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Abstract1

Transport networks are essential for our societies. Their proper operations has to be pre-2

served to face any perturbation or disruption. Therefore, it is of paramount importance to3

address the modeling and the quantification of the resilience of such networks to ensure an4

acceptable level of service (LoS) even in presence of disruptions.5

The paper aims at characterizing network resilience through weighted degree centrality. To6

do so, we use a real dataset issued from probe vehicle data to weight the graph by the traffic load.7

In particular, a set of disrupted situations retrieved from our dataset is analyzed to quantify8

their impact on network operations.9

Results demonstrate the ability of the proposed metrics to capture traffic dynamics as well10

as their utility for quantifying the resilience of the network. The proposed methodology com-11

bines different metrics from complex networks theory, i.e., heterogeneity, density and symmetry,12

computed on temporal and weighted graphs. We analyze their variations with respect to time-13

varying traffic conditions and disruptions, by providing relevant insights on the network states14

via 3D-maps.15

Keywords: Smart Transportation, Resilience, Dynamic Graph, Degree Centrality, Hetero-16

geneity17
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1. INTRODUCTION1

Transport networks are frequently subject to various types of disruptions: they are vulnerable to2

extreme weather events and naturally prone to both human attacks and technological failures.3

As mobility is essential for our society, guaranteeing and increasing the resilience of transport4

network represents a fundamental challenge in transport research. Resilience is defined as the ability5

of a transportation system to move people around in the face of one or more major obstacles to6

normal function1. The interest is twofold: from one side, transport authorities seek for higher7

resilience towards implementing more reliable, cost-efficient and maintainable systems; from the8

other side, travelers benefit from resilience in terms of improved level of service and increased9

availability of mobility services. Finally, by promptly detecting and even anticipating network10

reactions in case of disturbances, it becomes possible to rapidly managing emergency situations11

thus reducing the occurrence of gridlocks, accidents and delays that might cause huge costs in12

terms of economy and human life.13

Nowadays, the resilience is assessed either statically, based on the network topology using the14

graph theory [1, 2, 3], or dynamically, derived from traffic variables evolution [1, 4, 5]. Because15

topological approaches are unable to grasp the time-dependent aspects of resilience, it is essential16

to combine both approaches because of their complementary nature [1, 6, 7]. Most resilience studies17

traditionally focus on small-scale networks with static conditions. By addressing city-wide scale and18

by taking into account dynamic information on traffic conditions (made possible by the growing19

availability of real-time data on users’ mobility and network conditions), it becomes possible to20

achieve an accurate overview of the network state, typically neglected in most studies on transport21

resilience.22

Consequently, this paper aims at investigating novel solutions for resilience modeling and anal-23

ysis for road transport, by trying to answer the following questions:24

• How can we characterize a whole road network in terms of resilience by taking into account25

both topological and traffic dynamics?26

• How can we characterize and quantify the resilience of a whole network at a global scale?27

This work seeks therefore to advance the state-of-the-art research in the field of resilience with28

the following contributions: (1) we analyze the impact of abnormal conditions using degree-related29

metrics computed over a dynamically-weighted graph that grasp both realistic and time-varying30

traffic-properties of the considered road network; (2) we characterize network heterogeneity in a31

spatio-temporal way. We observe the impact of disturbance at global scale, per geographical areas32

and in time, as quantified by three resilience indicators presented in the very recent study of Gao33

et al. [8], briefly discussed in Sec. 2.34

The paper is organized as follow. Section 2 briefly surveys related work dealing with resilience,35

and, particularly, network heterogeneity. Section 3 outlines the proposed methodology to construct36

a dynamic weighted graph that could be a relevant representation of a city-wide road network,37

under both typical and abnormal conditions. Such graph is used as an input to compute network38

heterogeneity used to define the network resilience. In Section 4, we present our case study and39

discuss the application of the proposed methodology in a realistic scenario. In Section 5 we conclude40

our paper by discussing the main insights deriving from our case study and highlighting research41

directions for future work.42

1https://rideamigos.com/transportation-resilience/
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2. LITERATURE REVIEW1

2.1. Resilience approaches2

As introduced before, there are two major approaches for the network resilience analysis, often lead3

separately despite their complementarity.4

The dynamic approaches define the network resilience through the dynamics traffic conditions,5

by quantifying the evolution of demand-sensitive traffic variables, such as the travel time, the queue6

length or the road capacity, in presence of disruptions. A set of such indicators, allowing to evaluate7

the impact of a disturbance, have been surveyed in [24]. Jenelius et al. [5] defined two metrics,8

the importance and the exposure, respectively based on the per-edge rise of travel cost and the9

expected travel cost increase when a disruption occurs. They are among the most popular metrics10

that belong to the category of dynamic approaches [1, 5, 6].11

Based on graph theory, the topological approaches quantify the network resilience through12

centrality measures. The betweenness centrality, characterizing the node criticity regarding the13

number of time the shortest path crossed it, the closeness centrality, informing about how an14

intersection is to all others reachable through the paths’ length, and the degree centrality, later15

defined, are often used to quantify the resilience of networks are among the preferred ones in16

resilience analysis [9, 10, 11]. Most centrality measures allow to classify the node or the edge17

regarding their vulnerability. On the contrary, the global efficiency [12], based on the shortest18

paths’ lengths and quantifying how the information is exchanged over the network, provides a19

global overview of the network performances. Via this measure, we are able to determine the20

global impact of a disturbance [1, 13, 14].21

Given approaches complementarity, Gauthier et al. [6] proposed to dynamically weight the22

graph with traffic variables to consider traffic dynamics in centrality measures computations. In-23

deed, in [15, 7, 16] the edge weight sensitivity of the centrality measures and thus their traffic24

dynamics consideration is verified. Indeed, in correlation analysis between centrality measures, the25

betweenness centrality in most of cases, and traffic variables characterized by the traffic flow, the26

travel time graph weighting allows to increase the coefficient [17, 18, 19].27

2.2. Network heterogeneity28

The heterogeneity, also known as graph irregularity, quantifies global network information by de-29

scribing the diversity of network nodes’ connectivity [20]. Computed over a weighted graph, the30

heterogeneity takes traffic dynamics into account.31

The definition of heterogeneity is typically based on degree centrality, used as the local metric to32

describe nodes’ connectivity. Degree centrality measures, per each node of the graph, the number33

of edges adjacent to the considered node. It can be interpreted as the capacity of a node to directly34

join another node through the network. On directed graphs, where each edge has a direction, it35

is possible to distinguish between in-degree and out-degree centrality, using the number of edges36

entering (resp. exiting) the analyzed node. This metric could also be estimated over a weighted37

network by computing a weighted degree centrality as in [21, 22, 23, 24, 25]. In the weighted case,38

the degree centrality of a node corresponds to the sum of all the edge weights connected to it. As39

with the traditional degree centrality, the weighted one can be extended to in-degree (resp. out-40

degree) and is equal to the sum of the weights for the edges joining the node i to its predecessors41

(resp. successors) j.42

Snijders [26], Zimmermann et al. [27] and Smith et al. [28] characterize network heterogeneity43

by using degree variance variants: non-standardized or normalized by the average degree, by the44

variance of the quasi-star network or by the number of graph components. Similarly, Collatz et al.45

[29] quantify heterogeneity by comparing the largest eigenvalue of the adjacency matrix with the46

average degree. Finally, Albertson [30] quantifies graph irregularity as the difference of the degree47
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for all the vertices. According to Albertson’s definition of heterogeneity, a graph is homogeneous1

when all node degrees are equal. Estrada [31], Yousaf et al. [32] slightly modified the definition of2

heterogeneity by comparing a function of these degrees clarify what do you mean by ”comparing a3

function”.4

Network heterogeneity can also be studied by computing the entropy of the degree distribution5

P (k). This metric captures the disorder of the analyzed network [33, 34, 35]. According to Wang et6

al. [36], the metric describes the network’s heterogeneity, directly related to the resilience. Indeed,7

this statistical measure is related to loss of information in a network and thus directly concerned8

with the information transfer.9

To characterize complex networks, such as transport ones, in terms of the diversity of connec-10

tions, Jacob et al. [20] proposes a new measure of heterogeneity, highly dependent of the degree11

spectrum rather than degree values. By analyzing the degree distribution of a network, the authors12

are able to define graph heterogeneity. A graph is considered heterogeneous if all the nodes have a13

different degree. Thus, a star-network is almost considered homogeneous because only one node has14

a different degree from all others. Although, realized with an undirected and unweighted network,15

the study can be extended to the weighted case, by computing a weighted degree and analyzing16

the in-degree and the out-degree distributions.17

Gao et al. [8] also propose a heterogeneity metric, computed over a directed weighted graph,18

based on the in-degree and out-degree density functions, and defined as follows:19

(1) h =
σinσout
〈k〉

where σ2in (resp. σ2out) is the variance of density function of the weighted in-degree P (kin) (resp.
out-degree P (kout)) and 〈k〉 is the average degree or network density, defined as follows:

(2) 〈k〉 =
1

N

N∑
i=1

ki

where N is the number of nodes in the network and ki is the degree of the node i.20

In their work, Gao et al. propose a methodology to quantify the resilience of different types21

of multi-dimensional systems (i.e., gene regulatory, ecological and power supply networks). The22

authors prove that resilience properties can be effectively grasped via a combination of network23

metrics that includes: heterogeneity h, density 〈k〉 (i.e., average degree (Eq. 2)) and network24

symmetry S. Symmetry is defined as the correlation coefficient of in-degree and out-degree:25

(3) S =
〈kinkout〉 − 〈kin〉〈kout〉

σinσout

where 〈kin〉 (resp. 〈kout〉) is the average in-degree (resp. out-degree), 〈kinkout〉 the scalar product26

of both vectors (in-degree and out-degree).27

A macroscopic resilience parameter βeff (Eq. 4) is then defined as a function of the aforemen-28

tioned metrics for bacterial and gene regulatory networks.29

(4) βeff = 〈k〉+ Sh

The βeff coefficient is defined based on the Michaelis-Menten equation [37] that defines the30

dynamics of regulatory networks. In other words, by defining a function that characterizes the31
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network dynamics, the authors determine the critical transition plane βceff , separating the desired1

resilient state, from the undesired one, i.e., non-resilient. In the transport field, the fundamental2

diagram define network dynamics by relating the speed and the vehicle concentration. To obtain3

the same trend than the Michaelis-Menten one, we can relate the free flow speed minus the observed4

one to the concentration.5

In this paper, we advocate that a similar approach can be transposed to transport network.6

To best of our knowledge, this is the first time a similar methodology is used for transportation7

resilience analysis and quantification. First, we generate a dynamic weighted graph representing a8

large-scale, time-varying road network. The graph is obtained by mining a large-scale, real-world9

dataset reporting GPS observations (position, timestamps and speed) collected by probe vehicles.10

Atop this graph, we verify and prove that heterogeneity, symmetry and network density are sensitive11

to demand temporal variations, minor perturbations and extreme weather conditions. Thus, these12

metrics can be used as valid indicators, and therefore predictors, of network resilience for transport13

networks when modelled as dynamic weighted graphs.14

3. METHODOLOGY15

Our analysis aims at analyzing the spatio-temporal evolution of the values of heterogeneity, density16

and symmetry for a dynamic transport network, i.e., a road network represented as a weighted,17

directed graph, G(V,E,W t), whose nodes V correspond to road intersections and whose edges E18

correspond to road segments. Edge weights W t are assumed to indicate dynamic traffic conditions19

(i.e., average speeds, travel time, ...) on the corresponding road segments and are supposed to be20

known according to a given frequency, e.g., every 30 minutes. Therefore, t represents the time step21

associated to the observed weights, i.e., the average speeds on the network edges in the analyzed time22

period. By studying the characteristics of such a dynamic network under both regular conditions23

and in presence of disruption, via a travel-time dependent weighted graph, we ensure that the24

proposed combination of dynamic, weighted network indicators is sensitive to perturbations and25

can be effectively exploited to characterize and, prospectively, predict resilience properties of large-26

scale networks. In order to perform our analysis and retrieve edge weights, we rely on a real dataset27

of probe data, as described in Sec. 3.4.1.28

3.1. Graph weighting procedure29

To introduce the traffic dynamics in the weighted degree centrality (Fig. 1a) computation, with30

the aim of merging topological and dynamic approaches, the first step consists in obtaining a graph31

whose weights describe how effectively the edge connects nodes by taking into account actual traffic32

conditions. We assume that in free flow conditions, all nodes are connected at the best possible33

level, i.e., all edges have a weight equal to one. When travel time increases, we assume edge weight34

progressively decreases to zero, with zero corresponding to the case of a completely congested edge,35

i.e., a road segment where vehicles are completely stuck. By considering the principle of bounded36

rationality for modelling drivers’ behaviors [38, 39], we assume that a small travel time increase37

should produce a negligible impact on the edge weight (Fig. 1b).Finally, we adopt a discretization38

process in order to improve the relevance of the edge weights. With this method, only significant39

travel time variations can actually impact the ability of an edge to connect nodes.40

3.2. Degree centrality distribution shifting41

As a consequence of the assumption described in the previous section, a travel time increase (caused42

by congestion phenomena or perturbations) on one edge will imply a reduction in adjacent nodes’43

weighted degree centrality (Fig. 1a). By generalizing such reasoning to the whole network, we44

suppose that in presence of a disturbance, the degree distribution is shifted toward the zero value.45
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This phenomenon is amplified with the disruption intensity and, particularly, in the case of low-1

resilient networks. On the contrary, when the offset towards zero of the degree distribution is2

negligible in presence of major disruption affecting the whole network, we can assume the network3

has higher resilience, by being able to maintain a good level of connection among its nodes.4

However, it is worth nothing that, in presence of localized disturbances, the shifting of the5

degree distributions towards zero could be weak at a global scale (i.e., the whole network), whereas6

some local areas could be nonetheless strongly impacted. Hence the interest to locally studying the7

degree distribution to analyze the resilience of the different areas of the network. To that purpose,8

we always extract the degree centrality values over the whole network to take into account actual9

traffic dynamics and to preserve network connectivity. However, we analyze and compare both the10

degree distribution at network scale (i.e., all nodes) and the distribution of the centrality values for11

a subset of nodes localized around the area mostly impacted by the perturbation. To quantify the12

offset in degree distributions, we compute the curves of the average degrees over time under normal13

conditions and in presence of disturbance. Then, we measure the area between the curves.As for14

the degree distribution offset, the gap between the curves depends on the network resilience and15

the disruption intensity.16

3.3. Heterogeneity analysis17

Besides characterizing the impact of perturbations via the degree distribution shifting, we globally18

study network resilience by measuring its heterogeneity (Eq. 1), density (Eq. 2) and symmetry19

(Eq. 3) properties. In that sense, we follow an approach similar to the one proposed by Gao et20

al. [8] to determine the resilience of ecological networks. Based on the weighted in- and out-degree21

centralities, these measures become sensitive to the traffic conditions. A spatio-temporal analysis,22

lead by first computing the metrics per areas and then observing their evolution in time, provides23

interesting insights on the network characteristics and performances. Such analysis allows to have24

a deep understanding of the network behavior. The comparison of the measures computed under25

both normal and disrupted conditions is realized in time or at a given time step, for the whole26

network or by focusing on different areas. Like for the degree distribution shifting analysis, for this27

spatial analysis, we compute the weighted degree centrality over the whole graph and then extract28

the degree values of the nodes surrounding the area interested by the perturbation.29

3.4. Implementation of the methodology30

3.4.1. Generation of a dynamic, weighted graph via probe data31

In order to obtain a graph-based representation properly grasping traffic conditions, we build a32

weighted graph including average travel time information computed from probe data. These data33

have been recorded during one year, from October 2017 to September 2018, in the Rhônes-Alpes34

region, France, by a leading provider of real-time traffic and mobility information services2.35

The GPS positions of tracked vehicles have been map-matched to the road network of the36

Rhônes-Alpes French’s region. We have also reduced the area of interest to the Lyon Metropolitan37

area, so as to conserve a reasonable size and guaranteeing a large availability of speed information38

on the retained edges. This network is divided in 21 areas, corresponding to the Lyon’s districts39

and neighboring cities (Fig 1d). Afterwards, in order to produce a topologically reliable graph, we40

have pre-processed it by filtering artificial nodes, thus only retaining those that represent actual41

road intersections3. This step is essential because of the high dependency of the degree centrality42

to the network topology. With this methodology, we reduced the size of the original graph from43

2http://www.mediamobile.com/
3To obtain the desired graph, we use the Osmnx’s Python library [40] which proposes a function that simplifies a

city’s graph topology by removing all nodes that are not real intersections, entries or exits points of the road network.
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Figure 1: (a) Computation of a node’s unweighted (top) and weighted (bottom) degree centrality.
(b) Attribution of a weight to an edge based on observed travel time (in a given time slot) and
free-flow travel time. (c) The average speed profile for working days and during the week end.
(d) The studied road network of Lyon. The Fourvière’s tunnel, closed on the 2nd of June 2018 is
highlighted in blue and the disturbed subway lines on the 19th of December 2018 are colored in
orange.
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21,338 nodes and 39,823 edges to 13,090 nodes and 27,618 edges, coded in Python by using the1

NetworkX library4 [41] (Fig. 1d).2

In order to produce the average speed with a given periodicity, we aggregate the available speed3

raw data in 30-minutes slots. The choice of 30 minutes is the result of a sensitivity analysis (not4

reported due to space limitations), which indicated this value as a preferable choice to obtain a5

sufficiently large portion of observed edges with a large number of speed samples from the data.6

We also analyzed our data to identify both typical and unusual situations of the network in7

order to understand the sensitivity of the proposed resilience indicators to perturbations. Firstly, we8

extract the “regular” speed profile, obtained by averaging data over twenty days, for all the edges of9

the network from 5:00am to 10:00pm which are not interested by any special event or perturbation.10

Secondly, we obtain unusual speed profiles issued from different specific days presenting a disruption.11

To do so, we identified specific events, by relying on information recorded from national weather12

and TMC (Traffic Management Centers), that took place in the observed region and which certainly13

affected traffic conditions.14

As the number of observed vehicles in the probe data is limited, we were not able to always15

identify speed information for all network edges. Therefore, for those edges where travel time infor-16

mation (either in the case of typical or for abnormal days) were missing, we adopt the simplifying17

assumptions of free flow conditions, as estimated from the probe data. The data issued from abnor-18

mal day are in average available for 35% of the 27,618 edges. This percentage is naturally higher for19

the typical day, as it has been created by averaging multiple days and related speed observations.20

Based on the computed speeds (either in regular or unusual conditions) and road segment lengths,21

we obtain travel time information in each of the above cases.22

3.4.2. Studied disruptions23

We consider four different disruptions recorded during the period in which data are available. On24

Monday, December 18th, 2017, the road network was fully disturbed because of a heavy snowfall. On25

Tuesday, December 19th, 2017, the subway service was blocked from 7:30am to 4:15pm. We analyze26

the impact of the potential modal shift by studying the change of the road network dynamics. The27

impact of protesters on the circulation over the road network is analyzed on Wednesday, April28

4th, 2018. Finally, on Saturday, June 2nd, 2018, an important tunnel of the city, the ”Fourviere’s”29

tunnel, crossed by more than 100,000 vehicles per day, was closed in the north-south direction for30

renovations during three days. The impact of this localized disturbance is studied at both global31

and local scales. Some of these disruptions, like the snowfall, affected the whole network whereas32

some others, like the tunnel closure, are localized in specific zones of the city. For local studies, we33

deal with these two specific days (December 18th and June 2nd) impact over the 5th, the 6th, the34

8th and the 9th districts of Lyon.35

3.4.3. Graph weighting procedure36

We use a weight discretization process in order to consider a group of edges equivalent when37

traffic conditions (travel time) are similar, but not necessarily equal. We assume that a travel time38

increase less than a free flow travel time fraction (i.e., α.fftt) has no impact on drivers’ route choice39

decisions. We choose as a proportion α = 0.2, knowing the longer per-edge free flow travel time is40

of 12 minutes. In this case, a travel time of 14.4 minutes ((1 + α).fftt) is considered as recorded41

in free flow conditions. In other words, the edge weight is assumed to stay unchanged (and at its42

highest possible value of 1) for an observed travel time in the range [0, fftt + α.fftt] (Fig. 1b).43

Beyond this limit, we impose a progressive, decrease of the weight value on the edge, as a step-wise44

4https://networkx.github.io/documentation/
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hyperbolic function of the observed travel time. On Fig. 1b, the orange curve represents the ratio1

between the free flow travel time and the observed travel time. The blue curve is the discretized2

travel-time ratio which considers the drivers’ bounded rationality principle. The blue curve is the3

one used to determine the edge weight in a given time slot. In other words, by the proposed discrete4

function, we are able to model the level of service on each road link, by also taking into account5

the impact of the (bounded rational) driver’s route choice process. An edge with a larger weight6

(closer to 1) represents a road segment with close-to-free-flow conditions, while lower-weight edges7

represent road segments exposed to higher congestion or disruption that are working at a reduced8

level of service, and less likely preferable alternatives for drivers.9

3.4.4. Degree distribution shifting10

To characterize the impact of the studied disruptions, we compute the degree distribution and the11

average degree centrality, at each time step, under normal and disturbed conditions. As we noticed a12

relatively high variance of the speed profile of different days of the week (transparent margins in Fig.13

1c), we choose to compare the speed profile of days with unusual behavior with the typical speed14

profile of the same day of the week (without main disruptions). In other words, if a disturbance15

happens on a Monday, we compare the traffic conditions of that day with the ones of a typical16

(non disrupted) Monday. Then, we quantify the difference between both degree distributions (the17

typical and the unusual) by computing the area between the corresponding average degree curves.18

This analysis is performed at both global and local scales, by analyzing the degree distribution19

shifting for the studied areas.20

3.4.5. Heterogeneity analysis21

By comparing the values of heterogeneity, density and symmetry in normal and disturbed con-22

ditions, at global scale, we aim at characterizing the magnitude of a speed reduction over the23

network. We conduct both temporal and spatial analysis. Firstly, we perform a temporal analysis24

by plotting the network characteristics from 5:00am to 9:00pm, every two hours. Secondly, we25

quantify the local impact of disruptions by computing the metrics through the degree distributions26

of the nodes included in the studied areas. This local analysis also allows to detect localized events27

hardly detectable at the global scale, but it also provides information on the resilience of specific28

sub-networks. As an indicator of the impact of the disruption over the metrics, we compute the29

Euclidean distance between the points determined by the three measures computed in different30

situations.31

4. RESULTS32

4.1. Analysis of the Degree Distribution33

In this section, we analyze the impact of specific disruptions on the degree distribution. We choose34

four disturbed scenarios, previously described (Sec. 3.4.2), with adverse effects on traffic conditions,35

as exhibited by the average speed profiles (Fig. 2a-2d).36

4.1.1. Global scale37

First, we focus on the typical average speed represented by the blue curves. We notice a lower38

typical average speed for the three first scenarios (Fig. 2a-2c) than for the last typical one (Fig.39

2d). Whereas the three first typical days are working ones, respectively on Monday, Tuesday40

and Wednesday, the last one happened on a week-end, specifically on a Saturday with different41

operating conditions in terms of traffic loads. This explains this difference in typical speed profiles42

computed under normal conditions. A same trend is noticeable in the degree distributions computed43

for the speeds of the typical days, displayed in blue (Fig. 2e-2h). Under normal conditions, we44
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Figure 2: The average speed (a)-(d), the degree distribution (e)-(h) and the average degree centrality
(i)-(l) are plotted for the four disrupted situations. The degree distribution are computed at 7:30am
as the relative error of the degree in typical and disturbed situations observed per node at global
scale (m),(n) and by zooming over the impacted (p) or not (q) areas.

notice a larger number of nodes possessing high degree values (between 6.0 and 6.2) for the typical1

Saturday (Fig. 2h) than for the other days (Fig. 2e-2g). We plotted the degree distributions at2

7:30am because we consistently notice a major change between the typical and the observed average3

speed profiles (Fig. 2a-2d).4

For all the studied cases (Fig. 2e-2h), a higher number of nodes, possessing a degree value5

between 6.0 and 6.2, is observed for the typical distribution than for the disrupted one. This6

observation is true for the intervals with high degree values. On the contrary, for the ranges7
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grouping small degree values, lower than 3.0, the trend is reversed: there is a larger number of1

nodes for such degree values in the deteriorated situation than in the normal one. In the presence2

of disruptions, the degree distributions are shifted to the left, i.e., towards zero. This aspect is3

exacerbated for the first disruption (Fig. 2e), presenting the most relevant impact on the average4

speed profile (Fig. 2a).5

The comparison of the gap between the two curves, representing the averaged degree centralities,6

corroborates the impression. Whereas the area between the curves is equal to 5.24 for the first7

disruption (Fig. 2i), for the second one it is only equal to 4.31 (Fig. 2j). In any events, when8

computed in disrupted conditions, the average degree is always lower than the one measured under9

normal conditions (Fig. 2k and 2l). Because of the consideration of the bounded rationality in the10

graph weighting (Sec. 3.1), the variations in the average degree centrality are higher than for the11

average speed.12

Finally, the computation of the relative error between the weighted degree centralities (Fig. 2m13

and 2n), issued from typical speeds and abnormal ones, provides information about the localization14

of the disturbance impact at 7:30am. We notice a stronger impact for the snowfall impact than for15

the tunnel closure. There a more nodes with a high relative error values for Monday, December16

18th (Fig. 2m), where non-zero values are more dispersed on the network, than for Saturday, June17

2nd (Fig. 2n). By zooming on the studied areas on June 2nd, we notice a higher proportion of nodes18

with a deteriorated level of service in the districts close to the tunnel than for the other studied19

ones. In Lyon 5th and Lyon 9th (Fig. 2p), 44% of nodes have a lower level of service with the tunnel20

closure, against 26% of nodes in Lyon 6th and Lyon 8th (Fig. 2q).21

4.1.2. Local scale22

We focus now on the impact of the tunnel closure and the snowfall at local scale by observing the23

behavior of the network locally. We focus on four areas: Lyon 5th and Lyon 9th, localized around24

the Fourvière’s tunnel, more likely to be disturbed, and Lyon 6th and Lyon 8th farther from the25

tunnel.26

First, one can notice a stronger change in the degree distribution for the districts including27

and surrounding the tunnel (Fig. 3e and 3f). The decrease of the number of nodes with degree28

centrality value between 6.0 and 6.2 is more important for these areas than for the two other ones29

(Fig. 3g and 3h). The average degree centrality gap, assessed in computing the area between the30

curves, confirms the observation. We notice a greater reduction in the average degree centrality for31

Lyon 5th and 9th, with an area between the two curves respectively equal to 5.56 and 6.57 (Fig.32

3i and 3j), than for Lyon 6th and 8th (Fig. 3k and 3l). These districts, far from the disruption,33

present an area separating the two curves around 3.50. These observations are in accordance with34

the respective average speed evolution (Fig. 3a, 3b, 3c and 3d).35

The second scenario strongly impacts the areas. The 6th district of Lyon is the only one which36

conserves a similar behavior in both conditions (typical and disrupted). The degree distribution37

is not modified for the highest degree values (Fig. 3w). Compared to the typical situation, the38

reduction of the degree occurrence only happens between 3.0 and 4.2. Such an offset has a limited39

impact on the average degree centrality. Here also, the degree distributions and the average degree40

conclusions, are in accordance with the average speed evolution (Fig. 3m-3p).41

The comparison in results between both studied scenarios also provides insights about the road42

network. We notice a lower proportion of node with high degree values (between 6.0 and 6.2) in43

Lyon 5th during the typical Monday than during the typical Saturday. A similar trend is observed44

for the 9th and the 8th districts of Lyon, where this phenomenon is amplified. These results are45

in accordance with the average speed difference between the working days and the week-end (Fig.46

1c, 3a-3d and 3m-3p). Lyon 6th conserves similar degree distributions and similar average degrees47
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(a) Lyon 5 - June 2nd
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(b) Lyon 9 - June 2nd
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(c) Lyon 6 - June 2nd
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(d) Lyon 8 - June 2nd
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(e) Lyon 5 - June 2nd
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(f) Lyon 9 - June 2nd
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(g) Lyon 6 - June 2nd
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(h) Lyon 8 - June 2nd
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(i) Lyon 5 - June 2nd
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(j) Lyon 9 - June 2nd
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(k) Lyon 6 - June 2nd
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(l) Lyon 8 - June 2nd
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(m) Lyon 5 - December 18th
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(n) Lyon 9 - December 18th
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(o) Lyon 6 - December 18th
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(p) Lyon 8 - December 18th
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(q) Lyon 5 - December 18th
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(r) Lyon 9 - December 18th
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(t) Lyon 8 - December 18th

05:00 07:00 9:00 11:00 13:00 15:00 17:00 19:00 21:00
time

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

av
er
ag
e 
de
gr
ee

Area between the two curves: 7.5

LYON5
Typical
Disruption

(u) Lyon 5 - December 18th
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(v) Lyon 9 - December 18th
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(w) Lyon 6 - December 18th
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(x) Lyon 8 - December 18th

Figure 3: The average speed, the degree distribution and the average degree are plotted for the
north-south direction tunnel closure(a)-(l) and the snowfall (m)-(x) for different districts: 5th, 6th,
8th and 9th districts of Lyon. The degree distributions (e)-(h) and (q)-(t) are computed at 7:30am.
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(a) Several disruptions at 7:30am
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(b) Evolution of in-degree and out-degree in presence
or not of snow (18/12/2017) at 7:30am
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(c) Overlay of in-degree and out-degree in presence
or not of snow (18/12/2017) at 7:30am

Figure 4: The heterogeneity, the symmetry and the network density for the global network are
plotted under normal conditions (•) and in presence of disruptions (×) in (a) at 7:30am. The
distributions in (b) correspond to the in- and out-degree ones under normal condition and in
presence of the snowfall at 7:30am. The other distributions superimposed the in- and out-degree
in a typical situation (c) and in the presence of the snowfall (d) at 7:30am.

in both studied scenarios, although the area between the curves is a bit higher with the snowfall1

than for the Fourvière’s tunnel closure. For the other areas, the results traduce an impact over the2

traffic conditions due to the disruptions. Regarding our assumption, the 6th district of Lyon is the3

most resilient one. This could be explained by a lower typical average speed. Consequently, the4

gap with the average speed in presence of disruption will be smaller.5

4.2. Analysis of the heterogeneity6

Having studied the weighted degree centrality behaviors, we focus on the previously presented7

metrics (Eq. 1, 2 and 3) although the network density, i.e. the average degree, had already been8

under considerations. The combination of the three indicators will allow us to characterize the9

network state under different traffic conditions in a spatio-temporal way [8].10

4.2.1. Global analysis11

For the spatial analysis, all the metrics are computed at 7:30am, where the impacts of the disrup-12

tions are the strongest one regarding the average speed profiles (Fig. 1c).13

In the presence of the disruption (×), the graph density and its heterogeneity decrease whereas14

the symmetry grows comparing to the reference situations (•). In Sec. 4.1, we notice the degree15

distribution shifting toward zero inducing the reduction of the network density (Fig. 3). Therefore,16

the decline in heterogeneity (Eq. 1) is due to the diminution of the standard deviation of the17

in-degree and out-degree distributions. The rise of the symmetry value reflects an increase in18

in-degree and out-degree correlation coefficient. When a disruption occurs, both in-degree and19

out-degree distributions move to zero, diminishing the corresponding average degrees. Nonetheless,20

this reduction is accompanied by a stronger decrease of the distribution’s standard deviation, hence21

the increase of the symmetry. The Fig. 4b illustrates the difference of the in-degree (left) and out-22
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(a) June 2nd (b) December 18th

Figure 5: The heterogeneity, the symmetry and the network density of the global network are
plotted under normal conditions on typical Saturday (a) and on typical Monday (b) (•) and in
presence of the snowfall (×) in (b) each two hours, from 5:00am to 9:00pm.

degree (right) under normal or abnormal conditions. The Fig. 4c shows a better overlay between1

the in-degree and the out-degree without disruption (left) or with (right). The correlation coefficient2

is thus higher in this second case.3

The evolution of these three topological indicators, dependent of the traffic dynamics, provides4

information about the traffic conditions. The lower the value of density and heterogeneity the5

higher the value of symmetry, with worse traffic conditions.6

The impact of the disruptions (×) differs in intensity. The effect of the snowfall is stronger7

than all others: the corresponding cross and point are the furthest ones with an Euclidean distance8

of 0.40. This assumption is confirmed by the average speed evolution (Fig. 1c) and the degree9

shifting (Fig. 2) which present the largest variations for such disruption. On the contrary, the10

smaller incidence is the one induced by the protesters, with a distance between the reference and11

the disrupted situations equal to 0.09. The disruption of the subway network and the tunnel closure12

present moderate impacts with Euclidean distances respectively equal to 0.19 and 0.12.13

By comparing the four reference situations (•), computed over typical days, we notice a huge14

difference between the one corresponding to the tunnel closure and the other disruptions. Whereas15

the first disturbance occurs on a Saturday, all others happen during week days where typical travel16

time are lower (Fig. 1c), explaining the difference in network states.17

4.2.2. Global scale - Temporal analysis18

Due to the traffic conditions, we expect a time-dependent evolution of the network state as a time-19

dependent impact of the disruptions. To explore these aspects, we plot the indicators for the typical20

Saturday (Fig. 5a) and the typical Monday and the one disturbed by the snowfall (Fig. 5b) from21

5:00am to 9:00pm, each two hours for the sake of readability.22

By leveraging a dynamic graph, we are able to characterize the time-dependent network state23

through the three indicators. In both situations, corresponding to a typical Saturday (Fig. 5a) and a24

typical Monday (Fig. 5b), the heterogeneity and the density are the highest one with the smallest25
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(a) June 2nd at 7:30am (b) December 18th at 7:30am

Figure 6: The local heterogeneity, the local symmetry and the local network density, are plotted
under normal conditions (•) and in presence of the tunnel closure (×) in (a) and the snowfall (×)
in (b) at 7:30am for four districts.

symmetry value for extreme hours (5:00am and 9:00pm), when the traffic conditions are better1

than during the day. Regarding the typical Saturday (Fig. 5a), there is also good traffic conditions2

at 7:00am, regarding the position of the corresponding point in the 3D-map. This statement is3

confirmed by the week-end speed with the translation of the first reduction from 7:00am to 9:00am4

(Fig. 1c). On the contrary, on a typical Monday (Fig. 5b) we have the worst traffic conditions at5

7:00am due to the morning peak-hour. Nonetheless, we have good traffic conditions at 7:00pm, in6

accordance with the speed profile of the working days (Fig. 1c).7

In Fig. 5b, we plot the network state when disrupted by the snowfall. The highest change8

between the typical situation and the disrupted one happens at 7:00am and 9:00am (Fig. 5b), in9

accordance with the evolution of the speed profile (Fig. 2a).10

4.2.3. Local scale - Spatial analysis11

To lead the spatial analysis, the metrics are computed for the four studied districts at the same12

time, 7:30am. The Fig. 6a presents the network density, heterogeneity and symmetry on Saturday,13

June 2nd, 2018 when the north-south direction of the Fourvière’s tunnel was closed. The Fig. 6b14

illustrates the same metrics for the same districts impacted by a snowfall on December 18th.15

The impact over the 5th and 9th districts is stronger for the tunnel closure (Fig. 6a) than for16

the two other areas. Indeed, the Euclidean distance between the point and the corresponding cross17

for the 5th and 9th districts of Lyon are respectively equal to 0.25 and 0.29, against 0.17 for the 6th18

district and 0.16 for the 8th one. This trend was already observed with the average speed profiles19

evolution (Fig. 3a,3c, 3d and 3b) and the degree shifting (Fig. 3e,3g, 3h and 3f). Regarding the20

second disrupted situation (Fig. 6b), the districts are similarly impacted, expect the 6th one. We21

already observed this specific behavior with the degree distribution translation analysis (Fig. 3o,22

3s and 3w). In any scenarios, the Euclidean distances between reference situations and disrupted23

ones are larger for the snowfall than for the tunnel closure: respectively 0.54, 0.23, 0.60 and 0.4424

for the 5th, the 6th, the 8th and the 9th districts.25

We notice a different behavior for the areas in terms of resilience. The network states, charac-26
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terizing by the heterogeneity, the density and the symmetry, are close, even superimposed, for the1

6th and the 8th districts for the typical Monday whereas in presence of the snowfall affecting both2

areas (Fig. 6b), their corresponding parameter are far from each other.3

On the typical Saturday, the 8th district has a different behavior under normal conditions (Fig.4

6a. This could be explained by the higher number of nodes. Moreover, in this area, there is a large5

amount of high degree value. This could be caused by (i) a better topological node connection6

or (ii) a higher amount of nodes presenting free flow conditions. By computing the topological7

average degree, we are able to affirm we are in the second case. Indeed, the average topological8

degree is higher for the 6th district than for the 8th one. The degree distribution observed for the9

typical Saturday (Fig. 3d) also shows this distinction by presenting a higher number of nodes with10

a large value than in other areas. Regarding the other districts (Fig. 6a), the 9th one has a typical11

behavior close to the 5th and the 6th ones with a similar average speed profile (Fig. 3a-3c). The12

trend changes during the working day (Fig. 6b), where the area average speed profile is higher for13

9th district than the two other ones (Fig. 3m-3o).14

5. CONCLUSION AND PERSPECTIVES15

With this work, we contribute to the network resilience analysis by studying the impact of dis-16

ruptions on resilience through the degree centrality and other global metrics based on the network17

characteristics. By considering static and dynamic resilience aspects, we are able to quantify the18

resilience considering the topological vulnerabilities and the traffic conditions.19

The translation of the degree distribution (Sec. 4.1) evolution has proved to be sensitive to20

disruptions, confirming our initial assumption. This change in degree implies a modification in21

heterogeneity, density and symmetry used to compute the network state in the 3D-figure as per-22

formed in [8] (Sec. 4.2). We notice the reduction in heterogeneity and density, associated with the23

increase of the symmetry is due to the presence of disruptions. The more the impact is intense,24

the higher this behavior is amplified. Thus, these metrics are interesting in resilience analysis by25

well-grabbing traffic conditions on the network state.26

For future works, we plan to work on the critical value of the macroscopic resilience indicator27

[8]. With such information, the plan between the resilient and the non-resilient phases can be28

determined and plotted on the three-dimensional figures (Fig. 4a, 5 and 6).29

With probe data, we do not have access to all the per-edge travel time per day. Although30

we observe an impact of disruptions over the traffic conditions, by replacing the unknown values31

with the typical ones, we mitigate the impact of the disruption in our results. By leading this32

methodology with simulated data rather than real ones, we could have all the travel time and33

we are able to stress the network in the way we want. This study would be essential to better34

characterize the area resilience by applying specific disruptions over the network and quantifying35

such impact in metrics computed with synthetic data.36

With such analysis we could be able to characterize the resilience of multimodal transport net-37

work which one of our objectives. The degree centrality is as a matter of fact easily computable over38

a multi-layer graph. Therefore, the presented methodology is easily convertible for such network39

which could present different resilience characteristics. The impact of a disturbance of a unique40

transport mode could be compensated by a modal shift.41
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[21] A Barrat, M Barthé Lemy †, R Pastor-Satorras, and A Vespignani. The architecture of complex20

weighted networks. Technical report, 2004.21

[22] M E J Newman. Analysis of weighted networks.22

[23] Tore Opsahl, Vittoria Colizza, Pietro Panzarasa, and José J Ramasco. Prominence and Con-23
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