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Abstract—Unstructured peer-to-peer (P2P) architectures offer
several benefits to implement semantic discovery and composition
in future-generation service registries. However, their success
strongly depends on the adoption of efficient techniques for
disseminating semantic queries over the network. Gossip strate-
gies significantly reduce the amount of messages with respect
to flooding, but they need a predefined tuning of the effectual
fanout to achieve good performance. In this paper, we compare
typical gossip strategies with our proposal, which is able to
dynamically exploit network knowledge to fulfil a selective choice
of propagation paths in order to ensure high recall and further
reduce the number of messages exchanged.

We perform the comparison in a simulated environment to
observe resolution time, recall and message overhead on large-size
and evolving networks while searching for service compositions.
We have adopted Bernoulli, Random Geometric and Scale-Free
graphs to model different network topologies. The experimental
results show that our approach is able to adapt to network
changes and preserve high levels of recall. In particular, it reduces
message overhead, with respect to both optimized flooding and
the analysed gossip-based strategies, or improves the recall,
whereas resolution time remains almost unchanged.

Keywords-Peer-to-Peer Computing; Gossip algorithms; Query
Forwarding; Service Discovery; Service Composition.

I. INTRODUCTION

As the number of Web services deployed in the Internet
grows, their discovery becomes a fundamental feature for
potential clients. This is particularly true in the cloud context,
where the “pay-per-use” economy model asks for efficient and
scalable discovery techniques to find the services that better
fit user requirements. Since the discovery attempt of a desired
service does not always lead to a satisfying solution, service
composition has to be exploited to improve the potential for
discovering the best services. However, discovery by compo-
sition increases computational complexity and consumption
of resources, and consequently it requires more efficient and
scalable techniques to be effective.

Distributed and decentralized infrastructures based on peer-
to-peer (P2P) architectural models are the best candidates
to implement future-generation service registries [1]. These
models are interesting also because they enable a new form of
collaboration where the roles of consumers and providers are
interchangeable and allow for cooperatively creating service
compositions that satisfy consumers’ queries.

Decentralized registries ensure high functional and non-
functional scalability: (1) by using a P2P registry, each organi-
zation is responsible for its own services; (2) several discovery

processes, running in parallel over the network peers, can
efficiently explore large repositories.

In our previous paper [2], we have proposed a technique for
improving the performance of cooperative discovery of service
compositions in P2P networks with superpeers. Any peer of an
initially unstructured service network can publish semantically
described services in a local registry and collaborate for
distributed discovery of both atomic and composite services.
Discovery queries, containing the semantic specification of the
goal services to find, are quickly and efficiently disseminated
through the network of peers. Our solution strongly reduces
the number of messages exchanged, if compared with flooding,
due to two main contributions: (1) topology restructuring
whenever a new service composition is found; (2) efficient
query dissemination on the connectivity graph.

In this paper, we focus on the second contribution and
assume a completely unstructured P2P network (i.e., no super-
peers). Based on the use of a P2P simulator, we compare our
technique with a selection of gossip protocols [3]–[5], com-
monly used to disseminate information over large-scale and
very dynamic networks more efficiently than flooding [6]–[8].
These protocols exploit graph redundancy to reduce message
propagation by configuring the fanout (the number of outgoing
links to use for information propagation).

The remaining part of the paper is organized as follows.
Section II presents the main research efforts related to this
work; Section III briefly introduces the approach used for
P2P service discovery and composition; Section IV describes
the algorithms for gossip-based query forwarding; Section V
reports on the configurations used in our simulations as
regards delays, algorithms and topologies for modelling large-
scale networks; in Section VI, the evaluation scenarios and
the experimental results are discussed; finally, Section VII
concludes the paper and highlights future work.

II. RELATED WORK

Service discovery and composition often relies on cen-
tralized registries and discovery engines [9]. To improve
scalability, dynamicity and robustness, in recent years, some
researchers [10], [11] have exploited DHT-based networks
(e.g., Chord [12]). However, structured P2P approaches suffer
from high churn overhead, strong provider-dependency and
complexity of hash functions to implement semantic matching.
Unstructured P2P networks are acquiring growing consen-
sus [1], [2], [13], [14] for supporting semantic service discov-



ery and composition, due to their flexibility, fault tolerance
and ease to implement semantic matching. However, they
introduce potential overhead because of the huge amount of
messages generated by flooding-based forwarding techniques
(e.g., [1], [13], [14]), which may cause high routing costs and
low scalability [15].

In unstructured and large P2P networks, gossip proto-
cols [3]–[5] have been proposed as a solution to implement
effective message broadcast, supported by their ease to deploy,
high reliability, and scalability [6], [7]. Their probabilistic
nature may significantly reduce the amount of exchanged
messages, if the application context does not require 100%
of reliability. Thus, these techniques have been widely used
for information dissemination over the Internet [16], [17] (e.g.,
multi-player games, video streaming application), or exploited
in wireless ad hoc and sensor networks [4], [18], [19].

Different gossip techniques have been proposed in the
literature, like Fixed-fanout Gossip (i.e., GossipFF) [3], [17],
[20], Probabilistic Edge Gossip (i.e., GossipPE) [4], [19]
and Probabilistic Broadcast Gossip (i.e., GossipPB) [5], [18],
based on the criterion to limit the outgoing links to use
for information forwarding over well-known random graphs,
typically used to model large-scale random topologies (e.g.,
Bernoulli [21], Random Geometric [22], and Scale-Free [23]).
They present different performance figures with reference to
the network topologies considered.

In [8], the authors use a generic parameter (effectual fanout)
for comparing GossipFF, GossipPE and GossipPB strategies.
They observe, by means of simulation, the trade-offs among
dissemination reliability, message complexity and latency, with
various kinds of input over Bernoulli, Random Geometric and
Scale-Free topologies.

However, the adoption of gossip strategies for P2P service
composition is still in its infancy since very few works address
the problem of composition efficiency [2]. In this paper, we
leverage on our previous experience on reducing message
complexity for service discovery and composition to propose a
dynamic gossip-based strategy that is able to adapt the fanout
to the characteristics of the underlying network topology.

III. COOPERATIVE SERVICE DISCOVERY AND
COMPOSITION

We adopt an unstructured P2P network, whose peers are
involved in the concurrent execution of protocols for: (1)
semantic service publishing in a local repository; (2) discovery
of services satisfying user goals, allowing for collaborative and
distributed composition; (3) query forwarding to efficiently
propagate service requests in the network; (4) anti-entropy
gossiping, as part of the forwarding strategy, to disseminate
knowledge about the network structure.

Each node of the P2P network is a computer, a virtual
machine or any other software/hardware device that is able
to execute the protocols above. On the same node, there can
be, in general, multiple peer processes. Peer links form an
unstructured overlay network, called connectivity graph. It can
be a random mesh, a ring, a tree or any other complex graph
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Fig. 1: Cooperative P2P composition to solve the abstract goal A→ Z.

and could be associated to physical proximity or low latency
paths among the network nodes.

Our discovery-by-composition technique is based on the
independent exploration of each peer’s local service reposi-
tory, by means of semantic matchmaking capabilities. If the
discovery of atomic services satisfying the specified requested
goal fails, the peers explore their local registry to find partial
solutions, according to a backward search technique. In other
words, since the service goal is specified as a transition from
an initial state X to a final state Y (i.e., X → Y ), only
service solutions matching the final state are considered (e.g.
K → Y ) and a new goal request is issued to fill the gap (i.e.,
X → K). Thus, the forwarding mechanism to gossip the new
goal query is enacted. Partial solutions, related to the same
initial query, are composed together according to a distributed
merging process to generate the final complete solution.

Fig. 1 reports an example of this strategy to solve the A→
Z abstract service goal, requested by peer P1. A→ R, R→ S,
S → B, B →W and W → Z represent the solving services,
published on the local repository of the different peers of the
network (P2, P11, P10, P7 and P9).

More details about our collaborative P2P composition strat-
egy and its evaluation over some network topologies with
reference to optimized flooding can be found in [2]. Query
forwarding on the connectivity graph relies on our dynamic
gossip-based strategy that will be described and compared with
other gossip strategies in the next sections.

IV. GOSSIP-BASED QUERY FORWARDING

Cooperative service discovery and composition require effi-
cient mechanisms to spread goal queries over the P2P network.
In [2], we proposed an approach, namely probabilistic for-
warding, to reduce message overhead when performing service
composition in unstructured P2P networks, with respect to
flooding.

Algorithm 5 reports on our solution. Algorithms 1 to 4 de-
scribe three well-known gossip protocols (GossipFF [3], [17],
[20], GossipPE [4], [19] and GossipPB [5], [18]), commonly
used to disseminate information over large-scale networks.
These protocols are able to reduce message overhead by
limiting the number of neighbours for propagation, but they
exploit statically defined thresholds, which usually do not
change during execution.

Algorithm 1 describes the general gossip framework for
spreading information over large-scale networks. We have used



this protocol as an alternative to our probabilistic forwarding
to diffuse queries containing the specification of the desired
semantic services among the peers of the network. To start
information dissemination, the query source sends a message
to all of its neighbours (lines 2 and 3). When one node receives
a message, which has not been previously received, it is simply
re-transmitted according to the specific gossip strategy, other-
wise the message is discarded. In the following, we consider
a large-scale simulated P2P network PN comprised of N sites
s1, s2, . . . , sN . Node si’s neighbourhood is denoted as Λi and
Vi = |Λi| represents its degree. The Gossip() procedure at line
10 may be implemented as [8]: (1) GossipFF, (2) GossipPE,
and (3) GossipPB. All these algorithms receive the message
to gossip and one strategy-specific parameter (i.e. fanout,
pe or pv), which is used to control the dissemination of the
received message and whose value, decided at configuration
time, is the same for all the nodes.

Algorithm 1 Generic Gossip algorithm

1. procedure BROADCAST(msg)
2. for all sj ∈ Λi do
3. Send(msg, sj );
4. end for
5. end procedure

6. procedure RECEIVE(msg)
7. if msg /∈MsgHistory then
8. Deliver(msg);
9. msgHistory ← msgHistory

⋃
{msg};

10. Gossip(msg, parameter); . Gossip procedure and parameter
are decided at configuration time

11. end if
12. end procedure

In GossipFF (Algorithm 2), node si sends its message
(msg) to a fixed number (denoted as fanout) of randomly
selected nodes in Λi (lines 6-8). If fanout ≥ Vi, si transmits
msg to all of its neighbours (lines 2, 3 and 11, 12). Partic-
ularly, if fanout ≥ max{V1, V2, . . . VN}, Algorithm 2 is a
pure flooding algorithm.

Algorithm 2 Fixed Fanout Gossip (at si)

1. procedure GOSSIPFF(msg, fanout)
2. if fanout ≥ Vi then
3. toSend← Λi;
4. else
5. toSend← ∅;
6. for f = 1→ fanout do
7. random select sj ∈ Λi \ toSend;
8. toSend← toSend

⋃
sj ;

9. end for
10. end if
11. for all sj ∈ toSend do
12. Send(msg, sj );
13. end for
14. end procedure

In GossipPE (Algorithm 3), site si randomly chooses those
edges over which msg is transmitted according to a fixed
probability pe (lines 2-4, in which the Random() procedure
generates a random number in the interval [0, 1]). When pe = 1
for all sites, we obtain the flooding algorithm.

Unlike Algorithm 3, in GossipPB (Algorithm 4), each site,
except the source, diffuses msg to all its neighbours with fixed
probability pv (lines 2-3). In particular, when pv = 1 this
protocol becomes the flooding algorithm.

Algorithm 3 Probabilistic Edge Gossip (at si)

1. procedure GOSSIPPE(msg, pe)
2. for all sj ∈ Λi do
3. if Random() ≤ pe then
4. Send(msg, sj );
5. end if
6. end for
7. end procedure

Algorithm 4 Probabilistic Broadcast Gossip (at si)

1. procedure GOSSIPPB(msg, pv)
2. if Random() ≤ pv then
3. Broadcast(msg);
4. end if
5. end procedure

A. Efficient probabilistic forwarding over P2P unstructured
networks

Algorithm 5 implements our forwarding mechanism. Each
peer exploits this propagation technique on the connectivity
graph to spread a locally submitted query or to forward the
queries received from one of its neighbours.

Algorithm 5 Propagation over the connectivity graph (at si)

1. procedure PROPAGATEQUERYTONEIGHBOURS(query)
2. τGroups ← EvaluateGroupsThreshold()
3. τDensity ← EvaluateDensityThreshold()
4. τHops ← EvaluateHopsThreshold()
5. τ ← ωGroups∗τGroups+ωDensity ∗τDensity +ωHops∗τHops;
6. f ← dτ · λe; . λ = number of si’s neighbours
7. count← 0;
8. i← 0;
9. newForwarded← {};

10. selectedNeighbours← ∅;
11. while i < f ∧ count < λ do
12. random select sj ∈ Λi \ selectedNeighbours;
13. selectedNeighbours← selectedNeighbours

⋃
sj ;

14. if sj != query.sender ∧ sj /∈ query.forwardedPeers then
15. newForwarded← {newForwarded|sj};
16. i← i+ 1;
17. end if
18. count← count+ 1;
19. end while
20. query.forwardedPeers← newForwarded;
21. for all si ∈ newForwarded do
22. Send(query, si);
23. end for
24. end procedure

In a traditional flooding approach, every message received
from a peer is forwarded to all of its neighbours. As a
simple variation of the traditional flooding, we consider in
our evaluation the optimized flooding. In this variation, the
query message maintains the list of neighbours to which it
has already been forwarded. In order to keep low the size of
the message and the complexity of the forwarding mechanism,
each query only stores the set of neighbours forwarded by
its sender. Whenever the receiving peer has to decide about
propagation, the list is considered to exclude local neighbours
that already received the query from the sender. It is then
replaced with the updated information about the actual new
forwarded peers.

Algorithm 5 exploits a propagation threshold, namely τ ,
limiting the number of neighbours considered for query for-
warding. The propagation threshold is the fraction of neigh-
bours to select for propagation. It is dynamically computed



anytime propagation has to be performed, by using up-to-
date network information. Variable f represents the maximum
number of neighbours to contact for query propagation (i.e.,
fanout). As in the optimized flooding strategy, received query
messages contain the list of the peers forwarded by the sender.
By excluding common neighbours that already received the
query from the sender, up to f neighbours are randomly
selected among the whole neighbourhood and stored as the
new list of propagated peers in the query message. Finally,
the message is forwarded to them.

We consider three different kinds of network information for
the dynamic evaluation of τ : (1) Availability of relevant service
composition overlays; (2) Global density of the network; (3)
Number of peers (hops) crossed by the goal query from the
source to the current peer. The information above makes it pos-
sible to distinguish three contributions to threshold τ , which
we denote as τGroups, τDensity and τHops. τ is evaluated as
a weighted (the weights ωGroups, ωDensity and ωHops are
defined at configuration time) and normalized (weights sum up
to 1) sum of these three contributions. Each contribution is a
threshold itself, is defined in the range [0, 1] and is dynamically
computed when the PropagateQueryToNeighbours algorithm
is executed by a peer, using the currently available data.
Additional thresholds could be considered in our forwarding
framework, at the cost of increased overhead for evaluating τ .

Since in this paper the focus is on comparing the per-
formance of different gossip-based forwarding strategies for
service composition in the context of different network topolo-
gies with dynamic properties (i.e., changing network density),
we refer to our previous work [2] for more details about
τGroups and τHops evaluation. Conversely, τDensity compu-
tation, which we also improved with respect to our previous
implementation, is described in the next Subsection.

B. Density Threshold (τDensity)

τDensity is computed by means of an anti-entropy gossip
protocol, performed by every peer of the P2P network to
know the network density, defined as the average number
of neighbours on the connectivity graph (i.e., average peer
degree): (1) each peer si stores a local approximation of the
average number of neighbours in the network as its statesi .
The initial value is chosen as the number of si’s neighbours
on the connectivity graph; (2) each peer si performs a random
selection of the neighbour sj to gossip with; (3) when receiv-
ing the gossip information statesi from neighbour si, peer sj
updates its state to the value: (statesi +statesj )/2. This state
update converges to the global state average (see [24]).

In order to know how much the current state is a reliable
representation of the global network density, we incrementally
compute, on each peer, the standard deviation (σ) of the local
density information (δ), at any state update. At the beginning
of the gossip protocol, we assume an infinite standard devia-
tion. Hence, we introduce a parameter (δ̄), defined as:

δ̄ =

{
δ − σ, if σ < δ
1, otherwise , (1)

which we use to evaluate the τDensity threshold. The rationale
behind the computation of τDensity is that the denser is the
network (i.e., higher δ̄), the less propagations will be necessary
for the query to reach the various peers in the network, because
of the presence of many alternative paths. By using its current
δ̄ value, each peer computes τDensity as:

τDensity =
(K/δ̄)

(δ̄ + (K/δ̄)− 1)
, (2)

with K ≥ 1. The (K/δ̄) factor (inverse delta factor) allows
for better controlling density-based message reduction. The
presence of this factor transforms a simple parametric hyper-
bole into an auto-tuning one. In case the locally estimated
average density decreases (i.e., the network becomes sparser),
the inverse delta factor will allow for a softer reduction of the
number of messages with respect to a simple hyperbole, in
order not to lose solutions. Conversely, if the network becomes
denser, lower values of τDensity will cause more messages to
be cut. K is a dumping factor, tuned according to the specific
topological properties of the connectivity graph.

We designed our gossip-based anti-entropy protocol to work
only during the inactive phases of our system (i.e., when
there are no service requests being processed on the peers) in
order not to introduce message/computational overhead during
the stages of P2P discovery. However, since the gossip mes-
sage elaboration overhead is typically low, peers also include
network density information within the messages regularly
exchanged during query forwarding (i.e., piggybacking).

To dynamically compute the value of τDensity in Algo-
rithm 5, peers only need to access local up-to-date information,
without additional message or computational complexity. In
addition, we assume in this paper the absence of composition
overlay networks (i.e., τGroups always equal to 1). Thus, the
overall τ computation in Algorithm 5 requires negligible time
and no additional message overhead, if compared with the
other gossip strategies (Algorithms 1 to 4).

V. SIMULATION TEST BED

The probabilistic forwarding strategy and the gossip algo-
rithms described in Section IV have been evaluated over large
P2P networks, by exploiting the PeerSim [25] simulator.

In our experiments, we focused on measuring three perfor-
mance indexes:
• Recall: system’s ability to find simple or complex solu-

tions to a goal request, when services published on peers’
repositories make it possible to satisfy it. In the following
experiments, the recall information is computed as the ratio
of the number of solutions found by our system during
the simulation cycles and the number of existing ones.
Specifically, only one solution is present in the network at
each simulation cycle. Therefore, recall is evaluated with
respect to the number of simulation cycles;

• Message overhead: the number of request and response
messages exchanged among the peers in the network to
find solutions to a goal request. Messages are counted
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Fig. 2: Examples of different P2P Network topologies: 1000 nodes and average degree per node ≈ 6

considering the whole network until the solution to the query
under test is received;

• Resolution time: the time required for the submitter to
receive the solution to the requested goal.
To make simulations consistent with realistic usage scenar-

ios, we introduced three kinds of delay:

• Semantic elaboration delay: models the delay introduced by
a realistic semantic matching between the query received
by the peer and a service description available on that peer.
For backward partial resolution, we consider half this delay,
since only post-conditions are compared. In simulations, we
have used 400ms for local complete solution and 200ms
for partial backward solution. These delays have been
computed by measuring the average time required to solve
a number of queries with some of the matchmakers used
in the S3 contest, the annual contest on Semantic Service
Selection [26]. In particular, we focused on ISeM [27], since
it offers matching capabilities based on IOPE descriptions;

• Transmission delay (td): models the delay for placing a mes-
sage from the application layer (peer sending a message) on
the network abstraction layer (the node), when no multicast
communication is available. If a peer on node A has to send
at time t0 a message to peers on nodes B, C and D, the
message for B will be sent at t0, for C at time t0 + td and
for D at time t0 + 2 · td. A 1ms delay has been used in
simulations;

• Network latency: is the delay for the simulated protocol
used for message exchanges among the network nodes. It
represents the time required for a message sent from a node
to reach the destination one. In simulations, network latency
has been modelled as a uniform random variable in the
range [10ms, 130ms]. This range refers to latency mea-
sured (by using the ping application) on the Internet when
sending small/medium messages to very distant destinations
(130ms) or very close (10ms) ones;

Each node of the simulated network hosts one single peer
process (therefore, the terms peer and node will be used
interchangeably in the following). Each peer is able to pub-
lish, discover and compose services. Service descriptions are
published on randomly selected peers before the beginning of
each simulation cycle in order to evaluate system behaviour
with respect to different assignments of the services to the
peers.

Several configurations have been considered in simulations
to evaluate the performance of the proposed algorithms, both
as regards the topologies used for the connectivity graph and
in relation to the parameters of the forwarding algorithms.

A. Connectivity graph configuration

The P2P network is initialized with a specific number of
nodes and a connectivity graph.

To perform our simulations we considered three topologies:
Bernoulli (or Erdős-Rényi) B(N, pN ) [21], Random Geomet-
ric G(N, ρ) [22], and Scale-Free graphs S(N,m) [23], which
are typically used to model peer-to-peer systems [20], wireless
sensor networks [5] and ad hoc networks [4], respectively.

Figures 2a, 2b and 2c give a visual representation of each
different topology. They have been obtained by analysing some
of the connectivity graphs used in simulations with the Gephi
graph visualization tool [28]. Nodes with degrees larger than
the average are shown with larger size and hot colours, while
the ones with smaller degrees are presented with smaller size
and cold colours. Edges are depicted with the same colour
of the node they depart from. The figures appear consistent
with the theoretical definition of these topologies. In the case
of the Bernoulli graph, most of the nodes present the average
degree (green nodes in the figure), while there are few nodes
with very high or low degrees. In the random geometric graph,
instead, we may observe many high-density zones, containing
nodes that are spatially close. Nodes belonging to different
areas have few connections to one another because of the large
spatial distance among them. Finally, according to a power law
distribution, in the Scale-Free graph there are very few nodes
with the highest connectivity (hubs), while the majority of the
network has the lowest density (peripheries).

As in [8], we have considered topologies composed of N =
1000 sites. In Table I, we report the values of the parameters
used to configure the three connectivity graph topologies.

Topology Parameters
B(N, pN ) pN = 0.014
G(N, ρ) a = 7500, b = 3000, ρ = 330
S(N,m) m0 = 9 (m0 − clique), m = 7

TABLE I: Topology parameters

This configuration is related to the case of a mean degree
approximately equals to 14 (V̄ ≈ 14). In the simulations,
we have also considered other values for the mean degree
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Fig. 3: Recall of gossip strategies for different topologies as a function of the effectual fanout

and changed the parameters according to the properties of the
corresponding topology (see [8] for details).

B. Probabilistic Forwarding Algorithm Configuration

As reported in Table II, the query propagation mechanism
(Algorithm 5) has been configured in order to give relevance
to the knowledge about density available in the P2P network.

Query Propagation Parameters
ωGroups 0.1
ωDensity 0.8
ωHops 0.1
K [70, 100]

TABLE II: Parameters for the probabilistic forwarding algorithm

This is due to our intention of evaluating our forwarding
algorithm with respect to other gossip strategies only by
considering the topological properties of the network. To this
purpose, we strongly limited the effects of the mechanisms
for caching already found solutions, based on peer grouping,
and for stopping query propagation based on traversed hops
counting (see [2] for details).

Regarding the K dumping factor in τDensity evaluation,
values in the range [70, 100] showed good performance in
our simulations. The results reported in Section VI are related
to the mean value 85.

VI. EVALUATION

In the following evaluation, we refer to the main simulation
scenario: one random peer requests the discovery of a specific
service goal (i.e., transition from state X to state Y); each
peer hosts one service in its repository and there is only one
composite solution in the network, specifically, a chain of 10
services published on different peers of the network. Variations
of this main scenario are detailed in the text.

To configure the different gossip algorithms described in
Section IV and compare them with our probabilistic forward-
ing strategy, we have used the effectual fanout parameter
Feff , defined in [8]. It enables the accurate analysis of the
behaviour of a gossip algorithm over a topology and simplifies
the theoretical comparison of different gossip algorithms on
this topology. For a fixed topology and gossip algorithm, the
effectual fanout characterizes the mean dissemination power of
infected sites. In the following, we report on the definition of
Feff for the GossipPE, GossipPB, and GossipFF algorithms.

Feff =


pe · V̄ GossipPE
pv · V̄ GossipPB

fanout−1∑
k=1

P (k) · k +
N−1∑

k=fanout
P (k) · fanout GossipFF

(3)

Given the effectual fanout, we have derived the values
of the parameters used for the configuration of the specific
gossip strategy (i.e., pv , pe and fanout), by using the inverse
formulas of the ones in Eq. 3. Therefore, in the following
results, we refer to a particular gossip strategy by its name
and the chosen effectual fanout value.

For each specific topology of the connectivity graph (i.e.,
one of Bernoulli, Random Geometric or Scale-Free), the
network size has been fixed to 1000 nodes, while the average
node degree has been increased or decreased according to
the specific scenario. Each degree configuration has been
simulated over 50 cycles, before changing the graph topology
parameters in order to have a new average degree. At each
cycle, the services composing the solution have been shuffled
over the peers of the network and the same query has been is-
sued by one random submitter. Resolution times are presented
as the average over the different values collected at the end
of each simulation cycle, together with min-max confidence
intervals. Recall is presented as the ratio between number of
found solutions and number of available solutions (i.e., 50) in
the range [0, 1]. Percentage difference of exchanged messages
has been computed according to the formula:

%diff =
Mprob forw −Mother forw

(Mprob forw +Mother forw)/2
∗ 100 (4)

where Mforw strategy represents the average number of ex-
changed messages required to find the solution in the network
when using the specified forwarding strategy.

A. Effectual fanout for gossip strategies

The first experiment was related to the analysis of the gossip
strategies over Bernoulli, Random Geometric and Scale-Free
topologies when searching for a 10-service composite solution
distributed in the network. In particular, Fig. 3 graphically
reports on the recall values observed after 50 simulation cycles
performed over the networks of 1000 nodes, with an average
node degree equal to 14, a reasonable value for large scale
networks [8].

The results confirm that GossipFF is particularly good in
terms of infection capability on G(N, ρ), but not on S(N,m)
(in several cases it has the lowest recall), and that all the algo-
rithms have almost the same infection power on B(N, pN ) [8].
The experiment was also useful to choose the effectual fanout
to use in the comparison of the different gossip strategies
with our probabilistic forwarding technique, detailed in the
next subsections. Since the number of messages increases
when using larger effectual fanouts, we decided to consider an
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Fig. 4: Simulation results for Bernoulli graph with 1000 nodes: comparison with gossip and optimized flooding

effectual fanout equal to 7: this value assures an almost optimal
recall (greater than 93% for at least two gossip strategies over
the three topologies) at the lowest message overhead.

B. Simulations over Bernoulli Graph

Figures 4a, 4b and 4c graphically reports on the experimen-
tal results related to the first variation of the main simulation
scenario: starting from an initial average node degree of 14,
we progressively decreased it, by selectively removing edges,
in order to preserve topological properties, to the smallest
possible value to have the graph still connected (i.e., ≈ 2).
This scenario simulates a typical situation for P2P networks
in which many links disappear because of address changes or
congestion.

The probabilistic forwarding strategy presents a stable recall
(Fig. 4a), higher than 95% for all the average node degrees
in the range [14, 2] and is comparable to those related to the
gossip strategies having effectual fanout equal to 7. This is due
to the ability of our density threshold mechanism to adapt to
network changes, by recognizing the need for more neighbours
to be forwarded (i.e. by increasing the dynamic fanout), due to
density decrease. In fact, the gossip protocol used to compute
the average node degree quickly converges to the new lower
value. Thus, the peers will use an increased value for τDensity
(see equation 2) and select more neighbours for propagation.
Therefore, even the partial solutions distributed over less
connected areas of the Bernoulli topology can be reached and
complete composite solutions can be created from them.

This effect can be better appreciated in Fig. 4b, which
focuses on percentage difference of the average message
overhead between our probabilistic forwarding and optimized
flooding or gossip strategies. When the Bernoulli graph is
denser, the density threshold cuts up to 20% of the messages
produced by the gossip strategies. Message reduction has
the largest absolute value when the average degree is equal
to 7, where the gossip strategies degenerate into a flooding
approach. If the average degree is lower, message reduction
decreases in order to not lose solutions, down to the case in

which the flooding approach is the only viable approach to
achieve high recall in a very sparse network (average degree
is lower than 3).

Regarding resolution time (Fig. 4c), the overhead of the
probabilistic forwarding is negligible with respect to the other
approaches.

Figures 4d, 4e and 4f are related to the second variation of
the main simulation scenario: the average node degree of the
Bernoulli graph is progressively increased from 14 to 30. This
scenario simulates the situation for P2P networks in which
new links appear because of neighbour discovery or network
decongestion. These simulations aim at verifying the capability
of the probabilistic forwarding to maintain its reduced message
overhead (Fig. 4e) and high recall levels (Fig. 4d) even on
denser network, where flooding produces a significant growth
in the number of exchanged messages (which is proportional
to the number of edges in the graph), while gossip strategies
with fixed fanout maintain a constant message overhead. In
Fig. 4e, the message overhead percentage difference between
our probabilistic strategy and optimized flooding increases (in
absolute value) as the node average degree increases. With
respect to gossip forwarding, it tends to be stable on values
comprised in the range 10-20%, up to very high levels of
average degree (i.e., ≈ 28). This is due to the asymptotical
behaviour of the τdensity function, while message overhead
for gossip strategies becomes constant after the average node
degree becomes larger than the effectual fanout.

As in the previous scenario, resolution time (Fig. 4f) is
almost unaffected by the choice of the forwarding strategy.

C. Simulations over Random Geometric Graph

The same scenarios considered in the case of Bernoulli
graphs have been evaluated over the Random Geometric
topologies (Fig. 5).

Figures 5a and 5b are related to the scenario of decreasing
average node degree, while Figures 5c and 5d are related to
the one of increasing average. The probabilistic forwarding
strategy, as in the case of the Bernoulli topology, is effectively
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Fig. 5: Simulation results for Random Geometric graph with 1000 nodes: comparison with gossip and optimized flooding

able to autonomously adapt to network density variations
by reducing message overhead with respect to the gossip
strategies (Figures 5b and 5d) and preserving high levels of
recall (greater than 94% in all the cases, see Figures 5a and 5c).

An important aspect to point out is related to the se-
lective choice of neighbours, described in Algorithm 5 and
characterizing both the probabilistic forwarding and the opti-
mized flooding: the received query is never sent back to the
neighbours that have been forwarded at the previous step of
propagation. Differently from the Bernoulli graph, the Ran-
dom Geometric topology provides high-density areas in the
network, where groups of neighbours are strongly connected to
one another (see Fig. 2). Because of this property, by keeping
track of the already forwarded neighbours in the query, as in
our approach, it is possible to significantly reduce the message
overhead both in the case of probabilistic forwarding and when
using optimized flooding, with respect to the three different
gossip strategies, which are not optimized in this sense.

However, as shown by the curves related to the comparison
between probabilistic forwarding and optimized flooding, re-
ported in Figures 5b and 5d, the effect of this optimization is
mainly evident in the case of lower average degree. In fact,
when the number of neighbours per node is relatively small, a
larger overlap exists between previously forwarded nodes and
new neighbours to be forwarded.

Resolution times are not reported due to space limitations.
As for the Bernoulli topology, curves are comparable for the
different forwarding strategies and their values increase in the
range [10s, 40s], in the case of decreasing degree, being more
stable in the range [10s, 20s], in the case of increasing degree.

D. Simulations over Scale-Free Graph

In the case of a Scale-Free graph, using an effectual fanout
equal to 7 makes gossip strategies less effective, with respect to
the previous topologies, especially if the average node degree
is higher than 8 (Figures 6a and 6c). This arises from the
peculiarities of the scale-free topology: very few nodes (hubs
- red vertices in Fig. 2c) have the largest number of links in the
network and most nodes have very few connections (periph-
eries). By cutting the number of forwarded neighbours at the
network hubs, it is possible that entire zones of the networks
are never reached by the goal query, while, if the message
reduction is applied at a peripheral site, it may happen that
hubs are not forwarded and the query never spreads outside
the neighbourhood where it has been issued. Therefore, it may
easily happen that solutions are not discovered. This problem

is even more relevant in the case of resource aggregation (i.e.,
service composition), where multiple queries are issued by
progressively discovering partial solutions.

In the worst cases, our strategy is at least as effective as
GossipFF forwarding in both the evaluation scenarios; also, in
many cases it exhibits higher recall levels than all the other
strategies, as can be seen in Figures 6a and 6c. This is due to
the ability of our forwarding mechanism to recognize the need
for more messages to be injected in the network, if compared
with the Bernoulli or Random Geometric topologies, because
many nodes have very low degrees and the anti-entropy gossip
protocol executed to compute the average network density
slowly converges. This is reflected in the lower (in absolute
values) negative percentage differences of Figure 6b (regarding
average degrees lower than 10) and in some positive values
in Figures 6b and 6d (regarding average degrees greater than
10). The positive values indicates that, in some cases, our
forwarding strategy inject more messages than the gossip ones,
which are limited by their fixed fanout, allowing for higher
levels of recall (i.e., more solutions found).

Resolution times (not shown in the figures) increase with
a low exponential trend in the range [8s, 11s], in the case of
decreasing degree (from 14 to 4). Our probabilistic forwarding
strategy is slower than the gossip ones according to an offset of
about +0.5s. When average increases from 14 to 30, resolution
times are stable in the same range with the same offset of
+0.5s for the probabilistic forwarding.

VII. CONCLUSION

We have compared, in the context of collaborative service
composition, our probabilistic forwarding algorithm with op-
timized flooding and three well-known gossip-based strategies
over unstructured P2P networks. Gossip-based techniques re-
duce message exchange for query propagation by exploiting
graph redundancy through a parameter, called fanout. Our
(informed) technique for service composition adopts network
knowledge to guide routing and reduce query diffusion: when
no or limited domain-specific knowledge is present in the
network, the knowledge about the topology of the connectivity
graph is exploited (e.g., average density) to avoid or limit
redundant paths.

The comparison has been performed by exploiting a simu-
lator to observe resolution time, recall and message overhead
on large-size P2P networks. Two different scenarios have been
considered regarding average node degree changes. Bernoulli,
Random Geometric and Scale-Free graphs have been adopted
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Fig. 6: Simulation results for Scale-Free graph with 1000 nodes: comparison with gossip and optimized flooding

to model different kinds of random networks. The experi-
mental results show that our approach can adapt to network
changes and preserve high levels of recall, without manual
setup of any fanout parameter. In particular, it reduces message
overhead, with respect to both optimized flooding and the
analysed gossip-based strategies, or improves the recall, while
resolution time remains almost unchanged in all the cases.

We are currently working on improving our forwarding
strategy, by taking into account the topological properties of
the peer’s neighbourhood: if the forwarding peer has a reduced
set of neighbours, with respect to the average degree, the
number of neighbours to forward should be higher; in case
of high density nodes, message reduction should take into
account information about past propagation of the query in the
neighbourhood in order to not cut messages over unexplored
paths. We also plan to evaluate our strategy over other topolo-
gies (i.e., tree-like structures, rings) and to consider different
evaluation scenarios (i.e., changes in network size, multiple
overlay networks).
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