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Abstract1

The ability to detect critical spots in transportation networks is fundamental to improve2

traffic operations and road-network resilience. Real-time monitoring of these networks, especially3

in very large metropolitan areas, is a compelling challenge due to the complexity of computing4

robustness metrics.5

This paper presents a study of vulnerability in a real-world, very-large road network by6

adopting graph-based modeling and analysis, and big-data techniques for processing the related7

datasets. We first analyze the correlation between global efficiency and betweenness centrality,8

proving that nodes with higher betweenness centrality influence network vulnerability the most.9

Then, we present an algorithm for fast computation of approximated betweenness centrality10

that significantly reduces execution time. The evaluation shows that the approximation error11

does not significantly affect the most critical nodes, thus making the algorithm well-suited for12

on-line operational monitoring of road networks vulnerability.13
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1. INTRODUCTION1

Nowadays, cities are facing unprecedented challenges due to urbanization, climate change, and fast2

technology advances. They will be forced to cope with growing populations and connected (digital3

and physical) infrastructures whose robustness and resilience will become an essential property for4

their continuous operation.5

Resilience describes the ability of a given system to provide fundamental services to people6

without discontinuity, even in presence of adverse or catastrophic events. As a consequence, it will7

be a key property for achieving smartness in cities of the near future. Resilience concerns several8

infrastructures used for transporting goods or people: energy, water, information and road networks9

are a few examples. An unforeseen event that originates a breakage of one of these infrastructures10

may cause incalculable damages with serious socio-economic consequences.11

Transportation networks are bound to controllable (e.g., riots, technical errors, etc.) and un-12

controllable events (e.g., earthquakes, floods, etc.) that can easily cause disruptions in the smooth13

operation of their services. In transportation literature, resilience is widely considered crucial to14

understand and quantify network robustness with respect to different kinds of failures and other15

unpredictable events [1, 2, 3, 4].16

While resilient transportation networks can help in reducing the impact of such failures on traffic17

flow, human safety and urban economy, vulnerability can be viewed as the flip-side of resilience: a18

vulnerable system has limited ability to absorb and react to the strains caused by adverse events.19

The availability of real-time information provided by a growing number of sensors and small20

devices distributed across geographic areas makes it possible today to use novel approaches to21

study robustness and adaptation ability of cities against possible unpredictable events. Moreover,22

the adoption of cloud computing and big-data techniques to effectively analyze this large amount23

of data opens the way to more quantitative studies to characterize city infrastructures. City key24

indicators derived from quantitative complex analyses will help planners and mobility operators to25

clearly identify vulnerabilities and adopt relevant strategies to mitigate risks. This is particularly26

important for physical transportation networks where crashes, weather conditions and social events27

create everyday risky situations for their correct operation.28

In this paper, we follow a network-based approach to characterize the impact of breakage on road29

networks. We aim at identifying significant correlations between network properties and structural30

features of road networks. To this end, we start by considering a steady state of the transportation31

network with correctly operating links and free-flow traffic conditions.32

We study vulnerability using Global Efficiency (GE) [5] which has been widely used in varied33

types of networks, such as power grids [6], the Internet [7], biological networks [8] and transporta-34

tion [1]. To identify vulnerable nodes we use betweenness centrality (BC), a fundamental metric35

of centrality already used in transportation to identify topological criticalities [1, 4], traditionally36

preferred to other centrality metrics such as degree and closeness centrality [3]. BC has been also37

adopted for analyzing and predicting traffic flows in transportation networks [9, 10]. However,38

studying the impact of network breakage on road traffic remains a very complex task, difficult to39

be treated with traditional desktop hardware and state-of-the-art algorithms, especially in large40

metropolitan areas with a tremendous amount of links and intersections.41

The best algorithm for computing exact BC has been proposed in [11], however real-time moni-42

toring needs faster algorithms joined with big data computation techniques and scalable hardware.43

In this work, we propose a fast algorithm to compute approximate BC for quickly locating the nodes44

of a transportation network that severely impact its vulnerability. The paper overcomes state-of-45

the-art limitations by building the foundation for real-time M -contingency analysis of dynamic46

traffic networks (including information on traffic flow, traffic demand, accidents, etc.), focusing on47

the road network of Lyon, France. M -Contingency analysis is a simulation-based technique that48
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considers different qualitative assumptions over M likely events or phenomena in order to imagine1

different scenarios and come up with optimal responses under the circumstances.2

The rest of the paper is organized as follows. In Sec. 2, we present related work. In Sec. 3,3

we describe our model and the metrics used to characterize road-network vulnerability. In Sec. 4,4

we discuss the large-scale dataset used in our analysis, while in Sec. 5 we present the algorithm5

proposed for fast BC calculation. In Sec. 6, we evaluate our approach on the considered dataset.6

We conclude in Sec. 7 by also discussing future directions.7

2. RELATED WORK8

Several graph-based metrics have been proposed for the analysis of transportation networks vulner-9

ability. To simulate the process of network breakage and evaluate network robustness, nodes can be10

removed by using various strategies such as randomly or by selecting relevant nodes with respect11

to a given metric. It is intuitive that nodes at very central position of the network, i.e., crossed by12

multiple shortest paths, could be highly critical spots. Thus, breakage of such nodes may have a13

higher impact on the network compared to non-central ones. In this regard, one of the most used14

metric to calculate nodes’ centrality is BC [12], especially in transportation network settings [3].15

A large stream of transportation studies have exploited BC also for traffic flow prediction (e.g.,16

[13, 14, 2, 15]) or vulnerability quantification (e.g., [1, 3, 4]). In this context, some authors have17

highlighted limitations of the BC metric in representing traffic dynamics [16, 13, 15, 17]. However,18

such shortcomings can be overcome by augmenting the graph representation of the networks by19

taking into account also spatio-temporal aspects (e.g., congestion, accidents, road capacity changes,20

etc.) and geometric properties of road network [2], mapping them on a weighted dynamic graph.21

This additional graphs information contributes to improve the effectiveness of the analysis but22

does not impact performance for searching relevant nodes in very large networks, which is the main23

objective of this work.24

For the reasons above, we assume that road networks are in steady state and modeled as25

unweighted and undirected graphs. This assumption has been adopted also in other studies [1, 3, 4].26

Some of them have tried to understand the effect of breakage, especially of nodes selected via BC,27

on transportation network in various parts of the world, such as Toronto [1], Melbourne [18],28

Sweden [19] and other metropolitan cities [4]. In comparison, no other study has been performed29

on Lyon metropolitan road network, which, differently from most other studied cases, is a non-30

scale-free graph1. Moreover, the datasets being used in previous studies are relatively small, that is31

in the order of thousands of nodes. A larger size has an important impact on performance as the32

computation time for calculating BC is very high.33

Very recently, some researchers have proposed different (exact or approximated) solutions to34

reduce the computation time of BC [11, 20, 21, 22]. In [23], an efficient algorithm for calculating35

BC has been proposed for incremental BC computation. However, the high speedup, characterizing36

the algorithm when one single node is inhibited, drastically reduces when analyzing the impact of37

M nodes. These incremental algorithms are very fast and useful when network changes are limited38

and continuous, but M -contingency analysis is a much more complex and challenging problem as39

it should consider M different perturbations of the network to simulate possible critical scenarios40

as consequence of catastrophic events or phenomena. In [24], authors have analyzed large scale-free41

graphs by proposing an approximated BC algorithm. However, in spite of a modest improvement42

of performance, BC accuracy largely fluctuates over the top-100 nodes, exhibiting an important43

error even on critical nodes.44

1A scale-free graph is characterized by a power-law degree distribution, i.e., a very limited set of nodes in the
graph has a very large degree, while the majority of the nodes has only a few neighbors.
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In conclusion, a proper contingency analysis for vulnerability estimation in large-scale trans-1

portation networks is missing from existing studies. In our study, we focus on reducing the compu-2

tational effort required to compute network metrics for vulnerability analysis, in light of proposing3

a solution for on-line and continuous monitoring over large-scale networks. To the best of our4

knowledge, this is the first paper tackling this perspective with respect to road-traffic networks, by5

advancing the state of the art of M -contingency analysis.6

3. NETWORK MODELING AND METRICS7

In this section, we introduce the model used for road networks representation and the metrics to8

measure their degree of vulnerability.9

3.1. Network representation10

We model transportation networks as undirected graphs G(V , E), where V denotes nodes and E11

⊆ V × V edges. Each node vi represents an intersection in the network and an edge eij between12

nodes vi and vj represents a road. N = |V | denotes the number of nodes in the graph.13

A path p(vi, vj), between two nodes vi and vj , consists of a set of nodes and edges that connect14

these two nodes. If this set does not exist, the graph is disconnected in separated components. The15

length of a path between any two nodes vi and vj , represented by len(p(vi, vj)), is the number of16

edges (or hops) to reach vj from vi. If nodes vi and vj are directly connected, then the path length17

is 1. A shortest path between any two nodes vi and vj , denoted as sp(vi, vj), is a path with the18

minimum number of hops among all the paths connecting the two nodes. Multiple shortest paths19

may exist between the same pair of nodes, i.e., all the paths having the same minimum number of20

hops. We denote as σvivj the number of shortest paths between vi and vj , while σvivj (vk) represents21

the number of shortest paths from vi to vj that cross node vk.22

3.2. Nodes removal strategies23

To analyze the impact of unpredictable events on network vulnerability, we can consider different24

nodes removal strategies, depending on the scenarios we intend to simulate for the analysis:25

1. Possible case: the nodes are removed uniformly at random. This particular strategy cap-26

tures real scenarios where an event can happen at any road or intersection causing traffic27

disruptions;28

2. Worst case: removed nodes are the most critical according to a centrality index; they represent29

possible vulnerabilities of a road network.30

In this paper, we target the worst case scenario. As a metric to establish a criticality ranking of31

nodes, we consider BC [12], since it measures the number of shortest paths crossing a node. Nodes32

with higher BC correspond to central intersections from an infrastructural perspective, being usually33

selected by commuters to reach their destinations and naturally prone to breakdown compared to34

other nodes. The BC of a node v is defined as:35

BC(v) =
∑

s 6=v 6=t

σst(v)

σst
, (1)

where σst is the total number of shortest paths from node s to node t and σst(v) is the number36

of those paths that cross v. For scaling purpose, values are often normalized by dividing them by37

N · (N − 1).38
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3.3. Resilience metrics1

Network partitioning and network ability to move vehicles among nodes with a short number of hops2

might be useful metrics to evaluate the impact of network breakages on transportation networks.3

Therefore, to quantify the resilience of a road network, we consider the following metrics:4

1. Global Efficiency (GE): represents the ability to efficiently exchange information in the5

network [5]. Let N be the total nodes in the network, and len(sp(vi, vj)) the length of the6

shortest path between any two node vi and vj , the GE of the network G is defined as:7

GE(G) =
1

N(N − 1)

∑
i 6=j

1

len(sp(vi, vj))
. (2)

2. Vulnerability: is defined as the drop in information exchange due to removal of a node and8

all corresponding edges [25]. Formally it is defined as:9

Vvi =
GE −GEvi

GE
, (3)

where GE is the global efficiency of the original network as from Eq. 2 and GEvi is the global10

efficiency after the removal of node vi and all the edges incident on it.11

4. DATASET12

For our analysis, we consider a graph corresponding to the road network of the Grand Lyon13

metropolitan area, France, and its surroundings, covering an area of approximately 3,000 Km2
14

(see Figure 1a). This dataset was created using digital maps supplied by the French National15

Institute of Geographic Information (IGN). The network consists of 112,567 nodes and 240,37216

edges.17

(a) Map (in red) of the analyzed road-traffic network and
its geographical extent

(b) Critical nodes from the BC metric (mostly on the A6
and D383 highways)

Figure 1: The Grand Lyon road traffic network.

In the original graph, some roads are split in multiple segments only because of property changes18

across the segments (e.g., street name, road slope, etc.). This means that a single long road with19

no real intersections along it can be actually composed of multiple nodes and edges in the graph.20

We decided to filter out this noise, by retaining only real intersections and actual link endpoints as21
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nodes in our dataset. Next, to avoid a disconnected graph, we selected only the largest connected1

component (termed GLyon in the following) by filtering out very small isolated subnetworks that2

typically include only country roads or cut areas lying at the border of the analyzed region. Finally,3

due to partial available information on road driving direction and number of lanes, we treat the4

network as undirected. We remark here that the solutions described in the next section can be5

easily extended to work with directed and weighted graph.6

The final GLyon graph has 75,474 nodes and 96,406 edges. Nodes with the highest values of BC7

mostly correspond to highway interchanges (e.g., the A6 and D383) and roads that cross bridges,8

as reported in Fig. 1b. These represents elements of the network with limited alternative routes,9

and thus highly vulnerable from a topological perspective. The graph has a density of 3.38e−05 and10

clustering coefficient of 0.054. Its average path length and diameter are 84.74 and 244, respectively.11

The average degree is 2.55. These properties indicate that GLyon is very sparse in its nature. Fig. 3a12

shows its degree distribution, i.e., a Gaussian-like PDF where the number of road links merging at13

any intersection lies between 1 and 8, being 3 the most frequently observed degree. GE is equal to14

0.0148193, a fairly low value that confirms the generally low degree of connectivity of the graph. It15

is important to highlight the exploratory nature of our work from the graph-topology perspective,16

since a Gaussian-like distribution is different from those usually reported in previous studies on17

resilience analysis via BC that mainly considered scale-free topologies [4, 24, 13].18

5. FAST BC COMPUTATION19

To improve the efficiency of BC computation and support quasi real-time M-contingency analysis,20

we propose an approximated, cluster-based approach aimed at finding a useful trade-off between21

computation time and accuracy. The term useful depends on the specific application domain, as22

knowing the exact values of BC is often less important than discovering the highest BC-ranked23

nodes2.24

The proposed algorithm is based on Brandes’ one but also exploits an important property of25

betweenness: an edge with a high betweenness is highly traversed by shortest paths; consequently, it26

can be considered as a sort of backbone between two graph areas that identify possible clusters. The27

high number of shortest path crossing the high betweenness edge also contribute to a high value of28

BC of the nodes connected by such link [22].29

Consequently, if we are able to identify clusters inside a graph by using a more efficient algorithm30

than edge betweenness, which exhibits a O(|V||E|) time complexity, then we can focus computation31

mainly on border nodes of the clusters to calculate their (almost) exact BC, whereas BC of the32

other nodes could be approximated with an acceptable error.33

The approach has been previously studied by some authors of this paper in [22]. Here, we34

introduce a variation to address the problems arisen from the application of the original algorithm35

to the specific GLyon dataset.36

Before illustrating the algorithm, in this section we briefly describe Brandes’ algorithm, which37

is the basis of the proposed approach.38

5.1. Brandes’ Algorithm39

Given a pair-dependency of a source node s on an another node v for a destination t of the graph,40

defined as:41

δst(v) =
σst(v)

σst
,

2As required by the vulnerability assessment based on M -contingency analysis
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the betweenness centrality of any node v can be expressed in terms of dependency score δs•(v) =1 ∑
t∈V δst(v), obtained by summing the pair-dependencies of each pair of nodes on v that has s2

as source node. To compute this score, Brandes’ algorithm exploits a recursive relation that is3

motivated by this observation: let W = {w : v ∈ Ps(w)} be the set of nodes w such that v is4

a predecessor of w along a shortest path that starts from node s, and Ps(w) the set of direct5

predecessors of a generic node w in the shortest paths from the source node s to w, for unweighted6

graphs; then, v is a predecessor also in any other shortest path starting from s and passing through7

a different w ∈W [11]. Consequently, we have:8

δs•(v) =
∑

w:v∈Ps(w)

σsv
σsw

(1 + δs•(w)), (4)

Finally, the betweenness centrality BC of node v is obtained by:9

BC(v) =
∑
s∈V

δs•(v).

Conceptually, Brandes’ algorithm runs in two phases. During the first phase, it performs a10

search on the whole graph to find all the shortest paths starting from every node s, considered as11

source of the breadth-first exploration of the whole graph. Then, in the second phase, it performs12

dependency accumulation by backtracking along the discovered shortest paths. During these two13

phases, the algorithm maintains four data structures for each node found on the way: a predecessor14

list Ps(v), the distance ds(v) from the source, the number of shortest paths from the source σst(v)15

and the dependency accumulation when backtracking at the end of the search.16

5.2. One-level clustering fast BC17

In this section, we describe the proposed two-level clustering (2C-Fast-BC ) algorithm by first18

discussing the original one-level clustering (1C-Fast-BC ) technique with the support of the pseudo-19

code in Alg. 1 (see Fig. 2).20

Initially, given a graph G(V,E), we split it into a set C of clusters by using the Louvain method.21

This non-parallelizable algorithm exhibits a very good O(N · log(N)) complexity. It is a heuristic22

method for community (cluster) detection that exploits modularity [26] as a key metric for grouping23

nodes. Modularity is the ratio between the density of links inside communities to the one of the24

links among them.25

The quality of the detected communities differs according to the node order followed during the26

evaluation. To reduce this effect, we perform multiple runs in parallel of the method with different27

initial configurations. The result with the highest modularity value is selected for the next iteration28

and the process is repeated until no modularity variation is observed between two iterations.29

The main result of Louvain clustering is the identification of border nodes (an array for each30

cluster - line 3 of Alg. 1). A border node is a node having at least one neighbor node in a different31

cluster.32

Then, a parallel execution of Brandes’ algorithm is performed inside each cluster (line 6) to33

compute the local BC. This computation generates the partial inner-cluster contribution to the BC34

of each node and also additional information, such as the shortest paths and the distances from a35

node of a cluster towards each border node of the same cluster.36

The information above is used to identify the nodes inside each cluster that equally contribute37

to the dependency score of each node of the graph. To this end, we introduce a class of equivalence38

(BCgraph.classesi)
3 defined according to the following rule: two nodes v and w belong to the same39

3By using only one-level clustering, classes and super classes are equivalent
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Algorithm 1 Two-level Clustering Fast BC Algorithm

1: procedure ClusteredBrandes(G,C,KFrac)
2: map i← 1, |C| do
3: bordernodesi ← findBorderNodes(G,Ci)
4: end map
5: map i← 1, |V | do
6: BCgraph← computeLocalBC(i, C, bordernodes)
7: end map
8: reduce BCgraph.localBCi, Bgraph.localBCj , i = j do
9: BCclusteri ← BCgraph.localBCi +BCgraph.localBCj

10: end reduce
11: map i← 1, |C| do
12: BCgraph.superClassesi ← KMeansClustering(Ci, BCgraph.classesi,KFrac)
13: end map
14: map i← 1, (|BCgraph.superClasses|) do
15: Pi ← selectP ivotOf(BCgraph.superClassesi, BCcluster)
16: end map
17: map i← 1, (|BCgraph.superClasses|) do
18: δi ← computeDependencyScoresFromPivot(Pi)
19: δi ← (δi −BCgraph.localB) · |BCgraph.superClassesi|
20: end map
21: reduce δim, δjl,m = l do
22: BCm ← δim + δjl
23: end reduce
24: for i← 1, |V | do
25: BCi ← BCi +BCclusteri
26: end for
27: return BC
28: end procedure

Figure 2: 1C-Fast-BC algorithm with 2C-Fast-BC extensions in blue.

class if and only if they have the same normalized distance from each border node of that cluster and1

the same amount of shortest paths towards the border nodes. The normalized distance of node j is2

the length of the shortest path for reaching a border node minus the minimum distance among the3

ones of the shortest paths to reach each border node. Therefore, the smallest normalized distance4

is always zero.5

Taking into account that nodes belonging to the same class produce the same dependency score6

on each node of the graph, one representative node should be identified as a source node for applying7

Brandes’ algorithm. This node is called class pivot4. Since a pivot does not contribute to its BC,8

it is selected by considering the lowest BC value among the class nodes that are not border nodes9

(line 15).10

The partial dependency score calculated for the pivot (line 18) is then multiplied by the cardi-11

nality of the pivot class (line 19). This method avoids re-applying Brandes’ algorithm to another12

node of the same class, thus ensuring fast calculation of BC if P � N , where P represents the set13

of pivots selected and N represents the number of nodes of the graph.14

The final value of BC is obtained for each node (line 25) by summing up all partial contribu-15

4The partial contribution on border nodes of the same cluster of the pivot is the same only if pair-dependencies
with t /∈ Cs in Eq. 5.1 are considered (where Cs represents the pivot cluster).
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Figure 3: GLyon and GScale-free degree distributions and matching PDFs

tions (produced by the reduce operation) with local BC values (to compensate the partial local1

contribution subtracted at line 16).2

5.3. Two-level clustering fast BC3

The algorithm above exhibits very good performance [22] when the overall number of classes in4

the graph is � N , being N the number of nodes. This is observable with scale-free graphs (the5

distribution in Fig. 3b refers to the graph considered in [22]) that contribute to generate clusters6

with a small amount of border nodes. Unfortunately, our dataset related to the Lyon road network7

does not produce a scale-free graph, as demonstrated by Fig. 3a. The effect of this distribution is8

the generation of a number of classes that is almost 2
3 ·N . Therefore, the reduction in computation9

time could be marginal if compared to the initial requirements of performing almost real-time10

computation for efficient M -contingency analysis.11

To further reduce the computation time, we propose an improvement of 1C-Fast-BC that12

significantly improves performance also for non-scale-free graphs at the price of a larger but tolerable13

error. The idea we propose is to extend the concept of class by introducing super classes (see Alg. 114

- blue text) through an additional clustering operation inside each initial Louvain-derived cluster15

(see Alg. 1 - line 12)16

A super class Bgraph.superClassj is a group of classes belonging to the same cluster. This17

grouping is performed by using the Euclidean distance among the vectors generated by considering,18

for each node, the normalized distances from the cluster border nodes and the amount of shortest19

paths towards them. By this approach, nodes are considered equivalent even when they belong to20

different classes but are very close (euclidean distance near zero) in the vector space built from the21

classes table.22

To perform this grouping, we exploit a parallel K-means algorithm by using a different K for23

each initial Louvain cluster. K is defined as a fraction of the initial number of classes belonging to24

each Louvain cluster. For example, by considering a fraction equals to 0.4, the algorithm adopts25

a 0.4 fraction of the number of classes in each Louvain cluster. By this approach, we are able26

to drive the behavior of the algorithm towards the desired computation time. However, when27

the computation time decreases the approximation worsens, as deeply illustrated in the evaluation28

section.29
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Figure 4: Impact of M nodes removal from different BC-ranges on network vulnerability

6. EVALUATION1

We implemented our algorithms using Scala programming language and the Apache-Spark frame-2

work, by leveraging multi-core processing for parallel execution. Apache Spark was configured to3

work in local mode, using 10 threads to partition the execution load of the map-reduce tasks on the4

available cores of an Intel Xeon E5 2640 2.4 GHz multi-core machine, equipped with 56 virtual cores5

and 128 GB of DDR4 RAM. We also considered a Scala implementation of Brandes’ algorithm [11]6

(referred as Exact-BC ), used as a benchmark in performance evaluation. Exact-BC was executed7

in the same testing environment used for Fast-BC, with 10 threads for parallelism.8

In this section, we first present the correlation between the most critical nodes, identified by the9

highest BC values, and vulnerability on the GLyon. In the second part, we evaluate the performance10

of our proposed algorithm for fast computation of BC, when executed in different settings on the11

GLyon graph.12

6.1. Betweenness centrality for vulnerability assessment13

In this section, we verify and quantify the presence of correlation between vulnerability and node14

failures on the GLyon road traffic network.15

We simulate network failures by removing M nodes from the graph and we measure the new16

values of the vulnerability metric (see Sec. 3) after nodes removal. As a criterion to select nodes17

for removal, we consider the descending order of BC (i.e., worst-case contingency). Since GLyon is18

characterized by many nodes with very close values of BC, to better verify the correlation between19

vulnerability and BC, we group the nodes of the graph in multiple ranges of BC, via Jenks natural20

breaks classification method [27].21
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The number of ranges considered in our analysis is equal to eight5. Hence, we perform five1

tests by removing M (M= 2, 4, 8, 16 and 32) nodes, selected uniformly at random from each of2

the ranges. Nodes are put back in the graph after each test with a specific BC range. We repeat3

each test several times to collect statistical information. The overall results, in terms of correlation4

between BC and vulnerability, are reported in Fig. 4.5

Fig. 4a shows the scatter plots of the impact of M -nodes removal from the eight classes (mean6

BC of the M removed nodes on the X-axis) on vulnerability (Y-axis), where M is represented7

by different colors and markers, and a linear regression shows the relative trend. As expected,8

vulnerability increases sharply as mores nodes (i.e., larger M) are removed from each class. This9

is especially evident in those classes with higher BC values. The linear regression for each of the10

class shows the linear behavior with different values of slope.11

Figures 4b:4f plot vulnerability for M = 2, 4, 8, 16 and 32, respectively. In each one of these12

micro-analyses, we observe a similar pattern by using box plots. The analysis clearly shows that13

removing nodes with BC in higher classes (on right side of X-axis) increases vulnerability more14

than removing nodes in lower BC classes.15

Nodes with higher values of betweenness centrality are the ones that affect most vulnerability of16

a road-traffic network. Monitoring should continuously identify these nodes since, if disrupted, they17

may significantly reduce network connectivity. On the other hand, their inhibition may significantly18

alter network topology, forcing to recompute betweenness centrality for the whole network.19

6.2. M-contingency analysis: 1C-Fast-BC vs Exact-BC20

To continuously identify the most M critical nodes (M -contingency analysis), a fast algorithm to21

compute BC is needed. In this section, we compare the performance of 1C-Fast-BC against that22

of Exact-BC on the GLyon graph. For the evaluation, we consider three main indexes: 1) accuracy23

of the approximated BC values, measured by considering both the percentage error on each node24

BC and by using the global metric of the mean-Normalized Root-Mean-Square Error (NRMSE)6;25

2) accuracy of nodes’ ranking, expressed as the relative number of nodes not included in the exact26

top-N ranking by the tested algorithm; 3) execution time.27

Given the specific conceptual design of the proposed algorithms and our objective of contin-28

uously monitoring only the most critical intersections of the road-traffic network, the reported29

performance analysis is focused on the most-critical nodes of the network (e.g., top-100, top-5%,30

etc.), as reported in the figures.31

Fig. 5 shows the normalized BC values computed by the two algorithms for the top-100 nodes,32

ranked according to their exact value of BC. Fig. 5a highlights an almost perfect overlap of the two33

curves, confirmed by the extremely low percentage error in Fig. 5b, bounded in the range [-0.015%,34

0.015%]. Coherently, we observe an extremely low NRMSE of 2.93887e−5 and 0 missing nodes in35

the top-100 ranking. The NRMSE rises to 8e−3 with 341 missing nodes, when considering the top-36

30% (i.e., approximately 25,000) nodes, thus showing an acceptable approximation even on nodes37

with low BC. In other words, the algorithm produces the exact same results (i.e., identification of38

the most critical nodes) reported in Fig. 1b for Exact-BC on the GLyon graph. However, regarding39

execution time, the algorithm takes 1,688 seconds to complete, a fairly limited improvement with40

respect to the 1,982 seconds of the Exact-BC. This is motivated by considering that 1C-Fast-BC41

requires 48,960 classes (and thus pivot nodes), a relatively high number compared to the total42

5Other numbers of ranges have been tested with similar results.
6The NRMSE is defined as: 1

σ̄

√
1
n

∑n
i=1 e

2
i , with σ̄ denoting the mean of the exact BC values and ei representing

the difference between exact and approximated values of BC for node i. NRMSE is generally preferred to the
percentage error when 0-values are present among the expected ones.
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Figure 5: Accuracy of the 1C-Fast-BC algorithm

number of source nodes (75,475) used by Exact-BC.1

1C-Fast-BC is a powerful solution to precisely compute BC, even on nodes that exhibit very low2

values of BC. The surprising performances of this algorithm for scale-free graphs are not confirmed3

for road networks that exhibit a non-scale-free distribution. In these cases, the number of classes,4

and consequently the number of pivots, is quite high and for this reason the execution time of5

1C-Fast-BC is only slightly lower than the one obtained with Exact-BC.6

6.3. M-contingency analysis: 2C-Fast-BC improvements7

2C-Fast-BC (see Sec. 5.3) aims at reducing execution time on non-scale-free graphs, by preserving8

acceptable levels of accuracy in BC approximation. This behavior is desirable when computation9

time must be very low and errors are tolerated below a specific threshold. This algorithm extends10

1C-Fast-BC by including a Map-reduce parallel version of the K-means clustering algorithm, based11

on the implementation provided in Apache Spark MLlib machine learning library. Similar to the12

previous analysis, we test 2C-Fast-BC on the GLyon graph by using different fractions (i.e., the13

K-Fraction parameter) of the number of classes as the K in the K-means.14

Fig. 6a shows that 2C-Fast-BC execution time stays below 1C-Fast-BC and Exact-BC ones15

(that do not depend on the K-fraction parameter), up to very large values of K-Fraction (i.e., 0.8).16

Larger values of the parameter result in higher execution times (larger than the ones of 1C-Fast-17

BC for K-Fraction > 0.8) due to the computation overhead associated to the K-means clustering.18

Obviously, lower K-Fractions introduce a larger approximation that negatively affects BC values19

even for critical nodes. As an example, Fig. 6b presents BC values for the top-100 nodes when20

using an extremely low K-Fraction of 0.001. For this configuration, computation time is very low21

(69 s) but percentage error is relatively high (i.e., in the range [-12%, 12%], not reported due to22

space limitation) with a NRMSE of 0.04 and 4 missing nodes in the top-100 ranking. Conversely,23

by choosing slightly larger K-Fractions (e.g., a K-Fraction of 0.3), the algorithm quickly converges24

towards very good levels of accuracy, as highlighted by the perfect overlap with the Exact-BC values25

in Fig. 6c. The much better quality of the approximation is confirmed by a percentage error in the26

range [-0.2%, 0.3%] (see Fig. 6d), a NRMSE of 0.001 and 0 missing nodes in the top-100 ranking.27

As in the previous case of 1C-Fast-BC, the most critical nodes reported in Fig. 1b were correctly28

identified by the 2C-Fast-BC on the GLyon graph. Most importantly, the 2C-Fast-BC with a K-29
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Fraction of 0.3 executed in only 609 seconds, corresponding to a 277% and a 325% decrease in1

execution time with respect to the 1C-Fast-BC and Exact-BC, respectively.2

Figures 6e and 6f present the full trend for different K-Fractions of the global NRMSE and the3

percentage of missing elements over the top-5% nodes, respectively.4

By properly selecting the value of the K-Fraction, 2C-Fast-BC can produce high-accurate ap-5

proximation of BC values while significantly reducing execution time, when compared to both the6

Exact-BC and the 1C-Fast-BC algorithms. The peculiar property of driving the computation time7

via the K-Fraction parameter makes this algorithm very interesting when the application domain tol-8

erates small errors but requires quick responses for real-time analysis. 2C-Fast-BC can be exploited9

for any type of graph, but its improvements are relevant with non-scale-free graphs.10

7. CONCLUSION11

In this paper, we used betweenness centrality to perform efficient M -contingency analysis. The work12

has a twofold contribution. First, we confirm the importance of BC for analyzing road networks13

vulnerability and propose a new algorithm for fast computing BC in very-large networks. Second,14

we applied our algorithms for vulnerability analysis of a large, real-world road network.15

The encouraging results suggest the adoption of our algorithms for implementing M -contingency16

analysis over both scale-free and non-scale-free graphs, by rapidly locating the mostM critical nodes17

of a snapshot of a dynamically evolving road network. Even though our current assumptions on18

network modeling may limit the effectiveness of the approach for highly dynamic networks, they19

do not invalidate the proposed algorithms and methods for continuous M -Contingency analysis.20

In order to generalize the approach to dynamic networks, two main extensions are planned:21

1) adapting 1C/2C-Fast-BC algorithms to weighted and directed graphs; 2) enriching network22

modeling by taking into account additional structural properties of road networks (e.g., road length23

and capacity, number of lanes, etc.), as well as dynamic traffic data (e.g., demand, accidents, travel24

times, etc.), which represent crucial factors for determining road-network vulnerability.25

In this perspective, our work constitutes the foundation for building a framework aimed at26

vulnerability continuous monitoring. Such framework should provide the necessary software infras-27

tructure to: 1) collect and analyze large-scale, real-time, heterogeneous data; 2) handle dynamic,28

weighted, directed graphs; 3) adaptively change the settings of the 2C-Fast-BC algorithm accord-29

ing to dynamically evolving domain requirements (e.g., the framework could run in an emergency30

mode, requiring low computation time and larger tolerated error, or alternatively in a maintenance31

mode, demanding smaller error but allowing for more execution time).32
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