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ABSTRACT1

In the past decade, call detail records (CDR), a specific type of mobile phone data, has been2

proven to be an innovative source of human and urban mobility data. When compared to GPS3

probe data, CDR data often suffer from temporal sparsity and spatial imprecisions. However CDR4

data are also usually more massive and offer a larger population coverage. Given this advantage,5

we wonder whether CDR data could be used as a reliable source to estimate the mean traffic speed6

dynamics.7

In this article, we propose an innovative method, based on the partitioning of the urban area8

in reservoirs and on the analysis of basic trip features. The mean traffic speed in each reservoir is9

derived from the solution of a linear system that clusters individual trips per macro-path to make10

more robust travel time estimations. This method is fast and simple to implement in real-time but11

requires a prior analysis of the main trip patterns at the city and reservoirs scales.12

We apply this methodology on a large GPS dataset, that we reduce and downsample in13

order to reproduce the typical CDR data temporal characteristics. As we want to compare the14

method results on both GPS and CDR, monitoring the data downsampling process allows us to15

limit discrepancies. Moreover, the original raw GPS data also provides the ground truth reference.16

This experiment in a very controlled environment is a first step towards studies dealing with real17

CDR data.18

Keywords: GPS data, CDR data, traffic speed, travel time, reservoirs, macro-paths19
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1. INTRODUCTION1

In the past few years, mobile phone data has been proven to be an innovative, accessible and2

very rich source of information about human mobility. Those data, passively generated by mobile3

phone users while communicating, moving around the network, or activating and deactivating their4

devices, are collected by the mobile phone data provider either for billing or network management5

purposes. The resulting massive databases form an incredibly large source of information about6

communication activities, but also mobility behaviours of the urban populations. In this paper,7

we wonder if a specific type of mobile phone data, call detail records, could be used in order to8

estimate the mean traffic speed dynamics at a zonal scale in an urban area.9

Call detail records (CDR) register for each communication event (calls, messages or data10

browsing) the following information: the user’s unique identification key, a timestamp characteris-11

ing the start of the event, and the location of the base station antenna that processed the event. This12

basic structure, relating together user id, time and location, confers to those data a strong potential13

for mobility analysis. Compared to GPS data classically used in mobility and traffic analysis, CDR14

data present several advantages. The mobile phone penetration rates are generally high. For traffic15

studies, phone data usually provides a better spatial coverage as they are not restricted to a single16

users category, unlike taxis GPS probe data. However, CDR data also have drawbacks. First, as17

the positional information is obtained at the antennas level, the spatial precision depends on the18

base station network. Second, the data generation depends on the users’ communication activities19

and behaviours, making the temporal acquisition of data uneven and sparse it time; in particular20

users with little communication activity will generate fewer location data and their mobility will21

be especially difficult to estimate.22

Using CDR data, Gonzalez et al. (1) analysed the behavioural rules intrinsic to human23

mobility in order to construct realistic individual mobility models. At a more aggregated scale,24

CDR data were also used to estimate origin destination matrices (2, 3, 4), proving that they are25

an interesting alternative to the traditional and costly transportation surveys and census data at an26

urban scale. In Toole et al. (5) the origin-destination matrices estimated thanks to the aforemen-27

tioned methods were later assigned onto the road network in order to estimate the traffic load and28

to identify the specific origin-destination flows that caused the highest share of it. Two other types29

of mobile phone data, handovers and location area updates data, have been specifically exploited30

for traffic analysis studies. Handovers data record the network-centred events that happen when31

the communication connection of a user engaged in a call session is transferred from one antenna32

to another due the user’s movement on the network. Location area updates data record for every33

device (including idle ones) the transfer of the communication connections from one identified34

group of antennas to another one when the devices owners move over the network. Those data35

are less dependant to communication activities than CDR data and have a good spatial coverage,36

however they are not always accessible in practice, mainly for privacy reasons. Derrmann et al.37

(6) explored the potential of handovers data for the estimation of Macroscopic Fundamental Dia-38

grams. On highway segments, Bar-Gera (7) used handovers data to estimate the traffic speed while39

Janecek et al. (8) analysed the travel time using both handovers and location area updates.40

But, despite this extensive literature in the field of mobility and traffic, the specific question41

of speed estimation from CDR data appears to have been barely studied. This is probably partly due42

to the imprecisions of CDR data, which can seem a priori insufficient for traffic speed estimation43

compared to GPS or handovers and location area updates data. Aside from the challenge that44

speed estimation from CDR data represents, or from the insight it can give on the traffic dynamics45
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over time at a large urban scale and for a large sampled population, this speed estimation presents1

a high potential in the field of traffic emission estimations. CDR data are accessible, massive,2

and representative of large population groups unlike most GPS probe datasets derived from taxi3

trajectories. While using GPS data for those estimation requires important complementary data4

and costly scaling up processes (9), an estimation using CDR data can be an efficient and light5

alternative. In that direction, Li et al. (10) introduced a method to estimate traffic related pollutant6

emissions from CDR data at a regular zonal scale. However the method used for estimating the7

emission factors (essential for the emission calculation and which depends on the traffic speed)8

was not made explicit. Consequently, and to the best of our knowledge, the estimation of the9

traffic speed dynamics from CDR data still needs to be investigated. This is what we propose to do10

in this article.11

We aim to determine if CDR data can be used in order to estimate dynamically the traffic12

speed at a zonal scale in an urban area. As a first step into that direction, we propose an innovative13

method based on the partitioning of the urban area in reservoirs and on the identification of clus-14

ters of individual trips sharing similar simple features such as macro-path and arrival time period.15

Providing that a good estimation of the trip lengths at the city and reservoirs scale is known, the16

clusters allow to build at each studied time period a simple linear system, that, once solved, re-17

turns an estimation of the traffic speed. We chose the city of Lyon, France, as our case study and18

experiment our method on a GPS dataset that we downsample in order to get the same statistical19

characteristics than CDR data, following a method initially developed by Chen et al. (11) to esti-20

mate the spatial biases introduced by CDR data in mobility studies. As the GPS data use does not21

come from taxi compagnies, it does not present the specific bias mentioned above. This approach22

first allows to validate the general method with unbiased data, and then to evaluate the impact of23

the bias introduced by the downsampling and attempt to limit this impact. Eventually, the objective24

is to make this estimation method robust enough to be used on real CDR data rather than simulated25

ones.26

This article is organised as follows : Section 2 exposes the principle of our approach and27

describes the proposed methodology. Section 3 presents our case study, as well as the exploited28

data. Section 4 focuses on the results we reached. Finally, Section 5 concludes with the achieved29

results, the limitations of this work and the on-going perspectives.30

2. METHODOLOGY31

Work scope and definitions32

We propose a method to estimate the temporal dynamics of the mean traffic speed at zonal scale,33

using a limited and selected set of individual trips characterised by a low level of information.34

Our method relies on partitioning an urban network into a set of regions, called reservoirs, and35

on dividing the time dimension into a set of time intervals of equal duration. Our objective is to36

estimate the mean traffic speed in each reservoir for every time period.37

The notions on which the methodology relies are defined below.38

Reservoirs: We call reservoirs the result of the partitioning of the studied urban area into39

smaller regions of equivalent sizes and homogeneous characteristics in term of city fabric, demog-40

raphy, road network or traffic dynamics.41

Micro-path: We call micro-path the ordered sequence of road segments traveled by a42

sampled vehicle along a trip.43

Macro-path We call macro-path the ordered sequence of reservoirs crossed by a sampled44
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vehicle along a trip. A macro-path is a scaled representation of a micro-path at the reservoirs level.1

Micro-trip: We call a micro-trip the representation of a sampled individual vehicle trip2

according to the following features : (trip Id, vehicle Id, micro-path, exact arrival time, total3

travel time)4

Macro-trip: We call macro-trip the representation of a sampled individual vehicle trip5

according to the following features : (trip Id, vehicle Id, macro-path, arrival interval, total travel6

time). A macro-trip is a simplified representation of a micro-trip at the reservoirs scale and with a7

coarser time resolution.8

The simplification process that reduces a micro-trip to its macroscopic representation al-9

lows to group similar (but not identical) micro-trips into clusters based on both the macro-path10

and the arrival interval. The methodology we propose in the next part relies on those macro-trip11

categories.12

Linear System Construction13

Generic System14

Let us consider that the studied area is divided in a given number R of reservoirs. Let us also15

consider that the time span of the experiment is divided into a set of equal time intervals. Let It16

(of size nt) be the set of macro-trips reaching their destinations during period t, and let It,P (of size17

nP,t ≤ nt) be the subset of It of macro-trips that match macro-paths P.18

For a macro-trip i of It,P, its traveled time along P can be written as the sum of the traveled19

times T i
r,P of i in each reservoirs r of P:20

T i
P = ∑

r∈P
T i

r,P (1)

We assume that the traffic speed in reservoir r during interval t Vr,t is constant and homo-21

geneous. This gives:22

T i
P = ∑

r∈P

Li
r,P

Vr,t
(2)

with Li
r,P the total distance traveled in reservoir r by instance i along the macro-path P.23

Summing on the nP,t equations 2 characterising to the nP,t macro-trips of It,P, we get:24

nP,t

∑
i=1

T i
P =

nP,t

∑
i=1

∑
r∈P

Li
r,P

Vr,t
(3)

= ∑
r∈P

nP,t

∑
i=1

Li
r,P

Vr,t
(4)

nP,t T̄P,t = ∑
r∈P

nP,t
L̄r,P,t

Vr,t
(5)

T̄P,t = ∑
r∈P

L̄r,P,t

Vr,t
(6)

(7)
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With Yr,t =
1

Vr,t
, and assuming that L̄r,P,t is independent of t , we get:1

T̄P,t = ∑
r∈P

L̄r,PYr,t (8)

For the time interval t, this equation characterises one given macro-path. Applying it to the2

whole set of macro-paths observed at interval t, we can construct the following system St :3

St =
{

T̄P,t = ∑r∈P L̄r,PYr,t ∀P (9)

St is linear with R variables made of as many equations as macro-paths observed during4

interval t. This system is usually overdetermined as the number of possible macro-paths is higher5

than the number of reservoirs. Assuming that L̄r,P can be estimated exogenously, and as T̄P,t can6

be derived from the macro-trip information, the system can be solved using for exemple a least7

square optimisation method. The inverse of the solution Yr,t will correspond to the traffic speed Vr,t8

for each reservoir r.9

The method we just exposed presents the advantage of considerably reducing the complex-10

ity of the problem. First, individual trips are gathered for each time period per macro-paths which11

provides a robust estimation of T̄P,t . Second, we can select among all macro-paths the most rep-12

resentative ones before looking for the system solution, which permits to reduce the system size.13

Third and foremost, we only need a very limited time information about trips, basically the de-14

parture and the arrival time. This makes the method perfectly suitable for a CDR data input. The15

drawback is that it requires a robust and exogenous estimation of mean traveled distance within16

each reservoir L̄r,P. The spatial definition of the reservoirs will also be crucial as it may drive17

completely different patterns for different macro-paths inside the same reservoir. This topic is still18

under research.19

Parameter reliability and temporal bias20

Theoretically, GPS data are precise enough to provide accurate estimations of T̄P,t (corresponding21

to the mean traffic time along P when reaching destination during t) and L̄r,P (the total traveled22

distance in reservoirs r along path P). However, when it comes to using CDR data (or simply23

sparser GPS data) the direct estimation of those parameters might not be as reliable. Indeed, CDR24

data include both temporal and spatial biases, due to users potentially large inactivity times and25

weak spatial resolution of base stations network. Using such data to estimate the system parameters26

implies reproducing those biases on the parameters and therefore twisting the system and its results.27

Throughout the study, we make the assumption that L̄r,P can be estimated exogenously28

thanks to another reliable method (probe vehicles, surveys, automatic network analysis, etc) and29

therefore do not consider the potential impact of distance bias on the data. We rather focus on the30

impact of the temporal bias introduced by the low acquisition rate of mobile phone communica-31

tion events. For a given mobile phone user, the good characterisation of their mobility is highly32

dependant on their communication activity. The more active they are, the more location data are33

collected, and statics phases (stays) can be separated from the in-between mobility phases. More34

precisely, if the user is very active, the departure and arrival time will be estimated with a limited35

time imprecision. On the contrary, for a barely active user, detecting their movements and there-36

fore estimating the correct travel time will be much more difficult. This means that the estimated37

traveled time of a trip observed from CDR data is actually higher than the real one.38

TRB 2020 Annual Meeting Original paper submittal



Seppecher et al. 6

Consequently, for a macro-trip i of IP,t obtained with CDR data, we have:1

T i
P,obs = T i

P + ε
i (10)

where T i
P is the real travel time of trip i, T i

P,obs is the observed traveled due to data impreci-2

sions and ε i is the temporal bias that exists in-between. Summing over IP,t , this gives:3

T̄P,obs = T̄P + ε̄t (11)

Reinjecting T̄P in (8), we get :4

S′t =
{

T̄P,obs− ε̄t = ∑r∈P L̄r,PYr,t ∀P (12)

Thus, if we are able to estimate the average temporal bias induced by the human dependent5

sampling rate of mobile data, then it becomes possible to de-skew the estimation the travel time6

along each macro-path P, and therefore to correct the system.7

Macro-paths and equations selection8

In order to reduce the system size and to limit the incompatibility risks between equations, we9

propose to filter out of the system the equations that are the least reliable, that is to say that have10

the least significance among the macro-trips. This significance can indeed be very uneven from11

one macro-path to another. While some macro-paths are observed for many macro-trips, some12

others might be representative of only one individual. In this later case, the spatial and temporal13

mean values will represent a single trip and so will be weakly reliable. Thus, we implement a14

significance threshold corresponding to the minimum number of times that a macro-path should15

be observed during period t in order for the corresponding equation to be selected in the system St .16

This threshold is set to 5 trips in this study.17

3. CASE STUDY AND DATA DESCRIPTION18

Case study19

We select the city of Lyon, France, as our case study. The study area includes both Lyon and the20

next-by municipality of Villeurbanne, which is located inside Lyon’s ring road. It is displayed in21

figure 1a. We have parted this territory into a number of 11 distinct reservoirs. 10 of them divide22

the inner city, while the last one corresponds to the ring road. Those reservoirs are displayed in23

figure 1b. For the inner reservoirs, their geometry are constructed as an aggregation of "IRIS"24

units, the smallest census unit defined by the French National Institute of Statistics and Economic25

Studies, which fills both demographic and geographic criteria. This aggregation of reservoirs is26

made so that it is consistent with Lyon’s road network and its traffic characteristics.27

Working data28

Input data29

In this study, we intentionally work with a GPS dataset, which we progressively simplified and30

downsampled in order to recreate the temporal biases of mobile phone data. This approach presents31

two advantages. First, it allows us to use the raw GPS data as ground truth for the estimation of the32

traffic speed. Second, it enables us to progressively reduce the data quality, and thus to understand33

how the jamming process impacts the quality of our results.34
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(a) Considered area in Lyon, France (b) Spatial partitioning of the studied area in 11 reser-
voirs, with the ring road as one of them

FIGURE 1 : Visualisation of the studied area and reservoirs

The data used consist of one year of GPS traces over the Great Lyon area. For this study1

however, we select the data of one typical weekday, 2018 February 5. The data was provided by2

a European navigation system provider, and the traces come from vehicles equipped with their3

navigation system technology. This means that the dataset does not present the bias observed with4

GPS traces from taxis. Moreover, as each trace corresponds to a vehicle, there is no need to filter5

out pedestrian or cyclist travellers as usually in CDR-based studies. Though this will make the6

speed estimation process easier, it also means that the data we simulate do not exactly reproduce7

CDR data that gather users making no distinction between their means of transport.8

The data structure is slightly different from typical GPS datasets, in that the GPS sampled9

locations of the monitored vehicles have already been map-matched by the data provider onto the10

road network. Thus, each GPS trace is made of an ordered sequence of traveled network links11

rather than a succession of geolocated points. The original data have the following structure : each12

monitored vehicle is associated to the different trips that it performed, and each trip corresponds to13

a sequence of observations. An observation relates each link of the trip to the considered vehicle,14

the timestamp of the entrance of the vehicle on this link, the speed of the vehicle on this link as well15

as the distance coverage that the vehicle does of this link (the first and last link of the trajectory16

might not be fully traveled, for exemple because of parking spots). This information will especially17

allow us to reconstruct both the travel distance and the travel time on each link.18

As the data coverage is actually larger than the study area defined above, we filter out the19

data tracks that do not enter the inner Lyon area, and split into smaller trips the ones that go beyond20

those limits. Additionally, we further preprocess the data by filtering out any aberrant trace or static21

vehicle in order to obtain a clean and reliable data set.22

Ground truth data23

First, the raw data are used for computing the ground truth reservoir speed values throughout time.24

For each time interval t, and each macro-path P, the ground truth speed Vr,t is calculated as :25
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Vr,t =
T T Dr,t

T T Tr,t
(13)

where T T Dr,t and T T Tr,t are respectively the total traveled distance and time by the sam-1

pled users in reservoir r during interval t. This information can easily be derived from the obser-2

vations dataset.3

Distance parameters4

To estimate the travel distance L̄r,P we resort here to the full resolution of GPS data. In practice,5

this estimation is done thanks to a few days of data and supposed known thereafter. It will be used6

as a parameter in the systems constructions. On the other hand, the speed estimation is applied7

over another selection of days where only CDR-like data are supposed to be available.8

Spatiotemporal aggregation : from trips to macro-trips9

Reshaping the original preprocessed data, we build a T0 dataset of micro-trips as defined in sec-10

tion 2, i.e. using the five following features: trip id, vehicle id, micro-path, exact arrival time, and11

total traveled time. From this initial dataset T0, we are going to derive the two degraded datasets12

used for our experiments.13

The first of those datasets corresponds to the macro-trips data set. First, we apply the spatial14

aggregation which relies on the city partitioning proposed above. This partition of the studied area15

allows us to relate each of the road network links to the reservoir it is included in. Subsequently,16

each vehicle micro-path, i.e. the succession of network links making up the trip itinerary, can be17

summarised as the ordered sequence of reservoirs that the vehicle crossed along its way.We call18

this ordered sequence of crossed reservoirs macro-path, in opposition to the micro-paths made of19

ordered sequence of links. Then, for each trip, we reduce the exact arrival time to the time interval20

it belongs it. In this study, we select time intervals of 15 minutes. Thus, an arrival time at 11:22:3621

will be transformed into 11:15:00.22

This aggregating process allows us to transform trips into macro-trips of the shape (trip23

Id, vehicle Id, macro-path, arrival interval, total travel time). We will call this new dataset T1.24

For each vehicle trip, the exact arrival time is replaced by the closest anterior quarter of hour. In25

that way we part the day in a predefined grid of 96 time intervals. We can now identify similar26

vehicle trips, i.e vehicle trips that travel along the same macro-path and end in the same time27

interval. So far, we have erased the knowledge about the exact travelled path and exact arrival28

time. However, it is important to stress here that this data degradation has not impacted yet the29

information about total traveled time. It simply allows to categorise the different trajectories and30

to relate them together, in anticipation of the construction of the linear systems.31

Temporal downsampling32

In order to evaluate the potentials of our speed estimation method with mobile phone data, we33

apply on the dataset T1 a downsampling process which aims to simulate the temporal imprecisions34

of mobile phone data compared to GPS data. To do so, we adapt the method developed in Chen35

et al. (11) for spatial bias analysis to our data and problematic. We introduce in the data temporal36

gaps that reproduce the characteristic inter-event time of CDR data. We specifically focus on the37

impact of our downsampling on the detected beginning and end of the trip. This downsample38
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FIGURE 2 : Temporal bias evolution throughout the day

introduce a bias both on the trip start time and on the trip arrival time, and thus implies an increase1

of the global traveled time. The detected arrival interval can also change depending on how big2

was the resulting time gap at the end of the trip. This new resulting dataset will be named T2.3

In reality, using CDR data not only introduces temporal bias but also distance imprecisions4

due to the sampling done at the antenna location and the lack of intermediary trajectory points. For5

the moment, we neglect this limit and consider that the macro-paths remain observable.6

4. RESULTS AND DISCUSSION7

In this section, we present the results of the application of our method to a specific day, 20188

February 5.9

Bias characterisation10

Using both T1 and T2, we can compare for each macro-trip the observed travel time (biased) to the11

real travel time. The difference characterises the temporal bias at an individual level. Measuring12

this bias for every macro-trip and averaging their values for every time period, we can estimate the13

mean bias εt throughout the day. The result of this estimation with our data is displayed in figure 2.14

In the early morning the mean temporal bias is quite high, up to 45 minutes of difference between15

the real travel time and the observed one. This average bias strongly drops between 6 am and 1016

am before stabilising around 20 minutes. This difference is due to the changes around that time in17

the communication activity rates of people. This is understandable as this time bias depends itself18

on the human communication rhythms, much sparser at night. Thanks to this bias characterisation,19

it becomes possible to understand the impact of the CDR data temporal characteristics on the20

estimation of the travel time.21

Method application to macro-trip data22

As the macro-trip data contains only a few trips during the night, the study time span is restrained23

to the day hours in-between 6 am and 9 pm. Taking this restriction into account, our macro-24

trip dataset T1 is made of 69 520 individual macro-trips, with a total of 1 862 distincts macro-25

paths observed. Out of those macro-paths, only 82 of them are observed more than 5 times (our26

significance threshold) during at least one time period, and therefore will be represented by system27

equations.28

The results of the method application on dataset T1 are displayed in figure 3. The first ten29

reservoirs of each figures correspond to the urban inner reservoirs, while the last one characterises30
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FIGURE 3 : Results of methodology applied to dataset T1 of macro-trips

FIGURE 4 : Results of methodology applied to dataset T2 of macro-trips without bias correction
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FIGURE 5 : Results of methodology applied to dataset T2 of macro-trips with bias correction

the speed dynamics on Lyon’s ring road. On each subplot, the ground truth traffic speed is repre-1

sented in orange. The blue curves characterises the results obtained from the system resolution.2

As it happens that the resolution does not converge, the returned speed signal can return aberrant3

values. We apply a physical filter to remove the few diverging speed values. A speed of 60 km/hour4

is selected as the threshold for detecting aberrant values in every reservoir except on the ring road5

where the limit is raised up to 90km/hour. Values above those thresholds are arbitrarily replaced by6

the previous consistent one. This explains the step that we can particularly observe for the reservoir7

10 during the evening. This physical filtering removed the aberrant speed estimations. However8

the obtained signals still present high volatility. In order to smooth the results, we apply a second9

filter represented in green on the plots. Assuming that the signal noise corresponds to higher speed10

peaks, we apply a low-pass frequency filter. The Butterworth filter is selected and applied with a11

forward-backward filtering method (once in each direction).12

From figure 3 we observe that the system generally renders correctly the speed dynamics.13

This is especially true for reservoirs 5, 7, 8, 9 and 10. We also notice an overestimation of the14

traffic speed in particular for the reservoirs 0 and 2, which we do not explain yet.15

In figure 4 and figure 5 we display the results of the method applied on dataset T2 respec-16

tively with and without the correction of the temporal bias. Figure 5 highlights the very negative17

effect of the temporal bias introduced by the downsampling process on the results. This evidences18

that the temporal bias induced by human uneven and large communication times makes CDR data19

unusable as they are to estimate the traffic speed, even at a regional level. After correcting the20

system however, we can observe in figure 5 that the estimation tend to better fit the reference curve21

again.22

Table 1 summarises the achieved results, by comparing the root mean square error over the23

full day in each reservoir, in-between the filtered results (green curves) and the reference values.24
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The results obtained for T1 and de-skewed T2 are sensibly similar. For some reservoirs, the results1

obtained with T2 after bias correction are slightly better than with T1. Those results should be2

further explored in order to explain this slight improvement, which can maybe come from the3

biased arrival time used in T2 for the system resolution.4

Reservoirs Original macro-trips (T1) T2 without bias correction T2 with bias correction
0 16.58 18.56 15.16
1 3.38 13.53 3.58
2 14.25 14.99 14.46
3 6.81 16.30 5.53
4 3.66 19.66 2.91
5 3.11 18.70 3.58
6 7.58 22.17 6.57
7 2.89 18.58 2.68
8 2.16 12.40 1.97
9 4.89 14.35 3.66

10 9.04 48.55 9.06

5

TABLE 1 : Synthesis of the RMSE for each reservoir according to the dataset used6

5. CONCLUSION7

In this article we have proposed a new methodology to estimate the dynamics of regional traffic8

speeds from mobile sensing data. Our method is based on the partitioning of the urban area in9

reservoirs, and on the identification of groups of sampled trips sharing common macro-paths and10

arrival time period. This clustering of macro-trips provides a robust estimation of the travel times11

along each path. Cross-referencing the macro-path travel time estimations within a linear system12

allows us to estimate the traffic speed dynamics, providing that exogenous travel distance data are13

available. The structure of this method is particularly fitted to a CDR data input, as it requires very14

little temporal or itinerary information at the individual level and to takes into account the inherent15

temporal bias that characterises those data.16

Thanks to the application of our method to the set of GPS trips reduced to minimal tem-17

poral and path information, we could validate the global methodology. We then downsampled the18

trips temporal dimension in order to simulate the human uneven communication rhythms and to19

reproduce the temporal limits of CDR data. The direct application of the method the downsampled20

data showed that correcting the estimation of the travel time was a necessary condition to properly21

estimate the speed. Comparing the original and biased trip data specifically enabled us to estimate22

the temporal bias that CDR data can present compared to the ground truth GPS data. Removing the23

average bias permitted to correct the travel time estimation and to obtain satisfactory speed results24

compared to the ground truth data.25

In our future works, we plan to explore the sensibility of our method the different param-26

eters such as the size of the reservoirs, the time period duration, or the significance threshold of27

the system equation. About the specific question of the reservoir size, it is clear that the larger28

the reservoirs are, the more likely they are to encompass very different micro-paths under a same29

macro-path. In such cases, it might be interesting to divide a macro-path into several sub-macro-30
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paths, analysing the potential modes in travel distance and time distributions. Last but not least,1

our objective is eventually to apply the developed method on real CDR data.2
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