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Abstract—The ability to detect critical spots in transportation
networks is fundamental to improve traffic operations and
road-network resilience in smart cities. Real-time monitoring
of these networks, especially in very large metropolitan areas,
is a compelling challenge due to the complexity of computing
robustness metrics. This paper presents a framework for identi-
fying vulnerabilities in very-large road networks. The framework
adopts graph-based modeling of road networks and exploits
big-data techniques and technologies for processing such large
and complex graphs. First, we use the framework to prove the
existence of significant correlation between global efficiency and
betweenness centrality. Then, we focus on an efficient algorithm,
integrated in the framework, to rank the nodes according to this
metric for finding potential vulnerabilities of a road network. To
keep computation time under a “quasi”’ real-time threshold, a
fast, requirement-driven, approximated strategy for computing
betweenness centrality is adopted. The evaluation shows that the
algorithm, integrated in the framework, exhibits a very good
approximation for the most critical nodes, thus being well-suited
for on-line operational monitoring.

Index Terms—Smart Transportation, Network Resilience, Be-
tweenness centrality, Contingency Analysis, Big Data.

I. INTRODUCTION

Nowadays, cities are facing unprecedented challenges due
to urbanization, climate change, and fast technology advances.
They will be forced to cope with growing populations and
connected (digital and physical) infrastructures whose robust-
ness and resilience will become an essential property for their
continuous operation.

Resilience describes the ability of a given system to provide
fundamental services to people without discontinuity, even in
presence of adverse or catastrophic events. As a consequence,
it will be a key property for achieving smartness in cities of the
near future. Resilience concerns several infrastructures used
for transporting goods or people: energy, water, information
and road networks are a few examples. An unforeseen event
that originates a breakage in one of these infrastructures
may cause incalculable damages with serious socio-economic
consequences.

Transportation networks are bound to controllable (e.g.,
riots, technical errors, etc.) and uncontrollable events (e.g.,
earthquakes, floods, etc.) that can easily cause disruptions
in the smooth operation of their services. In transportation
literature, resilience is widely considered crucial to understand
and quantify network robustness with respect to different kinds
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of failures and other unpredictable events [4], [21], [32], [33].
A robust transportation network is able reducing the impact of
such failures on traffic flow, human safety and urban economy.

Vulnerability can be viewed as the flip-side of resilience: a
vulnerable system has limited ability to absorb and react to
the strains caused by adverse events. The availability of real-
time information provided by a growing number of sensors
and small devices distributed across geographic areas makes
it possible today to use novel approaches to study robustness
and adaptation ability of cities against possible unpredictable
events, thus reducing their vulnerability. Moreover, the adop-
tion of cloud computing and big-data techniques to effectively
analyze this large amount of data paves the way to more
quantitative studies to characterize city infrastructures. City
key indicators derived from quantitative complex analyses will
help planners and mobility operators to clearly identify vul-
nerabilities and adopt relevant strategies to mitigate risks. This
is particularly important for physical transportation networks
where accidents, weather conditions and social events create
everyday risky situations for their correct operation.

In this paper, we present a graph-based framework that helps
to identify the impact of breakage on very large road networks.
The framework takes into consideration the existence of sig-
nificant correlations between network properties and structural
features of road networks, by focusing, in this work, only on
the nominal state of the transportation network with correctly
operating links and free-flow traffic conditions.

First, we analyze vulnerability using Global Efficiency
(GE) [24], a network metric that has been widely used to
characterize the overall resilience of power grids [22], the
Internet [27], biological [1] and transportation [21] networks.
Then, to spot the most vulnerable nodes inside the network
we use Betweenness Centrality (BC), a fundamental metric of
centrality already used in transportation to identify topolog-
ical criticalities [4], [21], and traditionally preferred to other
centrality metrics such as degree and closeness centrality [32].
BC has also been adopted for analyzing and predicting traffic
flows in transportation networks [15], [19]. However, studying
the impact of network breakage on road traffic remains a
very complex task, difficult to be treated with traditional
desktop hardware and state-of-the-art algorithms, especially
in large metropolitan areas with a large amount of links and
intersections.



The lowest time complexity for computing exact BC has
been achieved by the algorithm proposed in [5]. Even though
this algorithm is highly parallelizable, effective real-time vul-
nerability monitoring of large agglomerations requires much
faster solutions on reasonable hardware. To that end, we
propose the adoption in our framework of an approximated
technique to compute BC. The algorithm has been proposed by
the authors themselves in previous work [9], [10] to accelerate
computation of BC, by keeping the error below a reasonable
threshold depending on the specific requirements on compu-
tation time. In this paper, we integrate the algorithm in our
proposed framework and prove the technique to be adequate
for real-time M -contingency analysis of road networks due to
its ability of tuning precision and performance.

M-Contingency analysis is a simulation-based technique
that considers different qualitative assumptions over M likely
events or phenomena in order to imagine different scenarios
and come up with optimal responses under the analyzed
circumstances. In the paper, the analysis is conducted on the
road network of Lyon, France

The rest of the paper is organized as follows. In Sec. II, we
present related work. In Sec. III, we describe our model and
the metrics used to represent road-networks and their vulnera-
bilities, respectively. In Sec. IV, we present the framework
for performing M-contingency analysis and in Sec. V the
large-scale dataset used for testing the framework. Sec. VI
shows the result of the evaluation of the framework and
in particular of the algorithms adopted with the considered
dataset. Sec. VII reports instead on a synthetic performance
index that can be helpful for a user to configure the framework
towards the desired behavior depending on the specific domain
requirements. Sec. VIII concludes the paper by also discussing
future directions.

II. RELATED WORK

Various approaches have been proposed for quantifying the
vulnerability of transportation networks, traditionally in off-
line mode. Works include study of the impact of breakage
in transportation networks in single-layer [21], multilayer [7]
and multi-modal networks [30], by introducing random [7]
or central (or critical) nodes failure [21]. Similarly, in a
recent work [13], some authors of this paper have leveraged a
mesoscopic fully fledged traffic simulator to perform contin-
gency analysis for resilience evaluation, clearly showing the
limitations in terms of computation time of traditional traffic
simulation tools, which prove to be inappropriate for real-
time vulnerability assessment, but much accurate in capturing
complex traffic and user dynamics beyond basic topological
network properties.

In graph-based modeling, one of the most used metric to
calculate nodes’ centrality is BC [8], especially in transporta-
tion network settings [32]. A large stream of transportation
studies have exploited BC for traffic flow prediction (e.g.,
[2], [12], [14], [33]) or vulnerability quantification (e.g., [4],
[21], [32]). In this context, some authors have highlighted
limitations of the BC metric in representing traffic dynamics

[12], [14], [16], [20]. However, such shortcomings can be
overcome by augmenting the graph representation of the
networks by taking into account also spatio-temporal aspects
(e.g., congestion, accidents, road capacity changes, etc.) and
geometric properties of road network [33], mapping them
on a weighted dynamic graph. This additional information
contributes to improve the effectiveness of the analysis but
does not impact performance for searching relevant nodes in
very large networks, which is the main objective of this work.

For the reasons above, we assume that road networks are
in steady state and modeled as unweighted and undirected
graphs. This assumption has been adopted also in other studies
[4], [21], [32]. Some of them have tried to understand the
effect of breakage, especially of nodes selected via BC, on
transportation network in various parts of the world, such
as Toronto [21], Melbourne [25], Sweden [17] and other
metropolitan cities [4]. In comparison, no other study has
been performed on Lyon metropolitan road network, which,
differently from most other studied cases, is a non-scale-free
graph' [26]. Moreover, the datasets being used in previous
studies are relatively small, that is in the order of thousands of
nodes. A larger size has an important impact on performance
as the computation time for calculating BC is very high.

Very recently, some researchers have proposed different
(exact or approximated) solutions to reduce the computation
time of BC [3], [5], [29], [31]. In [23], an efficient algorithm
for calculating BC has been proposed for incremental BC
computation. However, the high speedup, characterizing the al-
gorithm when one single node is inhibited, drastically reduces
when analyzing the impact of M nodes. These incremental
algorithms are very fast and useful when network changes are
limited and continuous, but M -contingency analysis is a much
more complex and challenging problem as it should consider
M different perturbations of the network to simulate possible
critical scenarios as consequence of catastrophic events or
phenomena.

In conclusion, a proper contingency tool for vulnerability es-
timation in large-scale transportation networks is still lacking.
In our study, we focus on reducing the computational effort
required to compute network metrics for vulnerability analysis,
in light of proposing a solution for on-line and continuous
monitoring over large-scale networks.

III. NETWORK MODELING AND METRICS

In this section, we introduce the model adopted for repre-
senting road networks and the metrics used to measure their
degree of vulnerability. Such representation and metrics are
adopted as part of the framework for vulnerability assessment
described in Sec. IV.

A. Network representation

We model transportation networks as undirected graphs
G(V, E), where V denotes nodes and £ C V x V edges.

'A scale-free graph is characterized by a power-law degree distribution,
i.e., a very limited set of nodes in the graph has a very large degree, while
the majority of the nodes has only a few neighbors.



Each node v; represents an intersection in the network and an
edge e;; between nodes v; and v; represents a road. N = |V/|
denotes the number of nodes in the graph.

A path p(v;, v;), between two nodes v; and v;, consists
of a set of nodes and edges that connect these two nodes. If
this set does not exist, the graph is disconnected in separated
components. The length of a path between any two nodes v;
and v;, represented by len(p(v;, v;)), is the number of edges
(or hops) to reach v; from v;. If nodes v; and v; are directly
connected, then the path length is 1. A shortest path between
any two nodes v; and v;, denoted as sp(v;, v;), is a path with
the minimum number of hops among all the paths connecting
the two nodes. Multiple shortest paths may exist between
the same pair of nodes, i.e., all the paths having the same
minimum number of hops. We denote as 0,,; the number of
shortest paths between v; and v;, while oy,,, (vg) represents
the number of shortest paths from v; to v; that cross node vy,.

B. Nodes removal strategies

To analyze the impact of unpredictable events on network
vulnerability, we can consider different nodes removal strate-
gies, depending on the scenarios we intend to simulate for the
analysis:

1) Possible case: the nodes are removed uniformly at
random. This particular strategy captures real scenarios
where an event can happen at any road or intersection
causing traffic disruptions;

2) Worst case: removed nodes are the most critical ac-
cording to a centrality index; they represent possible
vulnerabilities of a road network.

The framework we propose in this paper is able to work
in both the scenarios. However, for performing the correlation
analysis between vulnerabilities and graph metrics, we target
the worst case scenario.

As a metric to establish a criticality ranking of nodes, we
consider BC [8], since it measures the number of shortest paths
crossing a node. Nodes with higher BC correspond to central
intersections from an infrastructural perspective, being usually
selected by commuters to reach their destinations and naturally
prone to breakdown compared to other nodes. The BC of a
node vy is defined as:
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where ., is the total number of shortest paths from node
v; to node v; and o, (vx) is the number of those paths that
cross v. For scaling purpose, values are often normalized by
dividing them by N - (N — 1).

C. Resilience metrics

Network partitioning and network ability to move vehicles
among nodes with a short number of hops might be useful
metrics to evaluate the impact of network breakages on trans-
portation networks. Therefore, to quantify the resilience of a
road network, we consider the following metrics:

1) Global Efficiency (GE): represents the ability to effi-
ciently exchange information in the network [24]. Let
N be the total number of nodes in the network, and
len(sp(vi,v;)) the length of the shortest path between
any two nodes v; and v;, the GE of the network G is
defined as:

1 1
T N(N-1) ; len(sp(vi, vj))

GE(G) )

2) Vulnerability: is defined as the drop in information

exchange due to removal of a node and all corresponding
edges [6]. Formally it is defined as:

GE — GE,,
Vi, = —Qar (3)

where GE is the global efficiency of the original network

as from Eq. 2 and GE,, is the global efficiency after the
removal of node v; and all the edges incident on it.

IV. ON-LINE FRAMEWORK FOR CONTINGENCY ANALYSIS

The framework that we propose in this paper aims at
providing public administrators and maintenance enterprises
with an easy-to-use tool for handling contingencies.

It has been developed as a multi-tier Web application and,
according to this pattern, it is composed of four main logical
tiers (see Fig. 1): (a) a Web-based client implemented atop
Angular]S; (b) a front-end tier, exposing REST services to
the client; (c) a business logic tier for supporting transactional
accesses to data stored in the data-tier and for processing data
when specific events occur, through Spark parallel jobs; (d) a
data tier for handling graph-structured data, implemented atop
Neo4J, and for storing unstructured or semi-structured data
through HDFS.
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Fig. 1. Road Management Framework: multi-tier architecture

The framework Graphical User Interface (GUI) is presented
in Fig. 2. The sidebar on the left enables a user (a) to filter
nodes on the basis of their BC values, (b) to execute a job with
the current configuration of potential faulty nodes and (c) to
enable GUI auto-refresh. Additionally, it shows the number of
filtered nodes and the status of the computation.

Faults, on the other hand, can be injected directly on the
map, shown on the right side of the GUI. Here, each node is
represented by a marker whose selection activates a popover to
inject a fault. Several faults could be selected before triggering
the computation of the new values of betweenness centrality
through the processing of the underlying graph (job execution).



Marker colors map nodes to a discrete representation of BC,
based on three levels: green, 0 < BC < x; orange, x < BC <
y; red, BC > y.

Road Management @
Framework
Uve beweenness ads mororny

Filter by BC ranking

Fig. 2. Road Management Framework: GUI

By using the framework, a M-contingency analysis can be
conducted, by identifying the potential critical nodes in case M
hypothetical faults are injected into the network. Similarly, by
exposing the REST API of the framework to external sensors,
real faults could be captured and projected into the graph to
analyze in quasi real-time the new network configuration. The
dynamic interactions among the main software components of
the system are described by the sequence diagram of Fig. 3.
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Fig. 3. Road Management Framework: dynamic diagram capturing the main
interactions among the framework components.

When a fault is injected into the system, the graph modeling
the road network is changed and consequently a new process-
ing job can be started to execute the algorithms proposed by
the authors in [9], [10], whose code is written in Scala. The job
is executed asynchronously on the Spark framework and, once
terminated, the client refreshes the map to show the potential
up-to-date vulnerabilities of the new network configuration.

V. DATASET

To test the framework with our algorithms for fast BC
processing, we consider a graph corresponding to the road
network of the Grand Lyon metropolitan area, France, and
its surroundings, covering an area of approximately 3,000
Km? (see Figure 4a). This dataset was created using digital
maps supplied by the French National Institute of Geographic
Information (IGN). The network consists of 112,567 nodes
and 240,372 edges.

-~ — Road traffic network
[ Lyon
] Grand Lyon

(a) Map (in red) of the analyzed road network and its
geographical extent

(b) Most critical nodes according to the BC metric (A6 and
D383 highways)

Fig. 4. The Grand Lyon road traffic network.

In the original graph, some roads are split in multiple
segments to capture properties that change along the road itself
(e.g., street name, road slope, etc.). This means that a single
long road with no real intersections along it can be actually
composed of multiple nodes and edges in the graph. We
decided to filter out this fine-grained information, by retaining
only actual intersections and link endpoints as the nodes of
our dataset. Next, to avoid a disconnected graph, we selected
only the largest connected component (termed Gryo, in the
following) by filtering out very small isolated subnetworks
that typically include country roads or cut areas lying at the
border of the analyzed region. Finally, due to partial available
information on road driving direction and number of lanes,
we treat the network as undirected. We remark here that the
solutions described in the next section can be easily extended
to work with directed and weighted graph.

The final Gpyon graph has 75,474 nodes and 96,406 edges.
Nodes with the highest values of BC mostly correspond to
highway interchanges (e.g., the A6 and D383) and roads
that cross bridges, as reported in Fig. 4b. These represents
elements of the network with limited alternative routes, and
thus highly vulnerable spots from a topological perspective.
The graph has a density of 3.38¢7%° and clustering coefficient
of 0.054. Its average path length and diameter are 84.74
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Fig. 5.

and 244, respectively. The graph is therefore very sparse and
characterized by a Gaussian distribution of the node degree,
with an average value of 2.55.

VI. EVALUATION

We evaluated the framework with our Scala algorithms [9],
[10] for fast computation of BC, by leveraging multi-core pro-
cessing for parallel execution. Apache Spark was configured to
work in local mode, using 10 threads to partition the execution
load of the map-reduce tasks on the available cores of an
Intel Xeon ES 2.4 GHz multi-core machine, equipped with 56
virtual cores and 128 GB of DDR4 RAM. We also considered
a Scala implementation of Brandes’ algorithm [5] (referred as
Exact-BC), used as a benchmark in performance evaluation.
Exact-BC was executed in the same testing environment used
for Fast-BC, with 10 threads for parallelism.

A. Betweenness centrality for vulnerability assessment

In this section, we use the framework to verify and quantify
the presence of correlation between vulnerability (as from
Eq. 3) and nodes’ betweenness centrality on the Gy o, network,
the latter values computed with the Exact-BC algorithm.

The framework is leveraged to simulate network failures,
by removing M nodes from the graph and by measuring the
new values of the vulnerability metric after nodes removal.
As a criterion to select nodes for removal, we consider the
descending order of BC (i.e., worst-case contingency). Since
Gryon 18 characterized by many nodes with very close values
of BC, to better verify the correlation between vulnerability
and BC, we group the nodes of the graph in multiple ranges
of BC, via Jenks natural breaks classification method [18].

(e) Vulnerability analysis with M = 16

(f) Vulnerability analysis with M = 32

Impact of M nodes removal from different BC-ranges on network vulnerability

The number of ranges considered in our analysis is equal
to eight?>. Hence, we perform five tests by removing M (M=
2,4, 8, 16 and 32) nodes, selected uniformly at random from
each of the ranges. Nodes are inserted back in the graph after
each test with a specific BC range. We repeat each test several
times to make our results statistically relevant.

Fig. 5a shows the scatter plots of the impact of M -nodes
removal from the eight classes (mean BC of the M removed
nodes on the X-axis) on vulnerability (Y-axis), where M
is represented by different colors and markers, and a linear
regression shows the relative trend. As expected, vulnerability
increases sharply as mores nodes (i.e., larger M) are removed
from each class. This is especially evident in those classes
with higher BC values. The linear regression for each of the
class shows the linear behavior with different values of slope.

Figures 5b:5f plot vulnerability for M = 2, 4, 8, 16 and 32,
respectively. In each one of these micro-analyses, we observe a
similar pattern by using box plots. The analysis clearly shows
that removing nodes with BC in higher classes (on the right
side of the X-axis) increases vulnerability more than removing
nodes in lower BC classes.

Nodes with higher values of betweenness centrality are the
ones that affect most vulnerability of a road-traffic network.
Monitoring should continuously identify these nodes since, if
disrupted, they may significantly reduce network connectivity.
On the other hand, their inhibition may significantly alter
network topology, forcing to recompute betweenness centrality
for the whole network.

2Qther numbers of ranges have been tested with similar results.
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B. M-contingency analysis: approximated fast BC

We tested the framework in two different operation modes,
based on two different algorithms aimed at rapidly computing
approximate BC values. The first mode, called /C-Fast-BC,
exploits topology-based clustering to reduce the number of
breadth-first-searches performed by the Brandes’ algorithm.
This strategy has been originally proposed in [29] by the
authors. The second mode, called 2C-Fast-BC, exploits an
algorithm aimed at further reducing execution time on non-
scale-free graphs, by preserving acceptable levels of accuracy
in BC approximation. This behavior is desirable when compu-
tation time must be very low and errors are tolerated below a
specific threshold. The 2C-Fast-BC algorithm extends the one
used with /C-Fast-BC by means of an additional clustering
procedure, implemented via a Map-reduce parallel version of
K-means clustering, based on the implementation provided in
Apache Spark MLIib machine learning library. The 2C-Fast-
BC algorithm has been originally presented in [9], [10] by the
authors, and it has proved to allow for a quicker computation
of BC values than /C-Fast-BC, at the price of larger error.

It is worth to remark that, as a consequence of the adopted
algorithms, the /C-Fast-BC mode corresponds to a parameter-
free configuration of the framework, while the 2C-Fast-BC
one requires the setting of one single parameter (i.e., K-
fraction) in the range [0, 1], where O means tolerating a larger
approximation error in order to achieve the smallest possible
computation time. Conversely, a K-fraction of 1 drives the
algorithm towards the most precise approximation (the same
as provided by IC-Fast-BC), but with a larger execution time.

In the following, we briefly report on the performance trade-
off characterizing the 2C-Fast-BC algorithm, compared to the
1C-Fast-BC and the Exact-BC, evaluated in the Gryo, case
study. The interested reader may refer to our previous work [9]
for a more detailed description of the algorithms, as well as
their evaluation on different kinds of graphs (e.g., scale-free,
small world, random).

Given the specific conceptual design of the proposed al-
gorithms and our objective of continuously monitoring only
the most critical intersections of the road-traffic network, the
reported performance analysis focuses on the most-critical
nodes of the network (e.g., top-100, top-5%, etc.). However,
it is worth to remark that BC is computed for all the nodes of

3000,

0.30 = Exact-BC (Brandes)
\ 2C-Fast-BC 0.001

2C-Fast-BC (10 threads),
2500 --- 1C-Fast-BC (10 threads)
(10 threads) 0.25

2000} - - -

Time

1500

Normalized BC
o
N
S

Exec

1000

0.15 ‘?‘v\\\

500 o S
0.10 “"‘;A.“.

0.0 0.2 0.4 0.6 0.8

20 40 60 80
K-Fraction Nodes ranked by Exact-BC (top-100)

(a) Execution time of 2C-Fast-BC
with different K-Fractions

(b) BC values with K-Fraction =
0.001
for the top-100 nodes

0.300
mm— Exact-BC (Brandes)

0.275 2C-Fast-BC 0.3

0.300% Perc. Error

0.250 0.200%
o
20225
5
?
50200
s
Eo017s
s

0.100%

0.000%

Perc. Error [%]

Z 0150
-0.100%
0.125
0.100 -0.200%

20 40 60 80 100 20 40 60 80 100
Nodes ranked by Exact-BC (top-100) Nodes ranked by Exact-BC (top-100)

(c) BC values with K-Fraction = 0.3 (d) Percentage error with K-Fraction
for the top-100 nodes =03
sover the top-100 nodes

Fig. 7. Performance Evaluation of the 2C-Fast-BC algorithm

the network.

Fig. 6 shows the normalized BC values computed by the
1C-Fast-BC and Exact-BC algorithms for the top-100 nodes,
ranked according to their exact value of BC. Fig. 6a highlights
an almost perfect overlap of the two curves, confirmed by
the extremely low percentage error in Fig. 6b, bounded in
the range [-0.015%, 0.015%]. In other words, the /C-Fast-BC
algorithm produces the exact same results (i.e., identification
of the most critical nodes) reported in Fig. 4b for Exact-BC on
the Gryon graph. However, the algorithm takes 1,688 seconds
to complete, a fairly limited improvement with respect to the
1,982 seconds of the Exact-BC.

Fig. 7a shows that 2C-Fast-BC execution time stays below
both /C-Fast-BC and Exact-BC (that do not depend on the
K-fraction parameter), up to very large values of K-Fraction
(i.e., 0.8). Larger values of the parameter result in higher
execution times (larger than the ones of /C-Fast-BC for K-
Fraction > 0.8) due to the computation overhead associated
to K-means clustering. Obviously, lower K-Fractions introduce
a larger approximation that negatively affects BC values even
for critical nodes. As an example, Fig. 7b presents BC values
for the top-100 nodes when using an extremely low K-Fraction
of 0.001. For this configuration, computation time is extremely
low (69 s) but percentage error is relatively high (i.e., in the
range [-12%, 12%]). Conversely, by choosing slightly larger
K-Fractions (e.g., a K-Fraction of 0.3), the algorithm quickly
converges towards very good levels of accuracy, as highlighted
by the perfect overlap with the Exact-BC values in Fig. 7c.
Such improved approximation is confirmed by a percentage
error in the range [-0.2%, 0.3%] (see Fig. 7d). As in the
previous case of /C-Fast-BC, the most critical nodes reported
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(d) enrae = 0.25, tarae = 600s

Performance

in Fig. 4b were correctly identified by the 2C-Fast-BC on
the Gryon graph. Most importantly, the 2C-Fast-BC with a K-
Fraction of 0.3 executed in only 609 seconds, corresponding
to a 277% and a 325% decrease in execution time with respect
to the /C-Fast-BC and Exact-BC, respectively.

VII. AN AGGREGATE INDEX OF PERFORMANCE FOR
FRAMEWORK CONFIGURATION

Since the 2C-Fast-BC algorithm generates approximated BC
values in a time depending on the error we can tolerate,
an aggregated index for evaluating both performance and
accuracy is useful. To this end, we propose the following:

tw_tiea x

The equation depends on two variables that are computed
after executing 2C-Fast-BC in configuration z: 1) the time
taken (¢,) for BC calculation; 2) the NRMSE error® (e,)
of the approximated BC values. The equation includes three
parameters t;geql, tarae and eprq. that can be fixed according
to the specific domain requirements. Specifically, ¢574, is the
maximum tolerated execution time. Similarly, e, represents
the maximum allowed NRMSE. Finally, t;4.,; constitutes the
minimum amount of time allowed to the execution of the
algorithm. The idea is to compute P(x) during a profiling
phase on a given network, where the framework is tested in
different modes and with several values of K-fraction.

In the first setting of the P metric, represented in Fig. 8a,
we defined ?;4.4; equal to the execution time of the fastest
2C-Fast-BC configuration, i.e., 60 seconds with a K-Fraction

3The NRMSE is defined as: % % A e?, with & denoting the mean

of the exact BC values and e; representing the difference between exact and
approximated values of BC for node i. NRMSE is generally preferred to the
percentage error when O-values are present among the expected ones.
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Fig. 9. 3-d Performance curves with different values of tymae and emax
(tidear = 0s)

of 0.001. We set tpr42 to the execution time of the Exact-BC
algorithm (i.e., 1,982 seconds) and e, to 0.25. This setting
rewards computing times below the one of Exact-BC and
errors below 25% NRMSE. Fig. 8a clearly shows the values
of K-Fraction satisfying these performance requirements, i.e.,
K-Fraction should be selected within the range [0.05, 0.7],
with the most performing configuration being associated to a
K-Fraction of 0.15. A comparison with the performance of
Exact-BC and 1C-Fast-BC is visually reported in the figure.

Different settings of ejrq, and tprq, are depicted in
Figs. 8b:8d. Such settings correspond to more stringent re-
quirements on the tolerated NRMSE (Figs. 8b and 8c) and
execution time (Fig. 8d), respectively. Interestingly, a con-
figuration with an extremely low tolerated execution time of
600 seconds and maximum NRMSE of 0.25 (Fig. 8d) can
be satisfied only by using the 2C-Fast-BC with a K-Fraction
between 0.001 and 0.25.

In Fig. 9, we exploit 3D plots to represent the surfaces
generated by varying the two parameters ¢p;q, and epsq, in
Eq. 4, for both 1C-Fast-BC and 2C-Fast-BC. Fig. 9a compares
the performance of 1C-Fast-BC to that of Exact-BC. The two
surfaces are mostly overlapping, thus showing very similar
performance on the G0, graph. In particular, performance
is slightly better with 1C-Fast-BC when a larger maximum
error (i.e., larger than 0.4) can be tolerated. Exact-BC should
instead be preferred whenever the maximum tolerated time is
large enough (i.e., larger than 1600 seconds) for the algorithm
to complete, and the maximum tolerated error is smaller than
0.2. Different configurations of 2C-Fast-BC are compared to
1C-Fast-BC in Figs. 9b:9d. Specifically, Fig. 9b is related to
the lowest values of K-Fractions (i.e., 0.001) considered in
our evaluation. Good performance can be achieved with this



configuration when the maximum tolerated execution time is
significantly low (e.g., lower than 100 seconds), and a fairly
large error on BC values can be tolerated (e.g., larger than
0.5-0.6). Configurations with larger K-Fractions (e.g., 0.3 in
Fig. 9c) appear to be generally preferable when requirements
are not particularly stringent both on BC error and computation
time. Finally, configurations with larger K-Fractions tend to
exhibit performance that are very close to that of 1C-Fast-BC
(see Fig. 94d).

VIII. CONCLUSION

We have presented a big-data framework and its tuning
capabilities for performing real-time M -contingency analysis.
The framework is based on fast algorithms for computing
betweenness centrality in a graph-based representation of road
networks. This metric, in fact, has proved to be strongly related
to vulnerabilities, identified via the decrease of the global
efficiency of a network.

The results are very promising since the algorithms, on the
basis of a tolerated approximation, are able of rapidly locating
the most M critical nodes of a faulty road network.

In order to generalize the approach to dynamic networks,
three main extensions are planned: 1) adapting the algorithms
for fast BC computation to weighted and directed graphs; 2)
enriching network modeling by taking into account additional
properties of road networks (e.g., road length and capacity,
number of lanes, land use information [11]), as well as
dynamic traffic data (e.g., demand, accidents, travel times,
etc.); 3) studying the impact of nodes removal in multi-modal
transportation networks modelled as multilayer networks [28].

Moreover, the framework will be extended with features
to: 1) collect heterogeneous data from sensors; 2) adaptively
change the settings of the 2C-Fast-BC algorithm accord-
ing to dynamically evolving domain requirements (e.g., the
framework could run in an emergency mode, requiring low
computation time and larger tolerated error, or alternatively in
a maintenance mode, demanding smaller error but allowing
for more execution time).
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