Oriented Computing and Applications. IEEE
Computer Society, 2007, pp. 163–171.

[17] Annual International Contest S3 on Semantic Service Selec-
tion. Last accessed on November 2012. [Online]. Available:
http://www-ags.dfki.uni-sb.de/∼klusch/s3/index.html

[18] M. Klusch and P. Kapahnke, “iSeM: Approximated Reason-
ing for Adaptive Hybrid Selection of Semantic Services,” in
Proceedings of the 2010 IEEE Fourth International Confer-
ence on Semantic Computing, ser. ICSC ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 184–191.

[19] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based
Aggregation in Large Dynamic Networks,” ACM Trans. Com-
put. Syst., vol. 23, pp. 219–252, August 2005.

[20] A. Montresor and M. Jelasity, “PeerSim: A scalable P2P
simulator,” in Proc. of the 9th Int. Conference on Peer-to-
Peer (P2P’09), September 2009, pp. 99–100.

