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Abstract1

Mobile phone data collected by network operators can provide fundamental insights on2

individual and aggregate mobility of people, at unprecedented spatio-temporal scales. However,3

traditional call detail records (CDR) have fundamental issues due to low accuracy along both4

the spatial and the temporal dimensions, which limit their applicability for detailed studies5

on mobility, especially in urban scenarios. In this paper, we focus on a new generation of6

mobile phone passive data, individual cellular-network signaling data, characterized by higher7

spatio-temporal resolutions than traditional CDR data. We design a framework based on8

unsupervised Hidden Markov Model (HMM) for map-matching such kind of data on multi-modal9

transportation network, aimed at accurately inferring the complex multi-modal travel itineraries10

and popular paths people follow in their urban daily mobility. This information, especially if11

computed at large spatio-temporal scales, can represent a solid basis for studying actual and12

dynamic travel demand, to properly dimension multi-modal transport systems and even perform13

anomaly detection and adaptive network control. We evaluate our approach in a case-study based14

on real cellular traces collected by a major French operator in the city of Lyon, and propose a15

validation study at both microscopic and macroscopic levels. The results show that our approach16

can properly handle sparse and noisy cell phone trajectories in urban complex environments.17

Besides, the results are promising concerning popular paths detection and reconstruction of18

Origin-Destination matrices.19

Keywords: Map-matching, Mobile phone, Hidden Markov Model, Multi-modal transporta-20

tion network21
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1. INTRODUCTION1

In recent years, the widespread diffusion of mobile devices and the exploding consumption of Internet2

traffic via 3G and 4G technologies have made mobile phone data a crucial source of information in multiple3

domains. This is especially true in the field of transportation, as these data, usually including spatio-temporal4

information related to mobile phone users, can provide fundamental insights on people’s mobility both at5

individual and aggregate scales.6

For instance, Call Detail Records (CDR), also referred to as mobile phone passive data, have fed plenty7

of large-scale studies on human mobility, given the possibility to study urban mobility at unprecedented8

spatio-temporal scales [1]. Relevant work based on CDR data comprises i.e., modelling the general laws9

governing human movements [2], reconstructing Origin-Destination (O-D) matrices [3], understanding urban10

land use [4], [5] and inferring population density [6]. Mobile phone passive data are increasingly used also11

in operational contexts by mobility service providers and traffic authorities, in conjunction with - or even12

at the place of - more traditional data sources on mobility like census data, local travel surveys and logs13

from road-side units (e.g., loop detectors, LI-DAR or acoustic sensors, Bluetooth scanners, etc.). In fact, the14

latter suffer from very high deployment costs, extremely poor spatio-temporal resolutions, and are rarely15

informative in terms of individual mobility [7], [8].16

However, despite significant benefits, CDR still have fundamental issues that need to be addressed due to17

low accuracy along both the spatial dimension (i.e., user location is only known at the cell sector or base18

station coverage levels) and the temporal one (i.e., events are recorded only when the user performs a voice19

call or texts a message), which limits their applicability for detailed studies on mobility, especially in urban20

settings.21

In such scenarios, Global Positioning System (GPS) logs still represent the preferred choice, since they22

allow for obtaining data with higher degree of accuracy (i.e., meters) and temporal frequency (i.e., seconds).23

Such measures can be relatively easily analyzed and mapped to mobility patterns by relying on machine24

learning techniques [9], [10]. However, a huge overhead exists in collecting detailed GPS datasets at statistically25

relevant scales, being such data mostly retrieved on voluntary basis or via special agreements involving only26

a small sample of users or vehicles [7]. Given these limitations, extended variants of CDR (namely, network27

signaling logs and Internet session reports) are currently collected by network providers and investigated28

by the research community. Differently from CDR data, network signaling data report on multiple kinds of29

events besides calls and text messages (e.g., IP protocol message exchanges, hand-overs, location updates,30

etc.) thus increasing the spatio-temporal sampling frequency of mobile phone passive data. Research on this31

kind of data is however still at early stages. In this paper, by building on related work from the field of GPS32

map-matching and CDR analysis, we focus on the possibility of inferring relatively accurate measures of both33

individual and aggregate mobility flows from cellular network signaling data.34

In fact, in the context of next-generation intelligent transportation systems, inferring individual trips with35

a certain degree of accuracy, even in urban environment, will enable a better and more precise understanding of36

both microscopic and macroscopic mobility. Such knowledge is expected to be leveraged in many applications37

such as multi-modal transportation network analysis and optimization, traffic routing and adaptive control.38

Map-matching of GPS traces has been widely studied in the literature [11] and state-of-the-art approaches39

can achieve high accuracy in the presence of large-sampling rate data (e.g., sampling rate of 1 Hz) [12].40

Although, it is worth to remark that, in terms of penetration rate and energy consumption, mobile phone41

data represent much better candidates than GPS data to track users in a large-scale and suitable way [13].42

In this paper, we deal with the sparsity (in time and space), the noise and large localization error associated43

to cell phone trajectories, that make the task of reconstructing trips very challenging [14].44

A methodology based on Hidden Markov Model (HMM) is presented as the core of a map-matching algorithm45

engineered for cellular network signaling data. The algorithm infers the most likely path of a mobile phone46

user, given a sequence of network signaling events emitted by her/his smartphone during a trip.47

The network modeling of the transportation graph and the cellular network, key elements of the proposed48

approach, are also presented. A study case using the HMM-based map-matching is performed with two49

different datasets from the city of Lyon (France).50

51

In summary, the key contributions of this work are the following:52

• The main solution for the challenging problem of mapping cellular trajectories to the multi-modal53
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transportation network instead of only considering the road network.1

• Unsupervised HMM-based map-matching approach allowing to infer trajectories on physical network2

from any sparse (spatially and temporally) cellular trajectory in dense urban context. This is made3

possible by a more fine-grained modeling of both transportation and cellular networks, compared to4

state-of-the art approaches [15].5

• Dataset collection of real-world cellular trajectories related to a group of users in the Lyon metropolitan6

area. The dataset has been collected by Orange, the major French mobile network operator. Despite7

the sparsity of the available data, we analyze our approach in two case studies, for both macroscopic8

and microscopic mobility analysis.9

The rest of the paper is organized as follows. In Sec. 2, we present related work. In Sec. 3, we formulate key10

definitions to define the map-matching problem. In Sec. 4, network modeling is presented. In Sec. 5, we11

discuss about the methodology of our HMM-based model. In Sec. 6, we test our approach on the considered12

dataset. We conclude in Sec. 7 by discussing the limits of our approach and future directions.13

2. RELATED WORK14

Map-matching is a basic operation for improving positioning accuracy by integrating positioning data with15

spatial transportation data to identify the correct link on which a mobile object is traveling [16]. Several16

approaches exist in the literature to solve the problem of map-matching GPS traces to a transportation17

network. Quddus et al. [17] categorize map-matching approaches in four classes.18

Geometric approaches only use the spatial geometry of the network: the most simple and popular19

map-matching algorithm consists in matching each position point to the closest node in the network [18].20

Topological approaches use geometric information as well as topological information like the existence of21

connectivity between nodes of the network [19]. Very sensitive to noise and outliers, these approaches are not22

appropriate to solve map matching problem in presence of highly noisy and sparse data.23

The third kind of approaches exploit probabilistic methods : a confidence region around the location of the24

moving object is defined. Then, candidate network links are identified as those present in this confidence25

region. The evaluation of the candidates is based on the geometrical criteria.26

Finally, advanced map-matching approaches use more complex mathematical tools. A non exhaustive list27

of these methods includes, i.e., the Kalmam Filter, its Extended Kalman version [20], Dempster–Shafer theory28

[19], fuzzy logic models [21], or the application of Bayesian inference [22]. These state-of-the-art algorithms29

may achieve a quasi-perfect accuracy (location error lower than 10 meters) with high sampling rate GPS data.30

Newson et al. [12] first introduce HMM-based map-matching dealing with different GPS traces sampling rate.31

Their approach turned out to be much more robust and accurate with sparse and noisy trajectory compared32

to standard advanced map-matching approaches for high sampling rate data.33

As a consequence of the growing availability of large-scale mobile phone data collected by network34

operators, map-matching cell phone trajectories is recently becoming a challenging task for researchers.35

Most of the approaches used with cellular trajectories are based on those traditionally designed for GPS36

map-matching. Sculze et al. [23] use a probabilistic approach: their solution restricts the set of admissible37

routes to a corridor by estimating the area within which a user is allowed to travel and infers path using the38

shortest path on candidate routes. With only 55% of correct matches, this method has been outperformed by39

a HMM-based approach recently developed by Jagadeesh et al. [24], which reaches 75% of median accuracy.40

Finally, HMM-based map-matching has become state-of-the-art approach for noisy and sparse location41

data and, a fortiori, mobile phone trajectory. Thiagarajan et al. [13] and, more recently, Algizawy et al.42

[25] developed supervised HMM models exhibiting good accuracy (75% for Thiagarajan et al. approach).43

However, such an approach needs to train the HMM model with a large amount of labeled cellular trajectories,44

which are very hard to obtain, especially when dealing with highly dynamic and irregular environments,45

such as urban areas. Instead, we prefer to focus on unsupervised models that do not require collecting and46

labeling any trajectory. Moreover, we state that additional information such as signal strength of observation47

are relatively hard to obtain from mobile network operators and therefore should not be required by the48

map-matching approach, as for example it’s the case in [13]. Jagadeesh et al. [24] proposed an online49

map-matching algorithm combining HMM-based map-matching and route choice model.50

Finally, it is worth to remark that most of the approaches match cellular trajectories only to road51

networks, without considering other transportation modes. Among the very few exceptions, it is necessary to52
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mention the methodology recently proposed by Asgari et al. [15]. The authors have developed a framework,1

namely CT-Mapper, which has been designed with very similar objectives to those of our work. CT-Mapper2

is an unsupervised HMM model which aims at mapping sparse multi-modal cellular trajectories by using a3

multilayer transportation network. Yet, CT-Mapper has some limitations: the multilayer network allows for4

unrealistic paths (each subway station is connected to its closest road intersection for simplification matters).5

In addition, CT-Mapper requires already cleaned cellular trajectories. Dealing with noisy mobile phone data6

requires an advanced cleaning process which is not further specified in CT-Mapper. Finally, Asgari et al.7

[15] filtered trajectories, whose lengths are shorter than 5 kilometers and validated with trajectories with an8

the average length of 26.5 kilometers. Hence, CT-Mapper has been validated only in inter-urban mobility9

scenarios, thus seeming not to handle urban mobility. Our model aims at investigating and overcoming these10

limitations, using a more sophisticated approach especially concerning network modeling.11

3. PROBLEM STATEMENT12

The section presents the main definitions, and a formal conceptualization of the problem of map-matching13

sparse cell-phone trajectories to the underlying multi-modal transportation network. The definitions reported14

in the following are based on those used in strictly related recent work[15, 23]:15

Definition 1 (Signaling event) A signaling event is defined as any observation resulting of a communica-16

tion activity between a cell phone and a base station. Each observation o is defined as a tuple (φ, λ, z, t) ∈ R3×N17

consisting of the latitude φ, the longitude λ, the azimuth z and the timestamp t of the event.18

Definition 2 (Cell phone trajectory) A cell phone trajectory T = (o1, . . . , on) is defined as a sequence19

of network signaling events, ordered by their timestamps and related to the same mobile phone user. We20

consider the following as typical kinds of signaling events: i) communication events (i.e., calls and SMS); ii)21

handover events (i.e., cell changes during an established communication) and Location Area (LA) updates;22

iii) network attachment/detachment events; iv) data/internet connections.23

Definition 3 (Multi-Layer Transportation Graph) A Multi-Layer Transportation Graph is defined as24

a directed graph G = (V,E, L,Ψ) where E, V represent the vertices and the edges, respectively, and L is25

the set of possible layers related to different transportation modes. In our study, we focus on four layers26

only: road, bus, tramway and subway. Function Ψ indicates the layer associated to a given node, i.e.,27

Ψ : V → L in G. Transportation Layer Gl = (V l, El) is a subset of G where V l = {v|v ∈ V,Ψ(v) = l} and28

El = {〈vi|vj〉 ∈ E,Ψ(vi) = Ψ(vj) = l}. Each node vi is characterized by its latitude and longitude (i.e., the29

geographical position vi = 〈lat, lon〉i). CrossLayer edge set Ecl ⊂ E defines the edges with pair of nodes not30

belonging to the same layer: Ecl = {〈vi|vj ∈ E|Ψ(vi) 6= Ψ(vj)}.31

Definition 4 (Cellular Network) The cellular network is defined as a set of cellular towers C = (c0, c1 . . . cp),32

where each cell tower cp = (φ, λ, z) is characterized by its latitude and longitude in the geographical coordinate33

system and the direction of the antennas called azimuth.34

Definition 5 (Path) A path P between two nodes v, w ∈ V is a sequence of edges (e1, . . . , en) ∈ En such35

that e1 = (v, ·), en = (·, w) and ∀i ∈ [[1, n− 1]],∃u ∈ V, ei = (u, ·), ei+1 = (·, u).36

Finally, using the above definitions, the current work problem can be defined as follows: given a cellular37

trajectory T and the Multi-Layer graph G, the aim is to find the path P in G that leads to the observation o38

in T . This is obviously a map-matching problem.39

4. NETWORK MODELING40

4.1. Multi-Layer Transportation Graph41

The transportation network studied in the paper is the multimodal transportation system of the city of Lyon,42

France. The network is designed as a multiplex network G composed of four graph layers representing four43

transportation modes: road, bus, tramway and subway. The whole Multi-Layer network and its different44

layers is shown in fig. 1a. The Python NetworkX library is used for multilayer modeling [26]. The graph45

and its different layers are built using multiple data sources and programming tools. The road network is46
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generated via OSMnx [27], a Python library which creates NetworkX graphs from OSM data. Simplification1

of the road network topology derived from OSM is integrated as a facility in the library. The resulting road2

network corresponds to all drivable routes, representing the finest level of granularity that can be reached in3

road modeling.4

Public transport layers have been generated using GTFS (Google Transit Feed Specification) data. We5

have performed some preprocessing steps (such as merging same public transport stops, which are in different6

directions) to obtain a reliable graph. Finally, cross-layers are added between layers to obtain the final7

multiplex graph structure. Between public transport layers, cross layers are defined as connections at transfer8

stops between public transport lines (this information is contained in the GTFS transfer file). In Asgari et al.9

[15], each subway station is connected to its closest road intersection for simplification matters. In light of10

a more realistic modeling, we prefer instead linking the road and public transport layers by using parking11

locations derived from Lyon OpenData [28]. The closest node of each parking location is thus connected to12

the closest public transport node.13

(a) Visualization of Multi-Layer transportation network. Four transportation modes are considered: subway
(green nodes, upper layer), tramway (red nodes, mid layer), buses (blue nodes, mid layer) and road (yellow,
bottom layer). Cross-Layers (vertical grey edges) connect the different layers. See fig. 1b for statistics related
to each of these layers.

Layer |N | |E| 〈k〉 〈l〉 (km) Source

Multi-Layer 29012 63676 4.39 0.14 OSM/GTFS

Subway 46 80 3.47 0.78 GTFS

Tramway 86 173 4.03 0.60 GTFS

Bus 2023 4495 4.44 0.46 GTFS

Road 26853 58340 4.34 0.11 OSM

(b) Main characteristics of each transportation layer and Multi Layer network: number of nodes |https :
//preview.overleaf.com/public/dgwdksqjgkzc/images/773f58be26b9877cc376c8b219f02635f183f679.pngN |,
number of edges |E|, average node degree 〈k〉 and average edge length in kilometer 〈l〉.

Figure 1: Lyon multimodal network: graphical representation (a) and main features (b)
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4.2. Cellular Network1

The cellular network considered in this study is composed of 13,306 antennas of the Orange mobile network2

operator, in the Metropole of Lyon region. Due to the overlapping of 2G, 3G and 3G+ cellular networks,3

antennas from different layers have the same characteristics (longitude, latitude and azimuth). After filtering4

duplicates, the result is a cellular network of 3,706 antennas. However, there are still antennas with the same5

spatial location (longitude and latitude) but different azimuths. In order to improve the modeling of the6

cellular network, we propose a method joining traditional Voronoi tessellation with the azimuth information7

to remove spatial overlapping. Specifically, each antenna is translated of an infinitesimal distance in the8

direction of its azimuth.9

After applying Voronoi tessellation to the azimuth-corrected set of antennas, we consider the new location10

of the antenna as the barycenter of the polygon representing the Voronoi cell fig. 2a. Compared to the simple11

Voronoi tessellation, as applied in [15], our coverage model is about three times more segmented by taking12

into account the azimuth of the antennas (i.e., the area covered by each antenna is on average three times13

lower in our approach than in a traditional Voronoi tessellation). fig. 2c shows the azimuth distribution of14

the set of antennas from the cellular network. Three main directions can be observed.15

(a) Cellular network in Metropole of Lyon

(b) Zoom on the districts of Lyon

(c) Azimuth of antennas in the cellular network

Figure 2: Cellular network

5. METHODOLOGY16

The following section reports on the main methodological background characterizing our solution to perform17

map-matching of cellular network trajectories, as issued from individual anonymized network signaling mobile18

phone passive data.19

5.1. Hidden Markov Model20

A Hidden Markov Model can be defined by a five-fold 〈V,C, π,A,B〉, where:21

• V = {v1, . . . , vN} is a set of states.22
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• C = {c1, . . . , cM} is a finite state of possible observations (also called emissions)1

• π is the probability distribution of the initial state, given that π is a probability distribution:

N∑
i=1

π(i) = 12

• A is a set of transition probability . The probability to transit from hidden state vi to hidden state vj3

is denoted as {a(vi; vj)}. Besides, ∀vi ∈ V,
∑
vj∈V

a(vi, vj) = 14

• B is a set of emission probability . The probability to emit observation oj from hidden state vj is5

denoted as {b(vi; oj)}. Besides, ∀vi ∈ V,
∑
oj∈C

b(vi, oj) = 16

Our map-matching problem can be modeled with a Hidden Markov Model: hidden states are modeled as7

the set of vertices (nodes) V from the Multi-Layer Transportation Graph. Observations are modeled as the8

set of antennas C from Cellular Network. Hidden Markov Model allows to solve the following problem: given9

a sequence of observations (sequence of antennas on a cellular trajectory), the model finds the most likely10

sequence of hidden states (sequence of nodes on the transportation network).11

5.2. HMM parameters12

5.2.1. Initial Probability13

As the definition of the initial probability, all the nodes in the transportation network are equally assigned14

with a probability of 1/N with N representing the number total of nodes in the transportation network:15

π(i) =
1

N
(1)16

5.2.2. Transition Probability17

The transition probability corresponds to the probability that a mobile phone user moves, on the underlying18

transportation network from hidden state vi at time t− 1 to hidden state vj at time t. Various transition19

probabilities have been proposed in the literature. For instance, as in the definition by Luo et al. [16],20

transition probability only depends on the network connectivity. The one used by Thiagarajan et al. [13]21

depends instead on the distance between transportation nodes. However, all of these approaches use road22

transportation network to define transition probability. Thus, these definitions require to be adapted to the23

case of a multilayer network, in order to take into account the attributes of each layer. Hence, we choose the24

definition proposed by Asgari et al. [15], i.e., the transition probability depends on the average speed over an25

an edge and the edge length.26

Weights which depend on the average speed over an edge are defined as follow:27

Wij =

{
wij if vi and vj are adjacent in G

0 otherwise
(2)28

value of wij Condition

1/80 Ψ(vi) = Ψ(vj) = subway

1/25 Ψ(vi) = Ψ(vj) = tramway

1/15 Ψ(vi) = Ψ(vj) = bus

1/50 Ψ(vi) = Ψ(vj) = road

1/10 Ψ(vi) 6= Ψ(vj)

Table 1: Edge classification and weights for multilayer transportation network G

Finally, the transition probability is defined as the inverse of the shortest path cost between two nodes vi29
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and vj :1

a(vi, vj) =

 ∑
∀(mn)∈SPvivj

wmn · d(vm, vn)

−1 (3)2

where (mn) is an edge between vm and vn belonging to SPvivj the shortest path between two nodes vi and3

vj in graph G. The shortest path cost of SPvivj is the sum of distances over each edge (mn) belonging to4

SPvivj weighted by wmn. d(vm, vn) is the geodesic distance between each two nodes vm and vn.5

5.2.3. Emission Probability6

The emission probability corresponds to the probability that an individual user is in the hidden state vi at7

time t given that an observation (e.g communication event at an antenna) oj is observed on the cellular8

network at time t. In the literature, in the mobile phone data context, various emission probability have been9

proposed. Luo et al. [16] define a score inversely proportional to the distance between the hidden state and10

the observation. Jagadeesh et al. [24] prefer to use a Gaussian distribution with zero mean and an empirically11

estimated standard deviation of the measurement error between hidden states and observations. Similarly to12

Asgari et al. [15], since detailed information regarding the underlying cellular network is unavailable, we use13

Voronoi tessellation to model the area covered by each antenna. Finally, the emission probability is defined14

as a decreasing function of the distance between the antenna location and the hidden state:15

b(ot, vj) =


1 if: dtj < rmax(
rmax

dtj

)β
if: rmax < dtj < τ · rmax

0 otherwise

(4)16

where dtj is the euclidean distance between ot and intersection vj , and β = ln(10)
ln(τ) is the decreasing factor17

which has been defined to obtain an emission score ten times lower for dtj = τ · rmax and τ · rmax is a18

threshold corresponding to the maximum distance at which a cell phone can be covered by a given cellular19

antenna. Considering the fact that the communication power is generally proportional to inverse square of20

the distances [25], coefficient β = 2 that leads to τ = 3 is chosen.21

5.3. Preprocessing22

This preprocessing step aims at reducing the noise in cellular phone trajectory. This a key step to improve23

map-matching accuracy process. The cleaning algorithm of our approach follows these three sequential steps:24

• apply a recursive look ahead filter [29]. This filter is based on the mobile phone travel speed on the25

cellular network. If the speed is higher than a given parameter, the outlier record is removed. In the26

algorithm, this speed is set at 500 km/h.27

• through investigation into the data, we have decided to aggregate records with a given threshold of two28

minutes to reduce the oscillation effect (also called ping-pong effect) on the cellular trajectory. Moreover,29

this value of two minutes is lower enough to avoid loosing information on the cellular trajectory. The30

antennas detected within the threshold are replaced by a single antenna, i.e., the closest one to the31

coordinates of the barycenter of the diverse antennas.32

• remove consecutive records detected at the same antennas. We consider in this case that the user is33

static, thus no information is lost by simply removing the record.34

5.4. Map-Matching algorithm35

After applying the cleaning algorithm described above, map-matching can be used on cleaned cellular36

trajectory. Our approach is a two-steps map-matching algorithm 1. First, an optimized Viterbi algorithm37

[30] is run. The inputs of the Viterbi process are the following: the transportation network modeled as a38

multiplex network G, the possibles states (set of the nodes of G, the emissions (set of antennas from the39

cellular network), the HMM parameters defined and the cellular trajectory. By calculating all possible paths40

given the cellular trajectory, the Viterbi process output is the likely sequence of graph nodes, one for each41
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time instant in the input. For real time application, due to a large number of states and emissions, the1

execution time of the Viterbi algorithm is critical [25]. The standard Viterbi algorithm applied in a case2

with 6,110 states (less complex network than the one used in the study), 3,706 antennas results in around3

two hours to the reconstruction of a set of 2,300 observation sequences. The algorithm runs on a server4

machine equipped with an Intel Xeon E5 2,640 2.4 GHz multi-core machine, equipped with 56 virtual cores5

and 128 GB of DDR4 RAM. Using the sparseness of cellular trajectory, the main optimization processes for6

real time application used by Algizawy et al. [25] are applied. The major process consists in ”eliminating7

all multiplications by zero and reduces the search space by keeping only with emittable states from each8

state observable”. The execution time of the optimized Viterbi algorithm is 3 seconds instead of 2 hours to9

reconstruct a set of 2,300 observation sequences.10

Due to extremely long execution time on a traditional PC hardware, we have used the server machine for11

our computation. The server has been used for running the map-matching algorithm using a transportation12

network of 29,012 nodes. In order to reduce time execution, multiprocessing Python libraries such as joblib13

have been used.14

Finally, after inferring the most likely states sequence using the optimized Viterbi implementation15

presented above, the final trajectory is inferred by applying a traditional shortest path (Dijkstra) detection16

algorithm on the underlying transportation graph between two consecutive nodes.17
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Procedure 1 Map-Matching algorithm

Input:
Graph, G
States, V = {V0, . . . , VN−1}
Emissions, C = {c0, . . . , cN−1}
Cell phone trajectory, T = (o0, o1, o2, ..., ol) where oi ∈ C and l is the length of the sequence
Initial probabilities, πi ∈ V
Transition probabilities, aij such that i, j ∈ V and 0 < i, j < n− 1
Emission probabilities, bij such that i ∈ C and j ∈ V

Output:
Maximum probability, OutputProb
Edge sequence, OutputPath =< Vo0 , Vo1 , . . . , Vol−1

>

First step: Optimized Viterbi Algorithm
1: V ← {}
2: Path← {}
3: for all y in V do
4: V [0][y] = πy · boi,y
5: Path[y]← y
6: end for
7: for t← 1 to l − 1 do
8: for all y in V |bot,y 6= 0 do
9: V [0][y] = πy · bo0,y

10: (prob, state) = max
y0∈V |ay0,y 6=0

(V [t− 1][y0] · ay0,y · bo0,y, y0)

11: V [t][y]← prob
12: NewPath[y]← Path[state] + y
13: end for
14: end for

Second step:
15: (prob, state) = max

y∈V
(V [l − 1][y], y)

16: OutputProb← prob
17: OutputPath← Path[State]
18: FinalPath← OutputPath[0]
19: for all k in OutputPath \ {OutputPath[0]} do
20: FromNode← OutputPath[k − 1]
21: ToNode← OutputPath[k]
22: IntPath← ShortestPath(FromNode, ToNode, G)
23: FinalPath← FinalPath+ IntPath
24: end for

6. STUDY-CASE: LYON1

6.1. Datasets2

In order to test our approach, two datasets related to Lyon metropolitan area are used:3

• Anonymized individual mobile phone data provided by Orange, the major French telecom operator4

covering the week from 9/9/2015 to 15/9/2015. The latter are records of all users who visit, in a same5

day, at least one base station in two areas of Lyon, i.e., the Part Dieu (PD) and Sainte-Foy (SF) areas.6

It is worth mentioning that the identifiers of such users are not the same across different days for7

privacy issues. Only timestamps, user id, antennas id information are provided. This dataset is used8
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for the macroscopic validation of our approach 6.2.2.1

• Both GPS traces and mobile phone records are collected for a group of users in Lyon metropolitan2

area. Mobile phone data have the same characteristics as described above. This dataset is used for the3

microscopic validation of our approach, GPS traces being used as ground truth 6.2.1.4

6.2. Result5

6.2.1. Microscopic validation6

In order to validate our model for microscopic user mobility, we applied our HMM-based map-matching on7

the cellular trajectory and compare the inferred trajectory with GPS traces, considered as ground truth.8

In fig. 3, six results from the proposed approach are shown. In fig. 3a and fig. 3b, thanks to a fine-grained9

multimodal network, our algorithm shows a good accuracy, despite sparse trajectory, in an urban context.10

Moreover, in fig. 3a our algorithm is able to properly infer a trip on the public transportation network (the11

transportation mode used is the tramway). The algorithm is particularly effective in accurately map-matching12

cellular trajectories along major roads in inter-urban contexts, as clearly shown in fig. 3c. Indeed, the13

complexity of the map-matching problem is reduced when a user is moving in a non-urban environment,14

compared to an urban context. In such situations, our model is highly accurate and able to fairly reconstruct15

such trajectories. Finally, in fig. 3f, an example of reduced accuracy of our map-matching solution is shown.16

In case of multiple events in a short spatial range, our approach considers the user as mobile and attempts to17

infer a path whereas she/he is static. This explains why some loops appear on inferred cellular trajectory.18

file:///F:/Mobile Phone Research/MobilePhoneDataScirptArticle/Graph perso article test individual traj/my_map.html

(a) Cellular trajectory: urban
trip

file:///F:/Mobile Phone Research/MobilePhoneDataScirptArticle/Graph perso article test individual traj/my_map.html

(b) Cellular trajectory: urban
trip

file:///F:/Mobile Phone Research/MobilePhoneDataScirptArticle/Graph perso article test individual traj/my_map.html

(c) Cellular trajectory: inter-
urban trip

file:///F:/Mobile Phone Research/MobilePhoneDataScirptArticle/Graph perso article test individual traj/my_map.html

(d) Cellular trajectory: home to
work trip

file:///F:/Mobile Phone Research/MobilePhoneDataScirptArticle/Graph perso article test individual traj/my_map.html

(e) Cellular trajectory: work to
home trip

file:///F:/Mobile Phone Research/MobilePhoneDataScirptArticle/Graph perso article test individual traj/my_map.html

(f) Cellular trajectory: multiple
events issue

Figure 3: Set of cellular trajectory. The blue line represents the GPS trace (Ground Truth), the red
line is the trajectory inferred by our approach (Output of the map-matching algorithm), the green
markers correspond to the cellular trajectory (input of the map-matching algorithm), the white
marker represents the beginning of the trip and the black one, the end.



L. Bonnetain, A. Furno, J. Krug and N.-E. El Faouzi 13

6.2.2. Macroscopic validation1

To validate our approach according to a more aggregate and larger-scale perspective, we propose a macroscopic2

evaluation, which aims at answering the following question: is our algorithm able to properly infer the3

distribution of flows over the most-traversed paths between the two considered areas of Part-Dieu and4

Sainte-Foy? In order to determine, in a fairly realistic way, a sort of ground truth describing the common5

paths between Sainte-Foy (SF) and Part-Dieu (PD), we used a combination of several tools. First, we used a6

A* shortest-path (SP) algorithm, based on the work of [31]. This SP algorithm uses a heuristics-directed7

search and it includes link penalties for multi-path search. It also incorporates a link penalty depending on8

a hierarchical description of the network. This method provided us with a set of routes efficient for cars9

only. We completed these results with the Google Map itineraries calculation, in order to confirm the results10

produced by the SP algorithm and to add supplementary routes for public transportation and bicycles. For11

public transportation, we also relied on the website of the SYTRAL, the public transportation authority12

in Lyon. At last, our choices were confirmed by our knowledge of the city. Especially, for the SF to PD13

direction, we added a supplementary route which seemed to be reliable, even if it was not proposed neither14

by our A* nor by Google Map algorithm.15

(a) Popular paths from Part-Dieu to Sainte-Foy (b) Popular paths from Sainte-Foy to Part-Dieu

Figure 4: Popular paths from Sainte-Foy to Part-Dieu

Assigning users to the different alternative paths is not straightforward. In our case, we derived the16

assignment coefficients results from a length-based C-logit approach following the work of [32]. The C-logit17

model solves a Stochastic User Equilibrium problem by considering both the cost of each alternatives and the18

commonality factor between alternatives. The cost is the mean travel time, provided as a static data. A19

numerical parameter β, presented in the above-mentioned article, was set to 70. The θ parameter on which20

the logit formula relies was set to θ = 0.009 (see [32]). To determine θ, we ran a static traffic simulation on21

the city of Lyon-Villeurbanne in which we tried to minimize the difference between observed and modeled22

flow, while calibrating θ. Observations were taken from loop detectors and furnished by the city authorities.23
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Figure 5: Macroscopic flow between Part-Dieu and Sainte-Foy

In fig. 5, we report on the comparison between macroscopic flows, as inferred from static traffic simulations1

(in red) and the aggregated results retrieved by using our cellular-trajectory-based map-matching approach (in2

blue). It is worth highlighting that, given the biases and incertitude present in both approaches to compute3

path distribution, expecting a perfect match between the two approaches is rather unrealistic. However, we4

believe this comparison can provide qualitative and global insights on the capacity of our solution to properly5

match trajectories on the multi-modal transport network. Also, it complements the previously described6

microscopic validation, which has already proven a good hit-rate at an individual scale.7

As a first interesting result, our approach doesn’t lead to completely unrealistic and unexpected traffic8

flows, like for instance all cellular trajectories matching with only one or two expected popular paths from9

simulations. Besides, the two approaches lead to consistent results in terms of popular/unpopular paths:10

Path 1 is the most used in both cases, while Path 5 has the lowest score in the two approaches as well.11

7. CONCLUSION AND DISCUSSION12

Cellular-network signaling data have the great potential to provide fine-grained spatio-temporal information13

to reconstruct users’ mobility at both microscopic and macroscopic scales. In this paper, we performed an14

empirical study, based on real cellular traces collected in the city of Lyon, France, by a major telecommunication15

operator, aimed at investigating such potential. We developed a HMM-based map-matching algorithm for16

mapping sparse and noisy cellular trajectories to the underlying transportation network.17

As a practical basis for our approach, we developed automatic tools to build a large multi-modal18

transportation network.19

Taking into account the azimuth of antennas allows to increase cellular network segmentation. Net-20

work modeling at a fine-level of granularity allows for properly applying map-matching in urban complex21

environment.22

By providing a formal definition of the HMM parameters, our methodology follows three main steps:23

the cleaning process, an optimized implementation of the Viterbi algorithm, and the determination of the24

shortest path on the sequence of nodes returned by Viterbi algorithm.25

To validate our approach, we have analyzed an original case study, related to the French city of Lyon,26

by leveraging both real cellular traces collected by a major network operator and GPS data collected via27

a mobile phone application. This data has been leveraged to perform a microscopic validation proving the28

accurate map-matching capability of our approach, even in a complex urban context. Moreover, we have29

demonstrated the possibly to retrieve popular paths between two areas by comparing the spatial distribution30

of flows as computed by both our approach and simulations.31

Future directions should consider improvement with dynamic HMM parameters, in order to build a32

transition matrix depending on actual traffic conditions. In addition, some limitations of our algorithm have33

been shown in relation to oscillations (or ping-pong effect) in the user’s communication activity. Therefore,34

a better understanding of this recurrent phenomenon is required. The latter should allow to create an35
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advanced filtering approach to remove this oscillation effect from cellular trajectories and further improve the1

map-matching accuracy.2
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