Enhancing Web Process Self-awareness with
Context-aware Service Composition

Angelo Furno
Department of Engineering
University of Sannio
Benevento, 82100 - Italy
angelo.furno @unisannio. it

Abstract—Web processes are usually conceived and executed
in highly dynamic environments, including unstable or initially
unknown users’ requirements, preferences or behaviors, con-
tinuously changing properties of interacting devices or physical
components, etc. To address this dynamicity, service-based
systems should be designed in a flexible way, allowing the
possibility to model slightly different versions of the same
service in relation to different possible execution contexts.
Also, according to the autonomic computing vision, the process
should be able to dynamically self-change its structure in order
to reach successful termination, even if unexpected anomalies
or context changes occur during execution.

A design approach based on a semantic model for context
representation and an extension of the OWL-S ontology are
proposed to enrich the expressiveness of each section of a
typical OWL-S semantic service description. Context conditions
and adaptation rules may be attached to the service descrip-
tion to express how it changes according to specific context
configurations. During the planning or re-planning phases of
an autonomic workflow, these descriptions can be exploited by
a discovery/composition tool to automatically find the atomic
or composite services better-tuned to the current requestor’s
behaviors and to the particular situations of the surrounding
environment.

Keywords-Service Composition; Context-awareness; Self-
awareness; Autonomic Workflow; Semantic Service Design

I. INTRODUCTION AND RELATED WORK

Modern systems are required to be able to understand the
context in which they are going to be assembled, deployed or
executed and configure and change themselves accordingly,
even at run-time. In this sense, it appears essential to design
them in such a way they can be dynamically forged to users
behaviors or expectations and to the evolving states of the
surrounding physical environment.

Autonomic Computing (AC) [1] is a natural solution to
allow systems to autonomously manage themselves. These
systems should not only be able to take automated actions,
but also exhibit advanced ability to sense and respond
to changes, by means of self-learning and self-managing
capabilities.

The focus of this paper is about designing context-aware
semantic services, exploitable to automatically generate
complex Web processes (i.e. workflows), satisfying users’

goals in specific contexts. The composition process is an
essential part of the lifecycle of an autonomic workflow
[2], since it supports the system ability to autonomously
and dynamically change its structure in order to reach its
objectives, even if external events change the execution
context.

So far, many researchers have investigated different tech-
niques to support the automatic generation of service com-
positions from a set of published services (domain), given
a specific goal to reach (problem) [3]], [4]]. In many cases,
composition techniques and the related tools exploit IOPE
(Input, Output, Preconditions and Effects) predicates that
characterize structural (WSDL) and semantic (often OWL-S)
services descriptions to generate the desired compositions.

The potential of SOA could be better exploited if such
ability of building an application by composing existing
functions were augmented with the awareness of the sur-
rounding context where the composition takes place. This
way, services and related compositions could be forged to
adapt their malleable aspects to the specificity of the envi-
ronment. This impacts the design phase of the services that
characterize a given domain, but also the definition of the
problem and the goal used to drive a specific composition.

Designing services with this new approach means to
extend their semantic descriptions with new attributes and
rules that are able to slightly change the structure and
behavior of the services according to the needs emerging
in the specific context where they will be used.

Context-aware services are semantically described by us-
ing an extension of the OWL-S ontology, taking into account
the context dimension. The services designed according to
the proposed model can be discovered and composed by
dynamically tailoring a (possibly distributed) service search
space to user needs, preferences and the current situation
of the environment where the services have to be executed.
In particular, the paper reinforces the notion of autonomic
workflow by presenting a model for context representa-
tion, its implementation in the OWL language [5]], and an
extension of OWL-S [6] for allowing context-awareness
in semantic service descriptions and their adoption during
composition.

The rest of the paper is organized as follows: Section
[briefly reports on the notion of autonomic workflow,
implemented by our Semantic Autonomic Workflow Engine
(SAWE); in Section the approach for designing context-
aware services is outlined, together with a description of
the ontologies supporting it; Section [IV] gives details on
how context-aware descriptions are exploited in SAWE for
context-aware automatic service composition, also sketching
an example related to a pervasive environment. Section
concludes the paper.

II. AUTONOMIC WORKFLOWS

In [2]], the notion of Autonomic Workflow (AW) has been
introduced to deal with the problem of increasing complexity
during the whole lifecycle of traditional workflows (i.e.
service compositions). Fig. [T] depicts the lifecycle of an
autonomic workflow.

Goal /
Abstract

process
Plan
o— Binding
- Plany
e T

boynoaxg

Enacty Execute

Report
Post- Autonomic Workflow Activit
@ mortem Workllow Element Y
Execution
analysis Enactment Enactment

Enacting

A

Figure 1. Autonomic Workflow lifecycle [2]

The first two phases (Planning and Binding) are related
to the configuration of an adaptive composite service. An
abstract workflow, containing the abstract specification of the
activities to be performed, is generated during the Planning
phase by exploiting the knowledge of the goal objectives
(functional requirements), the domain of candidate services
for problem resolution (both goal and domain are charac-
terized in a semantic way, by the use of OWL-S profiles),
the problem initial state, the domain constraints and the
current knowledge of the context. After the abstract pro-
cess definition, during the Binding phase, atomic activities
(or workflow elements) are associated to concrete service
operations. When an activity has been enacted and bound,
it can be executed by the workflow engine.

Together with the plan-bind-enact-execute flow (direct
action flow), the AW lifecycle provides a reaction flow,
which is intended to implement the adaptive behavior of
the autonomic workflow, in case of: (a) low-level mal-
functioning (network issues, hardware failures, etc.); (b)
logical reasons (agreed quality levels not fulfilled anymore in
service provisioning, occurrence of monitored environmental
conditions/events, etc.).

When such needs are detected, a set of adaptive strategies
may be performed. The simplest one consists in re-binding

the running activity (Bind; edge) in order to find another
service implementation compatible with the activity to be
executed.

Besides re-binding, the authors consider the possibility to
use re-planning (Plan; edge in the lifecycle figure). When
no concrete implementation can be found for executing a
specific activity, planning is performed in order to find a new
workflow having the same initial and final states (pre/post-
conditions) of the activity and the same input/output char-
acterization. If no plan exists, satisfying the activity goals
from its initial conditions, re-planning may be used to
change the remaining part of the workflow to be executed.
This requires to solve a planning problem identified by the
original workflow goal objectives and, as the initial state, the
current state of the process execution. Planning can also be
used during the post-mortem analysis phase of the lifecycle
(Plan; edge) to improve the AW by using the knowledge
acquired from the execution.

In the following sections, we focus our attention on the
Planning and Re-planning phases, since they are strictly
related to service composition, while the Binding phase
is considered for the aspects related to the generation of
executable workflows.

A. Semantic Autonomic Workflow Engine (SAWE)

SAWE (Semantic and Autonomic Workflow Engine) [2],
[7] is the system, developed at the University of Sannio,
supporting the notion of autonomic workflow. It exploits
meta-information to automatically perform several activities
that, in traditional systems, are executed by users and
administrators.

Configurator

Manager

Y Y

Auxiliary
Components

Planner

Matchmaker

A

Control Know\edge
L~ Engme Base
OoS Ccntexl
Monlloving Monllormg
7
’

Figure 2. SAWE conceptual architecture [2]

The system comprises three main components: Configura-
tor, Engine and Manager (Fig. [2). The Engine is responsible
for process execution. The Manager is in charge of monitor-
ing the environment. The Configurator feeds the engine with
workflows or sub-workflows on the basis of inputs derived
from users, designers or the manager.

In the rest of the paper, we focus our attention on the
configurator (Fig. 3), the sub-system in charge of imple-

menting self-configuration of service compositions through
the knowledge coded at design-time or collected at run-time.

Abstract
Process

Domain
Rules Context
h '

Concrete
Goal Domain Process
| | |
v v v v v v
Configurator

. = Context
‘Composer | ‘ Binder ‘ | Interactor H RuleEditor | Editor

SAWE Configurator

Figure 3.

The configurator acts on every aspect of a concrete service
composition by changing the overall composition graph to
make it executable within the new conditions. To this end,
it can: change a link between an activity and a concrete
service (re-bind); insert, delete or replace an activity; change
the endpoints of a transition; substitute an activity with a
sub-process that is able to perform the same actions and to
produce the same effects on the external world. Its main
component, the context-aware composer, is described in
Section

III. CONTEXT-AWARE SEMANTIC SERVICE DESIGN

To support the design of context-aware composite services
we consider: a model of the context (sub-section [[II-Al),
describing our notion of context in relation to distributed ap-
plications and Web services; a corresponding OWL ontology
(OWL-Ctx), supporting the description of sets of contexts
in specific domains (sub-section ; an extension of the
OWL-S ontology for services (OWL-SC, sub-section [[TI-C)),
allowing for the specification of OWL-Ctx-based context
adaptation rules.

A. Context Model

By the term application state we mean the set of variables
and corresponding values that the application is able to
access or modify. We distinguish between infernal and
external application state.

The internal state is the set of variables only visible to
the application itself. They are created, used and eventually
destroyed by the application (which can be an ensemble of
components, having visibility of them) and are not accessible
outside the application. Besides input and output parameters,
the application may have predicates to be satisfied in order
to execute it (pre-conditions) and predicates that are satisfied
after the application has been executed (post-conditions).

The external state is the set of variables accessible also
outside the application. They can be read or modified by
users, devices or applications other than the one the state
is referred to. This set of variables represents the context
in our model: it includes every attribute that characterizes a
user and/or the (smart) environment a distributed application
interacts with.

An application may exhibit dependencies from the context
and in this case we call it Context-Aware Application (CAA).

In our vision, context dependencies are related to application
pre- and post- conditions. A CAA may or may not change
the current context during and after its execution. In the latter
case, post-conditions include references to context variables.
When the properties above are related to Web Services, we
speak about Context-aware Web Services (CAWS).
Considering the context model defined above, we propose
the OWL-Ctx context ontology to extend OWL-S [6] for
Web Services design, thus enabling automatic reasoning
about context and context-aware composition. By using the
OWL-Ctx, a designer may include relevant context-aware
information in OWL-S extended semantic service descrip-
tions, supported by our ontology OWL-SC. Context-aware
semantic descriptions can be exploited during the service
composition process to automatically generate compositions
better-tuned to the requestor’s behaviors and preferences and
to the particular situations of the surrounding environment.

B. OWL-Ctx: an OWL Ontology for Modeling Context

Fig. @] shows OWL-Ctx, an extensible OWL ontology for
describing contexts according to our model.

[zw ContextDimension } &)

ContextDimension
Value

Constraint

hasConstraint*
constraintRefersTo*

(a)

hasSubdimension*

_ ~ _issubdimensionOf*
-~
o = Tsubclassof TR

~ -
CompositeContext
Dimension

ublsor

-
;l Location E —‘) Country

AtomicContext
Dimension
i isSubdimensionOf*
~ Environment
~ -7 Hardware
- Agent (b)
ubcla
~

- ~ - xubc/asxof Software
- - m Agent
- \
AtomicContext R S e
Time
Dimension \ fuman
Agent
Preferences

Figure 4. OWL-Ctx: ontology language (a) and (partial) middle ontology
(b)

Context, ContextDimension, ContextDimensionValue and
ContextDimensionConstraint are the main concepts in this
ontology (Fig. fB(a)). The Context related to a software
system is composed of a set of ContextDimensions, each
describing one relevant aspect, or dimension, of the en-
vironment enclosing the particular software system. Each
dimension can be modeled at a different level of abstrac-
tion, according to the specific requirements related to the
application domain to consider. In this sense, we can dis-
tinguish a ContextDimension as a composite or an atomic
dimension. Differently from an AtomicContextDimension, a
CompositeContextDimension can be further decomposed in
one or more sub-dimensions that can be helpful for a better
characterization of the associated context aspect.

When modeling contexts in a specific application domain,
it is possible to specify the dimensions deriving from the
AtomicContextDimension, those specializing the Compos-
iteContextDimension concept and the relationships among
them by means of multiple hasSubdimension properties.
Also, for each ContextDimension, a ContextDimensionValue
can be defined to represent complex values associated to
the specific dimension. A ContextDimensionConstraint can
be used to specify domain-dependent constraints applying to
ContextDimensions. In the partial context middle ontology
of Fig. B(®) Time, Agent, Location, Preferences, Role and
PhysicalEnvironment describe some domain-independent
context dimensions, typically used for specifying context
properties with respect to any software application.

C. OWL-SC: An OWL-S Extension for describing Semantic
Context-aware Service

The OWL-Ctx ontology is exploited by the OWL-SC
ontology, our extension of the OWL-S service ontology
for describing context-aware semantic services. The most
relevant elements extending OWL-S are reported in Fig.

from OWL-S ontology hasContext hasContext

AdaptationRule*_ (T Adaptation (7] -
Service:Service] [C } c
hasContextCondition
* @ owL-C:Context (a)
Dimension

usesContext*

¥ orccutesin
“@ CTx-Condition e

& go OWL-Ctx:
Context n
subclassOf Dimension*
+ &7 Expression:Condition

n - l’ﬁ 0]

Condition ¥ Fsubclassof K Py F X subclassof
1 \

/ . hasProfile | | A
N 1 _(*lg ProfileAdaptation | Adaptation] Profile
H Rule H i Adaptation

'
subclassOf 1

hasProcess ! SubclassOf
Adaptation

hasProcess
,
|
,
,
from OWL-S ’
ontology

'
'

),

subclassOf

7
hasAtomicProcess |/ subclassOf ()
AtomicProcess

/
Adaptation 1 AtomicProcess
7 Adaptation
subclassOf !

* @ Grounding
Adaptation

i '
)
Adaptation /subclassOf

Groundingzmom@ Rule* [* @ Grounding Adaptation
Proce i 8): i

=
subclassOf |

subclassOf |

WsdIGrounding Adaptation WsdlAdaptation
AdaptationRule Rule

Figure 5.
()

OWL-SC: ontology language (a) and (partial) middle ontology

Each of the three core concepts, provided by the OWL-
S ontology to describe a Service (Profile, Process and
Grounding), can be associated (Fig. to a Context-
AdaptationRule, by means of the hasContextAdaptationRule
object property.

A service designer may be aware of a set of contexts
or context dimension values, which can be used, during
the design phase, to specify conditions for the service to
change its basic features (i.e. profile, process or grounding
properties). A reference to the current context may be used
to relate context conditions to the situation at the moment the
extended service description will be analyzed (relationship
executesIn between Service and Context) for discovery or
composition.

A ContextAdaptationRule (and its sub-concepts) is defined
by means of a context condition (Ctx-Condition) and a
context adaptation action (ContextAdaptation). It prescribes
the context-dependent condition to be satisfied in order to
apply the associated adaptation for the specific section of
the OWL-S description. If at least one ProfileAdaptation-
Rule, ProcessAdaptationRule or GroundingAdaptationRule
is specified in the description, the service is a CAWS.

Currently, we have defined the following context adapta-
tion rules in our language:

o Defaulting an input/output parameter (profile/process
section);

« Nulling a parameter, not applicable for a specific con-

text condition (profile/process);

Changing the owls <process:parameterType> of an

input/output parameter to a different ontology concept

(process);

Replacing pre-conditions or effects of the basic OWL-S

service description (profile/process);

Changing the WsdlAtomicProcessGrounding

input/output section of an atomic Process with a

new Wsdl MessageMap (grounding);

Changing the WsdIAtomicProcessGrounding section of

an atomic Process with a new WSDL operation and/or

WSDL portType (grounding).

Context-dependent conditions, currently supported by our
OWL-SC ontology, include:

e current_ctx matches ref_ctx

e current_ctx includes "concept hasValue
ontology_individual”

e current_ctx includes
"concept.datatype property = value"

e current_ctx includes "concept.object_property
hasValue individual"

where current_ctx is the context reference for the context
at the moment in which the composition domain is ex-
plored for finding a solution to the submitted problem. Both
current_ctx and ref_ctx specifications can be verified
according to an approach like the one used in [§].

Currently, we are using the Semantic Web Rule Language
(SWRL) [9] to express the last three kinds of condition. An
example of context condition, defined in SWRL and related
to a specialization of the OWL-Ctx ontology for multimedia
(Media context ontology), is given:

OWL-Ctx:hasDimension (current_ctx, ?hwAgent) A Media:
HWAgent (?hwAgent) A OWL-Ctx:hasSubdimension (?hwAgent,
?role) A OWL-Ctx:Role(?role) A sameAs(?role,
Media:DownloadServer) A OWL-Ctx:hasSubdimension (?hwAgent,
?disk) A Media:Disk (?disk) A Media:diskMBSpace (?disk,
?avSpace) A swrlb:lowerThanOrEqual (?avSpace, 500)

The condition verifies whether one disk of a media server
has not enough space (< 500MB) to download some file.

IV. CONTEXT-AWARE SERVICE COMPOSITION

Context-aware compositions are supported in SAWE by
the composer (see Fig. E[), presented in [10], [11] and
recently extended to support context-aware semantic descrip-
tions of services and problems. Fig. [6] describes the logic
flow and the main components of the Composer.

OWLS Desired Context-
Service + .y, aware
OWL-Ctx

Current Context

[Problem > {98 , ‘ Context- | (WP
aware

o | | e -y
analyzer aware Y Generator|

|+ Domain

OWL-SC [/ Builder
services |/ 3
. > Domain KB
Rules &) s
Constraints zer jora] Rules KB
Figure 6. Composer Architecture

A traditional composition process consists of exploring a
set of candidate Web Services (the service domain) in order
to find a flow of activities (a plan) that, starting from the
provided description of the initial state (i.e. predicates true
before the task beginning), is able to reach the goal state
(i.e. predicates to be true at the end of the service chain).

When performing context-aware composition, the set
of semantically described candidate services may include
CAWSs (the OWL-SC domain) and is provided as an input
to the system (manually or automatically via a matchmaking
process), together with the semantic description of the initial
state of the environment and the goal. OWL input files
are analyzed and used by the OWL Analyzer to build the
internal representation of the composition problem. Then,
context is exploited for preparing the planning phase. The
Context-aware Domain Builder evaluates the context de-
pendencies in pre-conditions, effects and adaptation rules of
the service descriptions, with respect to the current context,
and generates a contextualized instance of the domain, suited
to be converted into the planner language (PDDL [12]).
Similarly, the Context-aware Problem Builder augments
the problem representation given by the user by injecting
into it relevant information from the context, which is
derived by the monitoring support available in SAWE.

The Planner is the component deputed to the processing
of contextualized domain and problem inputs in order to
produce a plan of domain actions satisfying the problem.
The current implementation of the tool uses PDDL4J [13]],
based on the Graphplan algorithm [14].

The Context-aware Process Generator is in charge of
generating a concrete (WS-BPEL) representation of the plan
(binding phase), executable on a process engine, by exploit-
ing the available contextualized grounding information.

A. Pervasive Scenario Example

In Fig. a user requests an abstract service for retriev-
ing and playing the last episode related to some specified
TV-show; subtitles are requested to be superimposed to the

video. Besides the desired service IOPE description, our
composer is fed with the current context representation as
input. This information can be automatically acquired and
updated by the system, without being controlled or explicitly
known to the service requestor, and is represented according
to the OWL-Ctx ontology language. We assume context
variations to be reasonably slower than the time required for
a typical composition problem to complete. Context changes,
following the composition process, may be addressed by re-
planning.

Desired Service (IOPE)
Initial state:

* tv_show = BBC_Doctor_Who .
oulitoe @
* playing(new_tv_show_episode)

« superimposed(subtitles) 7

download TV- retrieve TV-show play with adapted service
show episode epis. stream data, subs profiles
retrieve TV- lay TV-show 4
[] o [play] . [retrieve subs] " [translate] (b)

show episode episode
Context Dimensions

Current Context
« hwAgent.disk.avSpace =120.5 MB
+ humanAgent.videoPref=big size subs
« humanAgent.subPreflanguage = Italian

+ humanAgent=Bob
+ humanAgent.role=user

+ hwAgent=Bob’s Pc

« hwAgent.role =DownloadServer

Service Domain

7.y

7.y
ctx adaptation rules ; ctx adapt. rules |
- TV Show episode.format,
disk space
subs, view pref.

Figure 7. Problem description: current context, desired service IOPE (a)
and domain (b)

In Fig. a subset of the OWL-SC service domain (Me-
dia domain) is shown together with the relevant dependen-
cies on the context, used in the adaptation rules. As an exam-
ple, the OWL-SC service for retrieving a TV-show episode
(RetrieveTV-showEpisode) presents a profile having a TV-
show as an input and a TVShowEpisode as an output and
providing the effect newEpisodeAvailable(TVShowEpisode).
In the basic case, the service also produces the result to
download the file containing the last episode of the specified
TV-show (effect downloaded(TVShowEpisode)).

The profile and its service atomic process have been
extended with a context adaptation rule, changing the pro-
cess result in case the download server has not enough
space to store the episode file. The context condition used
to control this profile/process adaptation in the OWL-SC
description is the SWRL condition reported at the end of
Section [[II-C| The adaptation replaces the downloaded result
with the effect streamDataAcquired(TVShowEpisode). Also,
a different grounding is associated with the same condition
in a grounding adaptation rule, because the concrete service
for retrieving the stream information is different from the
one used to download the file.

Since the disk space amounts to 120.5 MB in the current
context of Fig. the rule is activated and the adaptation
applied by the Context-aware Domain Builder. The stream
retrieval service (i.e. RetrieveTVShowEpisodeStreamData in
Fig. E]) is included within the contextualized domain, while
the download one is not. When converting to PDDL, the
stream retrieval service is the only to appear as a PDDL
action, with its inputs, outputs, pre-conditions and effects,
thus reducing the actual size of the domain, with benefits

over the composer performances.

After contextualized domain and problem conversion to
PDDL, the Graphplan planner generates an abstract PDDL
plan. The plan considered in the example contains the
sequence of RetrieveSubtitles and Translate in parallel with
RetrieveTVShowEpisodeStreamData. The parallel is in se-
quence with the PlayWithSubs service. The translate service
is included in the first sequence because the user’s preference
about subtitle language (Italian) has been added to the goal
of the problem by exploiting available context knowledge.
Without context-awareness, the composer would have not
been able to find such a suitable composition, according to
the assumption that RetrieveSubtitles only retrieves English
subtitles and the user has not explicitly indicated the Italian
language preference in its goal. Starting from the plan, the
WS-BPEL generator produces the resulting concrete process
of Fig. 8 using the available grounding information and
context knowledge.

retrieve TV-Show
episode stream data
retr_eve translate
subtitles

Figure 8.

play
stream

with big

size subs

Resulting concrete service composition

V. CONCLUSION

In the paper, we have presented a model to design context-
aware services that can be exploited as a flexible domain
to automatically generate context-aware compositions. An
OWL ontology for modeling contexts (OWL-Ctx) and an
extension of the OWL-S ontology for semantically describ-
ing services (OWL-SC) have been proposed. Also, our
SAWE context-aware composer, performing planning over
contextualized instances of problem and service domain, has
been described.

Our approach represents a solution for enhancing the
autonomic capabilities of Web Processes, since planning
and re-planning may be used for automatically taking into
account new user requirements, unexpected exceptions or
evolutions of the surrounding environment, occurring during
the process execution, by changing its structure accordingly.

Besides extending our implementation of the context-
aware composer with support for additional context-
dependent conditions and adaptation rules, we are currently
investigating the possibility to improve the contextualized
expansion of services. Our idea is to perform the expan-
sion directly during planning (i.e. context-aware planning),
instead of doing it before (and after) the traditional planning
process. This way the state dependencies among domain
activities could be evaluated right in the moment when
context rules are applied, thus avoiding the possibility to
exclude valid compositions, as a consequence of an antici-
pated (blind) context expansion.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

(11]

[12]

[13]

[14]

REFERENCES

J. Kephart and D. Chess, “The vision of autonomic comput-
ing,” Computer, vol. 36, no. 1, pp. 41 — 50, jan 2003.

G. Tretola and E. Zimeo, ‘“Autonomic internet-scale
workflows,” in Proceedings of the 3rd International Workshop
on Monitoring, Adaptation and Beyond, ser. MONA ’10.
New York, NY, USA: ACM, 2010, pp. 48-56. [Online].
Available: http://doi.acm.org/10.1145/1929566.1929573

J. Rao and X. Su, “A survey of automated web service
composition methods,” in In Proceedings of the First Interna-
tional Workshop on Semantic Web Services and Web Process

Composition, SWSWPC 2004, 2004, pp. 43-54.

S. Dustdar and W. Schreiner, “A survey on web services com-
position,” International Journal on Web and Grid Services,
vol. 1, no. 1, pp. 1-30, 2005.

D. L. McGuinness and F. Van Harmelen, “OWL Web
Ontology Language overview,” W3C Recommendation,
vol. 10, pp. 1-19, 2004. [Online]. Available: http://www.w3.
org/TR/owl-features/

D. Martin, M. Burstein, E. Hobbs, O. Lassila, D. Mcdermott,
S. Mcilraith, S. Narayanan, B. Parsia, T. Payne, E. Sirin,
N. Srinivasan, and K. Sycara, “OWL-S: Semantic markup for
web services,” Tech. Rep., Nov. 2004. [Online]. Available:
http://www.w3.org/Submission/OWL-S/

M. Polese, G. Tretola, and E. Zimeo, “Self-adaptive manage-
ment of web processes,” in Web Systems Evolution (WSE),
2010 12th IEEE International Symposium on, sept. 2010, pp.
33 42.

C. Bolchini, C. A. Curino, G. Orsi, E. Quintarelli,
R. Rossato, F. A. Schreiber, and L. Tanca, “And what
can context do for data?’ Commun. ACM, vol. 52,
no. 11, pp. 136-140, Nov. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1592761.1592793

I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean, “Swrl: A semantic web rule
language combining owl and ruleml,” World Wide Web
Consortium, W3C Member Submission, 2004. [Online].
Available: http://www.w3.org/Submission/SWRL

L. Bevilacqua, A. Furno, V. di Carlo, and E. Zimeo, “A tool
for automatic generation of ws-bpel compositions from owl-
s described services,” in Software, Knowledge Information,
Industrial Management and Applications (SKIMA), 2011 5th
International Conference on, sept. 2011, pp. 1 -8.

L. Bevilacqua, A. Furno, V. di Carlo, and E. Zimeo, “Auto-
matic generation of concrete compositions in adaptive con-
texts [to appear],” Mediterranean Journal of Computers and
Networks, 2012.

M. Ghallab, C. K. Isi, S. Penberthy, D. E. Smith,
Y. Sun, and D. Weld, “PDDL - the planning domain
definition language,” CVC TR-98-003/DCS TR-1165, Yale
Center for Computational Vision and Control, Tech.
Rep., 1998. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.37.212

D. Pellier. (2011) PDDLA4J. Last checked: July 2011.
[Online]. Available: http://sourceforge.net/projects/pdd4j/

A. L. Blum and M. L. Furst, “Fast planning through planning
graph analysis,” Artificial Intelligence, vol. 90, no. 1, pp.
1636-1642, 1995.

http://doi.acm.org/10.1145/1929566.1929573
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.w3.org/Submission/OWL-S/
http://doi.acm.org/10.1145/1592761.1592793
http://www.w3.org/Submission/SWRL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.212
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.212
http://sourceforge.net/projects/pdd4j/

	Introduction and Related Work
	Autonomic Workflows
	Semantic Autonomic Workflow Engine (SAWE)

	Context-aware Semantic Service Design
	Context Model
	OWL-Ctx: an OWL Ontology for Modeling Context
	OWL-SC: An OWL-S Extension for describing Semantic Context-aware Service

	Context-aware Service Composition
	Pervasive Scenario Example

	Conclusion
	References

