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Abstract
Disruptive events occur on road networks on a daily basis and affect traffic flow. Resilience analysis aims to assess the conse-
quences of such disruptions by quantifying the ability of a network to absorb and react to adverse events. In this paper, we
advance a methodological approach based on resilience stress testing and a dynamic mesoscopic simulator. We aim to identify
and rank the links most critical to the overall performance of the road network, taking into account the dynamic properties
of road traffic and focusing on day-to-day disruptions. As a metric to quantify road network performance in the presence of
such disruptions, we use the increase in overall travel cost. We then compare our approach with purely topological
approaches. We discuss the advantages and drawbacks of the different analyzed metrics. We prove that link ranking varies
greatly depending on the metric. Specifically, the proposed stress testing methodology can produce very accurate results by
taking into account demand and congestion, but requires computationally intensive simulations, being therefore prohibitive
even on medium-sized networks. Conversely, purely static topological metrics can be inaccurate if they do not take into
account traffic demand and network dynamics. Our study highlights the need for joining traditional traffic-agnostic topological
resilience analysis with demand-aware dynamic stress testing techniques.

Roads are vulnerable to being disrupted by adverse
weather conditions, human errors, or technological
breakdowns. Such day-to-day disruptions affect traffic
flow and may profoundly impair the ability of the trans-
portation network to guarantee basic mobility services as
well as management of emergency situations, thus caus-
ing fundamental economic and social strains.

Resilience analysis aims to evaluate and predict the
consequences of such disruptions, and has become a cru-
cial research concern in recent years (1, 2). In the field of
road networks, one possible approach consists in identi-
fying the links that most strongly affect the overall per-
formance. Operators and planners should be aware of
the consequences deriving from reduced capacities on
links. They should focus their efforts on improving and
maintaining such critical links, since they may cause the
most severe consequences for traffic operations when dis-
rupted. Thus, a methodological approach and a set of
resilience metrics are fundamental to identify critical
links.

Similar to other complex systems, a city road trans-
portation network can be modeled as a graph G =(N , L)
where road intersections are represented as nodes (N )
and roads as links (L). This allows for the use of graph

theory and network connectivity analysis to study resili-
ence. Graph theory can make resilience analysis very effi-
cient in terms of computation costs, especially with the
widespread adoption of big data technologies and cloud-
computing. However, the phenomenon of congestion—
dynamic, spatio-temporal, demand dependent—is tradi-
tionally not addressed in topological studies on road traf-
fic resilience (3, 4).

In this context, our work aims to answer the following
research questions:

� How is it possible to identify the links that are
most critical to the operation of the whole road
network, especially with respect to day-to-day
disruptions?

� Are topological metrics adequate to measure resili-
ence for road networks?
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� Which metrics are the most effective in assessing
road network resilience, taking into account their
dynamic, spatio-temporal, and demand-dependent
properties?

The main contributions of this paper are the follow-
ing: (a) a methodology based on link-based stress testing
and a dynamic mesoscopic simulator is proposed for
identifying critical links and quantifying road network
robustness; (b) the methodology is compared with multi-
ple topology-based metrics to clearly identify their lim-
itations on a simplified road network; (c) the approach is
evaluated on a real-world network to identify and rank
the most critical links in a realistic scenario; (d) guide-
lines are provided to decide when one approach can be
preferred to another.

The paper is outlined as follows. The next section
deals with the related literature. In the third section, we
review different resilience metrics and describe our meth-
odological approach, by presenting the stress testing
approach and our dynamic mesoscopic simulator. The
fourth section describes our two case studies. The fifth
section reports on the evaluation of our approach in the
considered case studies. A final discussion is then pre-
sented, while some directions for further work are pro-
posed in the final section.

Literature Review

In this section, we firstly introduce the very general con-
cept of resilience based on previous works, by adapting it
to the context of road network analysis. We then present
relevant road network resilience approaches for identify-
ing critical links.

Resilience Definition

A wide diversity of definitions has been introduced in the
literature to characterize resilience. Woods identified four
major concepts (5): (i) resilience as rebound from trauma
and return to equilibrium; (ii) resilience as a synonym for
robustness; (iii) resilience as the opposite of brittleness,
that is, graceful extensibility when surprise challenges
boundaries; and (iv) resilience as network architectures
that can sustain the ability to adapt to future surprises as
conditions evolve.

Bruneau et al. (6) define resilience as the ability to: (i)
mitigate hazards (robustness or pre-perturbation resili-
ence); (ii) contain the effects of disasters during their
occurrence (reactivity); and (iii) identify disruptions rap-
idly as they occur and mobilize resources to recover an
acceptable traffic flow quickly (recovery or post-perturba-
tion resilience).

Sullivan et al. define road network robustness as the
degree to which the network can function in the presence
of capacity disruptions on links. A robust road network
can face disruptions on links with only slight increases in
overall network-wide travel costs. Conversely, a non-
robust road network is subject to substantial increases in
costs (7).

In the rest of the paper, we tackle the problem of resi-
lience assessment according to the perspective provided
by Woods’s second concept, that is, robustness (5), and
the definition proposed by Sullivan et al (7). The paper
proposes an approach based on stress testing for asses-
sing the impact of day-to-day disruptions on network
links by measuring overall travel costs, aiming to quan-
tify the ability of the whole road network to absorb such
an impact. We remark, as an additional contribution of
this paper, that our approach also allows for assessment
of resilience under the occurrence of unexpected and pos-
sibly very rare events, which corresponds to Woods’s
third concept that is, graceful extensibility when surprise
challenges boundaries (5). Our stress testing methodol-
ogy is also applied for evaluating the impact of sudden
variations in travel demand on the overall travel costs.

Approaches to Assessment of Resilience

The majority of the approaches aimed at quantifying
resilience are based on topology models and static net-
work connectivity analysis (3, 4, 8). Among the plethora
of metrics proposed to perform connectivity analysis,
betweenness centrality (BC) is traditionally the best
choice for traffic network analysis purposes, as it
expresses the frequency with which a point falls between
pairs of other points on the shortest paths connecting
them (9). BC has therefore been widely adopted to assess
road resilience, by identifying topologically vulnerable
links and intersections (10, 11). Very recently, approaches
based on machine learning and big data solutions (12)
have been proposed to significantly reduce computation
time of BC on several kinds of very large complex net-
works (13).

Even though a large majority of studies focus on static
topological features of the network to identify its vulner-
abilities, some authors have tried to join network topol-
ogy features to more dynamic traffic-related information.
Augmented definitions of BC take into account time-
varying origin–destination (OD) travel demand (14–17),
as well as travel times (16, 18, 19) for shortest paths com-
putation. Such augmented metrics have been adopted for
traffic flow analysis and prediction (14, 15, 18, 19) and
traffic assignment (16) as well as network performance
monitoring in the presence of extreme events (17). To the
best of our knowledge, none of the previous approaches
has been evaluated with respect to day-to-day disruptions
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(i.e., reduced link capacity), which represents one of the
core aspects of our paper. Also, their applicability to resi-
lience assessment is still neither widespread nor fully
understood, these metrics often being inaccurate in
highly dynamic environments (20) and prohibitive to
compute for large-scale networks (12).

Another contribution of our paper is a methodology
based on stress testing, that is, pushing a system beyond
its normal operational capacity and observing how it
responds to the applied stress. Stress tests have been
widely used in banking (21, 22), medical (23, 24), and
hydro-geology domains (25). Also referred to as
network-disruption analysis, this approach has been
occasionally leveraged in the field of transportation to
identify critical links in a road network, but it is still at a
very early stage (17, 26, 27). Sullivan et al. (7) set differ-
ent link-based capacity-disruption values for identifying
and ranking the most critical links and quantifying road
network resilience. Jenelius and Mattsson (28) developed
the notion of the importance of a link, which is a func-
tion of the increase in travel time when the link is dis-
rupted. Their method is demand-aware as they weight
travel time by demand. Stress testing allows intra-
network comparison; links are ranked based on their
contribution to the overall network resilience (29, 30).
Other authors have focused on identifying only the most
critical nodes to be improved (30). Some studies use
probability-based models to calculate the likelihood that
a network continues functioning after a given stress (31,
32). To the best of our knowledge, the large majority of
research works based on stress testing for assessing the
resilience of road networks mainly deal with disasters
and extreme events (17, 33, 34), instead of day-to-day
disruptions as targeted in this paper.

Assessment of the Literature

The definition and quantification of resilience varies
greatly depending on the context and application
domain. No universal and totally agreed definition or
metric of resilience exists. Despite the plethora of work
on resilience in various domains, relatively small num-
bers of studies have targeted resilience of road networks
explicitly, and very few applications on real-world roads
have been proposed. Our paper deals instead with a real
network in France, in the Paris agglomeration area.

The concept of resilience can be divided into two
parts: pre-perturbation resilience (robustness), and post-
perturbation resilience. In this study, focused on traffic
modeling and analysis, we evaluate pre-perturbation resi-
lience only. We do not account for post-perturbation
socio-technical actions. As the aim of this paper is to
rank and identify the most critical links in a given net-
work with respect to day-to-day disruptions, we focus on
intra-network comparisons.

In the literature, two general approaches are com-
monly used to quantify resilience (26). The first is purely
topological and usually demand-insensitive. The second
takes into account traffic network performance and
includes demand variability via simulation.

It is worth noting the lack of studies combining the
stress testing approach with the topological one. We ana-
lyze and compare the two different approaches to assess
the resilience of road networks, and to determine their
advantages and drawbacks in assessing road network
resilience. For the first approach, that is, the topological
one, we consider and evaluate several metrics from graph
theory. As for the second approach, by means of a simu-
lator, we inject perturbations in the network and quan-
tify to what degree it can adjust to them.

Methodology

In the following, we report on the topological metrics
considered in our analysis as well as the stress testing
technique proposed to perform demand-aware, dynamic
disruption analysis.

Graph Theory Metrics

The topological metrics used in this study are based on
BC, originally proposed by Freeman (8). BC measures
the importance of the generic link l of a graph by consid-
ering the number of shortest paths that traverse it, and is
defined as follows:

BC(l)=
X
i 6¼l 6¼j

sij(l)

sij

, ð1Þ

where:

� sij(l) is the number of shortest paths from node i

to node j that traverse link l;
� sij is the total number of shortest paths from node

i to node j.

In shortest path computation, links can be unweighted
or weighted (e.g., in terms of the associated estimated
travel time). In this study, we test and compare both
cases. We also consider multiple variants of the BC,
reported in the following, to model different aspects of a
road traffic network.

BC for Entry and Exit Nodes Only. We propose to use an
alternative definition of BC consisting in calculating the
shortest paths from entry to exit nodes only. (The com-
putation of BC on a subset of nodes [entries and exits] is
based on the function edge_betweenness_centrality_subset
from the NetworkX Python library.) This definition
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introduces two advantages: computation time is reduced,
and the definition seems more realistic from a demand-
aware perspective, since individuals tend to start and fin-
ish their trips over a subset of intersections. This corre-
sponds to the OD representation of the traffic demand.
The formula is the same as Equation 1 with some
exceptions:

� i is selected from the entry-nodes subset, i.e., inter-
sections used by vehicles to enter the network;

� j is selected from the exit-nodes subset, i.e., inter-
sections used by vehicles to leave the network.

In conclusion, we consider four different formulations of
the BC:

� Unweighted BC (BC)
� Travel-time weighted BC (TTWBC)
� Unweighted BC on entry/exit nodes only (BC

entries–exits)
� Travel-time weighted BC from entry to exit nodes

only (TTWBC entries–exits)

Spatio-temporal traffic properties and phenomena,
like demand, congestion and dynamic re-routing, are
typically not addressed in graph-based models. Thus,
graph-based metrics are usually incapable of capturing
these aspects in turn.

Demand-Sensitive Metric

Jenelius et al. (2) introduced the demand-aware metric of
importance (I) to characterize transportation vulnerabil-
ity. This metric allows measurement of network perfor-
mance loss by using travel costs weighted by the traffic
demand. Such metric is adequate for our methodological
approach as it includes demand and the dynamic phe-
nomenon of congestion (i.e., travel costs increase when
traffic is congested). This metric uses a generic notion of
travel cost, which can be specified depending on the
study context and aim. In this paper, we define travel
cost as travel time divided by travel distance (in seconds/
kilometer). The importance of a link l is the following:

I(l)=

P
i

P
j6¼i xij(c

d
ij(l)� c0

ij)P
i

P
j6¼i xij

, ð2Þ

where:

� xij is the demand from origin node i to destination
node j (number of vehicles);

� cd
ij(l) is the mean travel cost from origin node i to
destination node j when link l is disrupted at
level d;

� c0
ij is the mean travel cost from nodes i to j in the
base case, i.e., without disruption.

Traffic Model and Algorithms

To model traffic dynamics we use a dynamic mesoscopic
simulator based on the Lighthill-Whitham-Richards
model (35, 36) and implemented in Matlab by our
research group (37, 38). The Lighthill-Whitham-
Richards model is formulated in Lagrangian-space coor-
dinates and uses both Lagrangian and Eulerian observa-
tions. It represents individual vehicles but only records
their transit times at network nodes. A dynamic traffic
assignment procedure distributes vehicles along all the
possible alternative paths in the network, according to
the traffic conditions at the moment the vehicle is gener-
ated. More precisely, travel times on all paths are calcu-
lated based on traffic flow, and the vehicle chooses the
path that requires the smallest travel time. The following
parameters have to be specified before running simula-
tions: simulation duration, OD demands, and link capa-
cities. This simulator is adequate for our stress testing
approach: as opposed to static topological indicators, it
includes traffic dynamic properties such as demand, con-
gestion, traffic-based route assignment, dynamic shortest
path computation, and queues. Moreover, travel costs
are calculated for each vehicle and can be extracted eas-
ily to compute network performance metrics, such as
importance from Equation 2.

Stress Testing

The aim of our stress testing methodology is to identify the
most critical links in the road network and to assess their
resilience by considering the dynamic, spatio-temporal, and
demand-dependent properties of network traffic.

Stress testing can be leveraged to quantify the adverse
impacts associated with a reduction of capacity on specific
links. Disruptive road events such as flooding, obstacles
on the road, and traffic accidents are likely to reduce the
capacity of a given link and negatively affect network per-
formance. Measuring network performance loss when
reducing the capacity of a given link provides the critical-
ity of this link to the operation of the whole network.
Therefore, stress testing is an adequate methodological
approach to identify and rank the most critical links. It
captures the relative importance of the disrupted link to
the other links and assess the overall resilience of the
whole road network from an intra-network comparison.

Our methodology for road network stress testing is
composed of the following steps:

1. Simulating disruptive road events:

We propose two strategies to perform this step. In the
first one, we simulate day-to-day road disruption as link
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capacity drops. The capacity-disruption level is defined as
the reduction in link capacity, expressed as a fraction of
the original one. In many studies, the capacity-disruption
level is total, that is, 100% of the original value, which
means that the capacity of the link is reduced to 0 vehi-
cles per hour (10). The link is then completely removed
from the road network. However, a 100% capacity-
disruption level does not accurately reflect the actual link
capacity resulting from frequent day-to-day disruptions
or minor events (e.g., number of lane reductions, adverse
weather, etc.) that can affect the network. That is why
we gradually reduce the capacity to analyze the evolution
of the performance depending on the capacity-disruption
level. We consider five possible capacity-disruption lev-
els, denoted as d, on each examined link, that is,
d 2 f0%, 20%, 40%, 60%, 80%g. Therefore, we can con-
sider the following equation to compute the maximum
capacity of the generic link l in the presence of a
capacity-disruption level d:

d= 100 � (1� qd
max(l)

q0
max(l)

), ð3Þ

where:

� d is the capacity-disruption level applied to link l

(percentage) with d 2 0, 20, 40, 60, 80f g;
� qd

max(l) is the capacity of link l when it is disrupted
at level d (in vehicles/hour);

� q0
max(l) is the capacity of link l in the base case (in
vehicles/hour);

As a second strategy to simulate disruptive road events,
we consider increases in the traffic demand on
specific entry/exit nodes of the network. By this
approach, it is possible to simulate exceptional situations
like city evacuations following extreme events (e.g.,
flooding, attacks, etc.) which typically put significant
strain on the road infrastructure and result in total con-
gestion. This strategy consists in changing the OD
matrix, that is, increasing the traffic flow from given
entries, and comparing the stress testing results with
another demand level.

Based on the selected strategy for disruptive road
events, we set the parameters of our mesoscopic simula-
tor (e.g., link capacity, traffic demand) and we simulate
the network in the specific setting. For both strategies,
travel costs are collected for all vehicles in order to com-
pute the performance metrics described in the following
point.

2. Computing overall performance loss:

This step is about quantifying the consequences of the
simulated disruptive event on the operation of the whole

network. To this purpose, we use the notion of road net-
work performance, measured via the importance metric
of Equation 2. Specifically, we consider travel time
increase divided by travel distance as a measure of cost.
Below, we provide the formulation of the overall perfor-
mance loss (PL), based on the notion of importance,
when a link l is disrupted:

PL(l, d)=
Xn

v= 1

cd
v(l)� c0

v

n
ð4Þ

where:

� PL(l, d) is the overall performance loss when link l

is disrupted at level d (seconds/kilometer);
� cd

v(l) is the travel cost of vehicle v when link l is dis-
rupted at level d (seconds/kilometer);

� c0
v is the travel cost of vehicle v in the base case
(seconds/kilometer);

� n is the number of vehicles in the network.

3. Analyzing the results:

For each link we know the performance loss correspond-
ing to the considered capacity-disruption level (i.e., 0%,
20%, 40%, 60%, and 80% of the original link capacity).
As an example, PL(2, 40%) represents the overall perfor-
mance loss on link 2 when it is disrupted at 40% of its
initial capacity. In the evaluation section, we present and
discuss the overall performance loss depending on the
capacity-disruption level of the link according to two dif-
ferent strategies.

Traffic Robustness Index

The stress testing methodology reported in the previous
section allows us to compute the overall performance loss
for each link of the network with respect to five different
capacity-disruption levels. To compare and identify criti-
cal links, we need a unique value of criticality associated
to each link. To this purpose, a global metric is required
to aggregate the performance loss values in the five dif-
ferent capacity-disruption levels. We propose the stress
test criticality (STC) metric, defined as follows, for the
generic link l:

STC(l)=

ð
d

PL(l, d), ð5Þ

where:

� STC(l) is STC when link l is stress tested (seconds/
kilometer)
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� d is the capacity-disruption level of link l

(percentage)
� PL(l, d) is the overall performance loss (seconds/

kilometer)

We use the trapezoid rule to approximate the integral
in Equation 5 from the (five) overall performance values
computed on link l.

Case Studies

The methodology and metrics described in the previous
sections have been evaluated in two different case studies.
The first one is related to a simple virtual network, used
as a basic testbed for our approach. The second one is a
real road network in France, which we use to confirm the
validity of our results in a realistic scenario and to sup-
port the discussion on both simulation-based stress test-
ing and topological metrics.

A Simple Virtual Road Network

This network is composed of eight nodes (4 road inter-
sections, 2 entries, and 2 exits) and nine links. The dura-
tion of each simulation is fixed to 10 minutes. Figure 1a
depicts the network structure with numbered links and

flow directions. The network has been tested with two
different demand levels reported as OD matrices in
Figure 1b and c.

DIRIF: A Real-World Road Network

The DIRIF network is situated in the south of Paris,
France, and includes 868 links and 827 nodes (657 inter-
sections, 86 entries, and 84 exits). Its roads are mostly
highways. Each simulation duration is fixed to 15 min-
utes. Since the network is much bigger than the virtual
one described above, and traffic demand is extremely
low on some links, we specify a higher simulation dura-
tion to ensure that enough vehicles travel through the
whole network and to collect a significant number of
travel cost observations. Simulation is performed with
real demand data from 9:00 a.m. to 9:15 a.m., that is, the
morning peak-time, in order to increase the probability
of observing some performance loss in our stress tests.
The network is graphically presented in Figure 3a and b.

Evaluation

In this section, we present the results of our stress testing
methodology and discuss the link ranking derived from
the different selected metrics. We show that the ranking

Figure 1. Simple virtual network. Network structure (a) and OD travel demand (b, c) for the two considered strategies.
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of critical links on the same network can vary signifi-
cantly when different indicators are used, thus proving
that simple modifications of one centrality indicator can
have a relevant impact on the capacity of the metric to
capture different facets of resilience. Moreover, we dis-
cuss the advantages and drawbacks of each different
approach in assessing road network resilience, and pro-
vide guidelines that can be helpful towards the definition
of a new enhanced centrality metric.

Application to a Simple Virtual Network

In the scenario of the simple network described in the
previous section, we measured STC and all of the pro-
posed topological metrics on all the links. To perform
stress testing, we used both strategies described above,
that is, link capacity drop (referred to as A in the follow-
ing) and traffic demand increase (referred to as B). The

measures of STC that result from the two strategies
above are distinguished as STC A and STC B, respec-
tively. STC A and B are calculated with the same for-
mula, but different parameters are set before stress
testing.

First we discuss the results of strategy A. In our simu-
lations, we applied sequentially five capacity-disruption
levels (i.e., 0%, 20%, 40%, 60%, 80%) to each link. We
then measured the network-wide performance loss (i.e.,
Equation 4) consequent to the disruption applied to the
link. The overall performance loss from our stress tests is
reported on the y-axis of Figure 2a, while the correspond-
ing capacity-disruption levels (d) are reported on the x-
axis. Results for different links are depicted with different
colors and markers in the figure, using a linear interpola-
tion. For readability, the figure only reports the five most
critical links (i.e., those with the highest overall perfor-
mance loss).

Figure 2. Performance evaluation on the simple virtual network.
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Intuitively, a link capacity drop translates into an
increase of network-wide travel cost.

According to the definition provided in Equation 5,
the STC of a given link corresponds to the area below its
curve. Thus, in strategy A, link 9 is the most critical to
the operation of the whole road network, followed by
links 5, 1, 2, and 8. By using link ranking from STC as a
baseline, we compare in the following the other link rank-
ings as derived from the different selected topological
metrics. Figure 2c reports on such link rankings for both
STC and the whole set of topological metrics.

As a preliminary consideration, it can be observed
that the rankings of critical links on the same network
may dramatically change depending on the metric, due
to the different properties of the network captured by
each of them. As an example, link 5 is on top of all the
topological rankings whereas, with STC, it is ranked sec-
ond, below link 9. The top-rank of link 5 by all the topo-
logical metrics can be explained by the large number of
shortest paths traversing this link: e.g., paths (4, 5), (7,
5), (7, 5, 8), (7, 5, 9), (6, 4, 5), (7, 5, 8) are all shortest
paths.

The different ranking issued by STC A can be easily
explained. If link 5 is disrupted, alternative paths through
link 2 exist for all individuals heading to exit 1 or exit 2.
Conversely, when link 9 is disrupted, no alternative path
exists for users willing to travel to exit 2 from both entry
1 and entry 2, thus resulting in serious congestion and
increased travel time for all individuals heading to exit 2.
Additionally, traffic demand for exit 2 is very high (see
OD matrix in Figure 1b). This explains why link 5 is
more critical than link 9 in terms of topology, but less
critical than link 9 when considering demand data, as
made possible by our stress testing methodology (based
on dynamic simulations) and captured by the related cri-
ticality metric. This simple test clarifies how traditional
demand-agnostic approaches may fail in properly rank-
ing edge criticality.

Our simple test also shows that alternative paths may
become shortest paths of the network as links are dis-
rupted by adverse event, thus attracting traffic flow pre-
viously directed through the disrupted links. This
represents another fundamental aspect that is impossible
to capture with a static graph-based approach. However,
this does not necessarily mean that topological metrics
are not good resilience indicators, but rather that road
graph modeling should include a dynamic component
(e.g., edge weights), and that BC metrics should be rap-
idly re-computed after relevant network disruptions.

Another striking difference worth analyzing concerns
link 2: considered as one of the most critical ones accord-
ing to the BC metric from entries to exits, it is the least
critical one for the TTWBC and the TTWBC from
entries to exits. The peculiarity of link 2 is its length; it is

the longest one, thus demanding more time to be tra-
velled than the other links. Metrics like BC and BC from
entries to exits are not weighted, that is, all links are val-
ued equally, and consequently they are unable to grasp
this important aspect. In contrast, links with high travel
times are not considered critical by the analyzed weighted
approaches, because they are not often part of shortest
paths. The same consideration applies to link 7, which is
the second-longest link of the network.

Finally, it is worth noting that BC values are often
clustered. In particular, the BC from entries to exits has
many equal values and only two link ranks. Traditional
topological metrics appear to have very limited capability
to discriminate link criticality at a fine level. In this case,
STC does not differentiate all links either, but this is due
to capacity-disruption levels. For links 8, 6, 4, 7, and 3
which are all ranked in fifth place with the same value,
both capacity-disruption and demand levels are not high
enough to observe a significant performance loss com-
pared with the base case. For example link 8 capacity dis-
ruption does not affect the overall network performance
(see Figure 2a). The overall travel cost remains at its base
case value. That is why some links have the same critical-
ity value. STC differentiation between links then depends
on capacity-disruption and demand levels.

To investigate this aspect further, we use our second
stress testing strategy B, that is, with different traffic
demand as reported in Figure 1c. Results are shown in
Figure 2b and c (i.e., STC B). Link ranking changes sig-
nificantly when different demand levels are used. As an
example, Link 8 becomes the most critical link, whereas
in the previous case it involved no performance loss.
This is due to the large increase in demand level associ-
ated with exit 1, which is directly connected to link 8 (see
Figure 1a).

Takeaways: Critical link ranking is highly variable as
different approaches are used. Resilience analysis via topo-
logical metrics is limited in the sense that such metrics do
not usually take into account traffic demand and network
re-configurations following disruptive events. Conversely,
the simulation-based stress testing approach is able to cap-
ture these aspects thus providing more realistic rankings
via the proposed performance loss metric. Stress testing
can also be used to compare different road networks and
sub-networks by analyzing their response to similar stres-
ses. Travel-time weighted BC produces better estimations
of link criticality compared with unweighted BC, which
treats all links equally.

Application to a Real Road Network

To confirm the results of our previous analysis in a rea-
listic scenario, we considered the Paris DIRIF road net-
work, described above. Given the large size of this
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network and the high computation time associated with
each network simulation (stress testing one link from
such a large network with five capacity drops takes more
than one hour on an Intel Xeon E3 CPU equipped with
8 GB of RAM running a Matlab implementation of the
mesoscopic simulator, properly configured to handle the
DIRIF network in Scenarios A and B), it was prohibitive
to perform an exhaustive stress test analysis as in the

simple network case. Therefore, we performed stress tests
on a limited set of representative links: the three links
with the highest demand, the three with the highest BC,
and three randomly selected edges with BC in three
classes of values (high, medium, and low). We discuss in
the following only our simulations related to strategy A.
(Simulations for strategy B were in line with the results
reported in the previous section and are not discussed

Figure 3. The DIRIF road network in Paris agglomeration (a) and (b). Evaluation results (c).
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due to space limitation.) Figure 3c reports the actual val-
ues of the considered metrics for the analyzed links.
Unlike Figure 1, we do not report metric rankings but
actual values of the metrics for each analyzed link. This
is motivated by the impossibility of obtaining the full
ranking for performance loss (i.e., STC).

Consistently with our previous analysis on the simple
network, Figure 3c shows that rankings of critical links
vary significantly. As an example, links 95, 93, 94 have a
very high value of STC A, whereas the topological
metrics rate them much less critical than links 802, 803,
607. As pointed out in the previous section, the STC A
ranking appears to be more realistic since it captures the
higher criticality of links 95, 93, 94 due to the associated
higher demand (not reported due to space limitations).

On the small link subset considered in our analysis,
taking into account travel times (TTWBC and TTWBC
entries–exits) does not significantly change rankings,
since link lengths (and therefore the average travel times)
happen to be very similar on all considered links. Finally,
it is worth noting that in the DIRIF network BC values
(especially in the entries/exits variations) tend to cluster
significantly themselves (i.e., many edges have very simi-
lar values of BC), thus exhibiting a lower discriminant
power than in the case of the simple virtual network.

Takeaways: In a real-world scenario, stress testing
proved to be a realistic and reliable approach to evaluate
network resilience. Our evaluation confirms the importance
of traffic demand and network dynamics for fine-grained
ranking of the most vulnerable road network links. Stress
testing has however the drawback of requiring high execu-
tion times due to computationally intensive network
simulations.

Discussion and Perspectives

From the previous results, we summarize in the following
a few guidelines for properly characterizing critical links
with respect to day-to-day disruptions, by means of an
intra-network approach in different application contexts.

Firstly, if resilience has to be evaluated in a relatively
static context (e.g., network maintenance or planning),
BC and TTWBC appear to be adequate. In particular, if
data about demand and travel times are not available,
we recommend BC, BC from entries and exits, and BC
on all paths from entries and exits. These indicators do
not require special knowledge of network performance
and demand data, but only the basic network topology
(links and intersections). If traffic demand is the only
missing information, STC, TTWBC, and TTWBC from
entries to exits should be preferred, since they also take
into account travel time information.

If the goal is instead to achieve a more accurate char-
acterization of network resilience, stress testing should

be chosen, since it produces reliable results by taking into
account traffic demand and congestion phenomena. The
drawback is that it requires many computationally inten-
sive simulations, thus being recommended only in appli-
cation scenarios that allow for larger computation time,
or that address small-sized (sub-)networks. Conversely,
in domains with very stringent requirements on response
time (e.g., on-line vulnerability monitoring), topological
indicators could be the only valuable option. However, it
is worth remarking that efficient solutions are still
required to compute these metrics on very large networks
within reasonable computation time. For future work,
we are currently working on the switch from a Matlab
implementation of our simulation-based tools to a new
implementation based on faster programming languages
and approaches explicitly designed for big data process-
ing and real-time computation (e.g., Python and Scala
on top of the Spark processing framework). In particu-
lar, we believe that implementing real-time advanced
solutions for data-driven, on-line monitoring of road
traffic resilience will constitute a fundamental research
problem to investigate.

We advance that, in order to improve road network
resilience analysis, future research work is needed that
should consider joining graph-based approaches with
demand-aware dynamic stress testing techniques. In this
context, we believe that a further improvement with
topological metrics could be achieved by modeling the
road network as a dynamic graph, whose link weights
may change over time depending on actual traffic condi-
tions and both structural and performance-related net-
work properties (e.g., road capacity, real-time traffic
information, etc.).

Finally, we argue that future work should also con-
sider area-wide disruptions in addition to single link-
based disruptions, especially in the light of measuring the
impact of extreme events.

Conclusion

Identifying links critical to the overall network perfor-
mance is part of road network resilience and intra-
network analysis. To this purpose, we have analyzed in
this paper several topological metrics based on BC and
proposed a stress testing approach exploiting a dynamic
simulator. Stress testing appears to be a very promising
solution for resilience analysis, allowing for measurement
of resilience in terms of the overall performance loss of
the whole network consequent to simulated link
disruptions.

Our analysis shows that link ranking varies greatly
when different metrics are used. As opposed to purely
topological metrics, the proposed stress testing approach
takes into account demand levels and dynamic
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characteristics of road traffic. However, it requires more
computation time and data than traditional graph-based
metrics. The choice of a relevant metric for assessing
road network resilience should depend on the context
and the specific application requirements.

Merging static topological metrics and demand-based
approaches could be of further research interest. It could
be relevant to adopt dynamic graphs modeling, using link
weights to include dynamic information on the network.
In such an approach, topological metrics should be com-
puted dynamically by means of efficient quasi real-time
solutions.
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