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Abstract1

Network signaling data have a great potential for human centric mobility analysis at2

large scale. But their intrinsic characteristics, such as sparsity (in time and space), noise3

and large localization error limit their applicability for detailed studies on mobility,4

especially in urban scenarios. In this paper, we propose a framework able to infer5

fine-grained spatio-temporal information at both microscopic and macroscopic scales6

from users’ signaling traces. The framework leverages TRANSIT, a pre-processing7

approach, that outputs mobile sessions (possibly enhanced in space and time) from the8

raw signaling traces of users. This set of mobile sessions feed an Hidden Markov Model9

based map-matching capable of inferring the route traveled by the mobile subscriber10

with high accuracy: a geographical error around 60 m, a matching rate of 77% and a F111

score of 0.77. Such a promising results are made possible by leveraging the trajectory12

enhancement step of TRANSIT and relying on the assumption of having a coarse13

transportation mode knowledge before the map-matching algorithm. This assumption14

is discussed and a preliminary solution is proposed. The whole framework is evaluated15

in a case-study based on real signaling traces collected by a major French operator16

in the city of Lyon. We validated our approach at both microscopic and macroscopic17

levels.18

Keywords: Map-matching, Mobile phone, Hidden Markov Model, Multi-modal19

Transport20
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1. INTRODUCTION1

In recent years, mobile phone data and especially Call Detail Records (CDR) have demonstrated2

a great potential for large scale human mobility studies. This emerging source of data has been3

leveraged for analyzing human movements at unprecedented spatio-temporal scales [1], modeling4

the general laws governing human mobility [2], reconstructing Origin-Destination (OD) matrices [3]5

and understanding urban land use [4, 5]6

However, and despite their significant advantages for human-centric mobility studies, CDR7

have fundamental limitations in terms of positioning accuracy in both space and time. In space,8

the mobile device locations can only be mapped to the coverage area or position of the base9

stations to which it is associated [6]. In time, the sampling process is driven by the occurrence10

of voice call establishments or text message transmission, which are both sparse and irregularly11

distributed [7]. In this paper, the objective is to reconstruct fine-grained mobility information12

from cell phone trajectories with high accuracy, and, more specifically, to infer the route traveled13

by a mobile subscriber over the multi-modal transportation network. Traditional CDR are not14

suitable to address such a task, due to their limited spatial resolution and sampling frequency.15

For instance, Fig. 1a shows the localization samples recorded by CDR for an exemplary urban16

displacement; a linear interpolation of the CDR samples (solid red) is superposed to the actual17

user trajectory as recorded via a Global Positioning System (GPS) tracking app (dotted blue).18

The figure makes it clear that inferring the actual movement from CDR is an arduous mission.19

Given these limitations, extended variants of CDR, namely, Network Signaling logs Data (NSD) are20

currently collected by network providers and investigated by the research community. Differently21

from CDR data, NSD report on multiple kinds of events besides calls and text messages (e.g.,,22

IP protocol message exchanges, hand-overs, location updates, etc.) thus increasing the spatio-23

temporal sampling frequency of mobile phone passive data. Research on this kind of data is however24

still at early stages. In our previous work [8], we proposed a framework, named TRANSIT, for25

processing network signaling trajectories and returning augmented individual mobility trajectories.26

By leveraging the regularity of human mobility, TRANSIT is capable of increasing the spatio-27

temporal accuracy of the trajectories. For instance, Fig. 1b and Fig.. 1c show respectively the raw28

NSD trajectory and the trajectory enhanced with TRANSIT. The framework is presented in more29

details in Sec. 3.2.30

In this paper, we extend our previous work by relying on a map-matching solution that allows31

to infer accurately, from mobile network signaling trajectories, possibly enhanced by TRANSIT,32

the route traveled on the multi-modal transportation network.33
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© OpenStreetMap

CDR events
CDR trajectory
Ground truth
Antennas

(a) Trajectory from Call Detail
Record

0 500 1000 m

© OpenStreetMap

NSD events
NSD trajectory
Ground truth
Antennas

(b) Trajectory from Network Signal-
ing Data

0 500 1000 m

© OpenStreetMap

Reconstructed positions
TRANSIT trajectory
Ground truth
Antennas

(c) Trajectory inferred with TRAN-
SIT

Figure 1: Examples of inference of one trajectory of a volunteer from (a) CDR, (b) NSD,
and (c) our NSD-based TRANSIT approach.

To achieve this purpose, in the context of this work, we consider the hypothesis of having a coarse34
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knowledge of the transportation mode selected by the user (road, public transport or train) before1

the map-matching process. A Hidden Markov Model (HMM) based map-matching is investigated.2

Our results show that the whole approach is capable of map-matching with high accuracy both3

raw and TRANSIT-enhanced trajectories. The proposed solution achieves a matching rate of 77%,4

with a spatial accuracy of 60m. In addition, when the TRANSIT framework is applied before the5

map-matching step, the matching rate increases by 10%, while the spatial accuracy grows by a6

factor 2 compared to map-matching directly raw signaling trajectories.7

The key contributions of this work are thus the following:8

• A novel solution to the challenging problem of mapping cellular trajectories to the multi-9

modal transportation network in urban settings.10

• A complete framework for reconstructing and map-matching fine-grained mobility informa-11

tion from raw network signaling data.12

• The analysis of a unique dataset composed of both real-world cellular and GPS trajectories13

related to a group of users in the Lyon metropolitan area, France.14

2. RELATED WORK15

Map-matching is a well-known operation for improving positioning accuracy by integrating posi-16

tioning data with spatial transportation data to identify the correct link on which a mobile object17

is traveling [9]. The problem of map-matching GPS traces to the road network has been largely18

investigated by the research community. Quddus et al. [10] categorize map-matching approaches19

in four classes. The first one includes geometric approaches where matching is performed based20

on the spatial distance between the GPS points and the candidates links in the road network [11].21

The second class comprises more sophisticated, topological approaches that use geometric informa-22

tion, like in the geometric approaches, but in combination with topological information such as the23

existence of connectivity between nodes of the network [12]. Very sensitive to noise and outliers,24

these approaches are not appropriate in presence of highly noisy and sparse data. The third kind of25

approaches exploits probabilistic methods: a confidence region around the location of the moving26

object is defined. Then, candidate network links are identified as those present in this confidence27

region. The evaluation of the candidates is based on the geometrical criteria. Finally, the last cate-28

gory leverages more complex mathematical tools. A non exhaustive list of these methods includes,29

i.e.,, the Kalmam Filter [13], Dempster–Shafer theory [12] or fuzzy logic models [14].30

These state-of-the-art algorithms may achieve very high accuracy (location error lower than 1031

meters) when used with high-sampling-rate GPS data. Newson et al. [15] first introduce HMM-32

based map-matching dealing with different GPS traces sampling rate. Their approach appears to be33

more robust and accurate with sparse and noisy trajectories than standard advanced map-matching34

solutions for high sampling rate data.35

With the emergence of large-scale mobile phone data, map-matching of cell phone trajectories36

has recently became a relevant problem studied by the research community. The peculiar features37

of mobile network data, such as sparsity (in time and space), noise and large localization error,38

make the task of map-matching cell phone trajectories highly challenging. Most of the approaches39

used with cellular trajectories are based on those traditionally designed for GPS map-matching.40

Schulze et al. [16] use a probabilistic approach: their solution restricts the set of admissible routes41

to a corridor by estimating the area within which a user is allowed to travel and infers path using42

the shortest path on candidate routes. With only 55% of correct matches, this method has been43

outperformed by a HMM-based approach recently developed by Jagadeesh et al. [17], which reaches44

75% of median accuracy.45
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HMM-based map-matching has thus become the state-of-the-art for noisy and sparse location1

data and, specifically, for mobile phone data traces. Reham et al. [18], Thiagarajan et al. [19] and,2

more recently, Algizawy et al. [20] developed supervised HMM models exhibiting good accuracy3

(75% for Thiagarajan et al. approach). Jagadeesh et al. [17] proposed an online map-matching4

algorithm combining HMM-based map-matching and route-choice model. Recently, Shen et al. [21]5

proposed a an approach based on recurrent neural networks obtaining a precision of 80% and a6

recall of 85%. However, these approaches have two main drawbacks. They leverage supervised7

machine-learning solutions that require a large amount of labeled cellular trajectories for training8

the parameters of the models. Ground-truth precise trajectories (i.e., the labels) are very hard9

to obtain, especially when dealing with highly dynamic and irregular environments, such as urban10

areas. Moreover, most of the approaches match the cellular trajectories only to road networks,11

without considering other sub-networks corresponding to alternative transportation modes, such12

as tramway, subway, bus, etc.13

Among the very few exceptions, it is worth mentioning the methodology recently proposed by14

Asgari et al. [22]. Their solution, namely CT-Mapper, relies on an unsupervised HMM model, which15

aims at mapping sparse cellular trajectories to a multi-layer transportation network. Similarly, in16

our previous work [23], we also studied unsupervised HMM-based map-matching for solving the17

same problem. However, differently from [22], we focused on the more complex problem of map-18

matching mobile phone signaling traces in urban environments considering a larger variety of urban19

transportation modes, while CT-mapper only focused on three modes: road, subway and railway.20

This work differs compared to the aforementioned works. By building on our previous work, we21

propose an unsupervised HMM-based map-matching solution for network signaling traces in urban22

settings. However, we modified the HMM-based framework so that both raw signaling trajecto-23

ries (a sequence of antennas) and TRANSIT-enhanced trajectories (a sequence of reconstructed24

positions) could be map-matched with high accuracy. As discussed in the evaluation section, the25

integration of TRANSIT-enhanced trajectories allows to improve significantly the performance of26

our map-matching solution. Moreover, we collected a unique set of GPS and signaling trajectories27

where transportation mode has been manually labeled. Such a rich dataset allows validating the28

map-matching output more precisely compared to previous works.29

3. FRAMEWORK30

3.1. Case study and Network Modeling31

This paper considers the multi-modal transportation network of the city of Lyon (France) as a32

case study. This network includes multiple transportation modes, i.e., road, subway, tramway, bus33

and train. In the following, we make the assumption that the transportation modes available to34

travelers can be generally classified into three categories: road, public transport (subway, tramway35

and bus) and train. Thus, the network is modeled as a graph G composed of three sub-graphs Groad,36

Gtc and Gtrain that are assumed to be not connected between each other. In order to move from37

one graph to another the user will need to spend a period of immobility at a given location (e.g.,38

in the proximity of a bus stop, i.e., under the coverage of a limited subset of cellular antennas),39

which, if long enough, will be detected by TRANSIT as a static activity. As a consequence, our40

framework will consider two different trips (before and after the modal-shift static session) that41

can be separately matched to the specific sub-graph. Inter-modal trips are therefore not possible42

across the three sub-graphs, but can occur within the transit network, i.e., Gtc, which covers three43

different transportation modes (i.e., subway, tramway and bus). For the rest of the paper, we will44

denote as Gj the generic sub-graph of G related to a specific category of transport modes, i.e.,45

either Groad, Gtc or Gtrain.46
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The graph and its different sub-graphs are built using multiple data sources and programming1

tools. The road sub-network Groad is generated via OSMnx [24], a Python library which creates2

NetworkX graphs from OpenStreetMap (OSM) data. Public transport sub-network Gtc has been3

generated using GTFS (Google Transit Feed Specification) data. The public transport sub-network4

Gtc is modeled as a multi-layer graph including three layers corresponding to the three transporta-5

tion modes (subway, tramway and bus). Between public transport layers, cross-layers edges are6

defined as connections at transfer stops between public transport lines (this information is contained7

in the GTFS transfer file). Finally, the train sub-network Gtrain is derived using the geometry of8

train lines available as open data1. The nodes of the Gtrain sub-network correspond to stations of9

the railway system of the city of Lyon.10

Similarly to what is proposed in the work of Putra et al. [25], whenever the distance between11

a pair of adjacent nodes (from both the transit and the train sub-networks) is larger than a given12

threshold Dinter, additional nodes have been added via linear interpolation of the x-y coordinates13

of the considered pair of adjacent nodes. Such an interpolation can be considered as a reasonable14

approximation of the real geometry of the link connecting the pair of nodes, which is hard to take15

into account during the map-matching process. In particular, Dinter is set to 200m for Gtc and16

500m for Gtrain so that the distance between adjacent nodes is, on average, in the same order of17

magnitude for the three sub-graphs Groad, Gtc and Gtrain. More details in the importance of adding18

interpolated nodes in the transportation network can be found in the work of Putra et al. [25].19

Some statistics of the final multi-modal transportation network G is given in Table 1.20

Layer Mode |V | |E| 〈k〉 〈l〉 (km)

Groad Road 27213 58593 4.3 0.13

Gtc

Bus 31072 41755 2.7 0.15
Subway 636 669 2.3 0.17

Tramway 2239 2790 2.6 0.16
All modes 34033 46458 2.7 0.15

Gtrain Train 1657 1725 2.1 0.46

G All modes 59942 102073 / 0.14

Table 1: Main characteristics of each transportation layer of G: number of nodes |V |, number
of edges |E|, average node degree 〈k〉 and average edge length in kilometer 〈l〉.

3.2. TRANSIT21

TRANSIT is a framework capable of processing raw cell phone NSD trajectories to accurately22

distinguish mobility phases from stationary activities for individual mobile devices, and reconstruct23

fine-grained human mobility trajectories. In the following, we provide a short summary of the24

TRANSIT framework for the sake of readability. The interested reader can refer to our previous25

work [8] for more details.26

TRANSIT receives as input the set of NSD events, i.e., a NSD trace, of a mobile device i27

that we assume to correspond to a single user. A user’s NSD trace is thus denoted by T i =28

{ei1, . . . , ein, . . . , eiNi}, where ein is the nth NSD event recorded for device i. Each NSD event is29

the result of a communication activity between a mobile device and a base station antenna of30

the telecommunication network, across all 2G, 3G and 4G technologies; it is defined as a tuple31

1https://www.data.gouv.fr/fr/datasets/fichier-de-formes-des-lignes-du-reseau-ferre-national/
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ein = (cin, t
i
n), where cin is the antenna at location lin that handled the network event, and tin is the1

timestamp of the instant at which the event was recorded. The NSD events in a mobile phone trace2

T i are ordered by their timestamps tin, and Ni denotes the number of events for device i. Then,3

our approach processes T i to produce two outputs in succession, as follows.4

5

Trajectory segmentation. The framework labels each NSD event ein ∈ T i as either static, if the6

user i is deemed to be engaged in an activity at a same location at the event time tin, or mobile, if7

i is performing a movement at tin. This step leverages a combination of thresholds and heuristics8

to: (i) identify candidate antennas for static activities; (ii) detect sufficiently long sequences of9

events that take place at candidate antennas. The approach also includes an oscillation removal10

process and a spatial clustering method to refine the location of adjacent static sessions. This phase11

factually allows telling apart the continuous time intervals during which an individual is moving or12

not, and building a set Ai of static activity sessions and a set Mi of mobile sessions.13

Trajectory augmentation. The framework enhances the trajectories associated to mobile ses-14

sions inMi, by exploiting the fact that the same individual typically performs many trips between15

two given locations over time, generally following very similar paths. This creates redundancy in16

the mobility information that can be used to increase the spatio-temporal accuracy of the trajecto-17

ries. The approach exploits a spatio-temporal DBSCAN clustering procedure, which leverages the18

well-known Hausdorff distance to identify and merge spatially similar traces collected over multiple19

days of a subscriber’s observation. Based on the result of DBSCAN, Mi can be thus divided into20

two subsets: (i) trajectories that fall into a cluster, i.e., which refer to a path that is recurrent in21

the mobility of user i, and which we denote as the set Mi
R; and, (ii) outlier trajectories that rep-22

resent unique movements of i, which are grouped in set Mi
O =Mi \Mi

R. For trajectories in Mi
R,23

TRANSIT operates a spatial augmentation in two steps. Firstly, the trajectories in a same cluster24

are temporally scaled (i.e., stretched or compressed) in time so as to match the average travel25

duration for the cluster. Secondly, the scaled trajectories within the same cluster are temporarily26

binned according to a fixed time period of one minute, and the spatial coordinates of all different27

events that fall in a same time bin are averaged. The previous steps lead to a set of positions, one28

per minute, which represent the reconstructed itinerary for each cluster. If there is no event within29

a particular time slot, the resulting enhanced trajectory will have missing positions. All original30

trajectories in a given cluster are then mapped to the reconstructed one, and become thus identical31

in the space dimension. However, they are re-conducted to their original duration (i.e., via com-32

pression or stretching) so as to keep them faithful to their recorded travel time in the NSD. The33

resulting set of mobile, possibly augmented, trajectories is denoted as M̂i with M̂i = M̂i
R ∪Mi

O.34

An example of such augmented trajectories is reported in Fig. 1c.35

36

Ultimately, the output of TRANSIT is: (i) the set Ai of static activity sessions of user i, and37

(ii) the set M̂i of mobile sessions with augmented trajectories. This set M̂i is the input of our38

HMM based map-matching.39

3.3. HMM based map-matching40

The following section reports on the main methodological background characterizing our solution41

to perform map-matching of cellular network trajectories from mobile phone passive data, with42

the assumption of knowing, beforehand, a coarse approximation of the transport mode (i.e., road,43

train, public transport sub-network) for a given user’s mobility trace. A Hidden Markov Model44

can be defined by a 5-tuple 〈S,O, I, T,E〉, with S = {s0, . . . , sN−1} representing a finite set of45

states; O = {o0, . . . , oM−1} corresponding to a finite set of observations; I being the probability46
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distribution of the initial states; T representing a set of transition probability. The probability1

to transit from hidden state sm to hidden state sn is denoted as t(sm, sn). Finally, E is a set of2

emission probability. The probability to emit observation ok from hidden state sm is denoted as3

e(sm, ok).4

Our map-matching problem on M̂i can be modeled as a Hidden Markov Model with the fol-5

lowing formulation. Hidden states are modeled as the set of vertices (nodes) of the generic trans-6

portation sub-network Gj . Emissions are modeled as the unique set of x-y coordinates in M̂i. This7

set is composed of antennas coordinates from cellular network in Mi
O and reconstructed positions8

in M̂i
R.9

Ultimately, the Hidden Markov Model allows solving the following problem: given a sequence10

of observations, i.e., sequence of antennas for Mi
O and reconstructed positions for M̂i

R, the model11

finds the most likely sequence of hidden states, i.e., sequence of nodes on the transportation sub-12

network Gj .13

In the following, we will define the main (hyper-)parameters of the HMM: the initial, transition14

and emission probabilities.15

3.3.1. Initial Probability16

All the nodes of the transportation network are initially equally assigned with a probability of 1/N17

with N representing the total number of nodes in the transportation network:18

π(sm) =
1

N
(1)19

3.3.2. Transition Probability20

The transition probability corresponds to the probability that a mobile phone user moves on the21

underlying transportation network from hidden state sm at time t− 1 to hidden state sn at time t.22

In the following, we choose the definition proposed by Putra et al. [25], i.e., the transition proba-23

bility depends on the travel time over an edge. For the public transport and railway sub-networks,24

the travel time of each edge is calculated by multiplying the speed (the speeds are defined by mode225

and the edge distance (geodesic distance between the two nodes of the edge). For the road network,26

the travel time corresponds to the free flow travel time on each road segment, as available from the27

OpenStreetMap information. Additionally, for public transport, cross-layers edges connecting the28

different lines and modes are associated to a travel time that corresponds to a typical connecting29

time, which is set to 5 minutes.30

31

Finally, the transition probability t(sm, sn) between the generic pair of nodes sm and sn is32

defined to be exponentially decreasing according to the travel-time weighted shortest path between33

the two nodes sm and sn. Formally:34

t(sm, sn) = exp−β·ttsm,sn , ttsm,sn =
∑
∀(su,sv)∈SPmn ttsu,sv (2)35

where (su, sv) is the generic edge on the travel-time weighted shortest path SPmn connecting the36

two nodes sm and sn in sub-graph Gj , computed via the Dijkstra algorithm. The length of the37

weighted shortest path SPmn corresponds to the sum of the travel time over each edge (su, sv)38

belonging to SPmn. ttsu,sv denotes the travel time between each two nodes su and sv. β is a39

damping factor to control the effect of the travel time.40

2Speeds on the road network depend on the OpenStreetMap type of route, it varies from 30 km/h to
90km/h. For the subway, the tramway and the bus the speed is respectively 30 km/h, 15 km/h and 15 km/h.
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3.3.3. Emission Probability1

When the trajectory is a sequence of reconstructed positions, the map-matching problem can be2

viewed as a map-matching problem with noisy GPS points. Similarly to [15], we model the emission3

probability as a Gaussian noise centered on the hidden state sm and an empirically estimated4

standard deviation of the distance error between hidden states and observations:5

e(sm, ok) =
1√
2πα

e
−0.5

(
m
dsm,ok

α

)2

(3)6

where dsm,ok is the geodesic distance between the generic observation ok and the generic node sm,7

while α is the standard deviation of a Gaussian random variable associated to the error distance8

between the reconstructed and the real position of the mobile. More details on the estimation of9

this parameter are given in Sec. 4.1.2.10

3.4. Map-matching algorithm11

As a pre-processing step, for the set of raw signaling trajectories not enhanced by TRANSIT, we12

re-sample the network signaling traces with a three minutes frequency. In space, we calculate the13

centroid of the coordinates of the signaling events falling in the three minutes time-window. In14

time, we associated each time window to its starting time. This aggregation step aims at reducing15

the oscillation effect on the cellular trajectory.16

After the pre-processing step, our approach performs a two-steps map-matching procedure. The17

first phase consists in an optimized Viterbi algorithm [26]. The inputs of the Viterbi process are18

the following: the generic transportation sub-network modeled as a graph Gj , the possibles states19

(set of the nodes of Gj), the emissions (the unique set of x-y coordinates in M̂i), the previously20

defined HMM parameters and the input trajectory from M̂i. By calculating all possible paths given21

the input trajectory, the Viterbi process output is the most likely sequence of graph nodes, one22

for each time instant in the input. For real-time application, due to a large number of states and23

emissions, the execution time of the Viterbi algorithm is critical [20]. To improve performance, we24

implemented an optimized version of the Viterbi algorithm as done by Algizawy et al. [20] which25

consists in eliminating all multiplications by zero thus reducing the search space by keeping only26

emittable states from each observable state. Moreover, to further reduce computation time, the27

following approximations are considered: (i) if the distance between state sm and observation ok28

is larger than 2km, the emission probability e(sm, ok) is rounded to 0; (ii) similarly, if the distance29

between state sm and state sn is larger than 5km, transition probability t(sm, sn) is rounded to 0.30

It is worth observing that, after inferring the most likely states sequence using the optimized31

Viterbi implementation presented above, the output sequence of hidden states (nodes on a given32

sub-network Gj) do not necessarily form a connected path on the specific transport sub-network.33

Therefore, as the second step of the map-matching procedure, the final trajectory is further com-34

pleted by applying a traditional shortest path (Dijkstra) detection algorithm on the underlying35

transportation graph between any two consecutive nodes of the most likely states sequence. The36

final completed sequence of nodes on sub-network Gj represents the map-matched trace for the37

processed trace from M̂i for user i.38

4. EVALUATION39

4.1. Microscopic validation40

4.1.1. Datasets41

The dataset used in our microscopic validation was collected for four Orange subscribers who42

voluntarily agreed to be monitored by a GPS tracking application installed on their smartphones,43
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and who provided informed consent for their NSD to be extracted from the network operator1

database before pseudonymization and employed for the purpose of this research. Once gathered,2

all data were pseudonymized, and accessed by authorized personnel of the research team only. The3

combined GPS and NSD data of the four users were collected during a continued period of three4

months, March 15th and June 15th 2019, in the city of Lyon, France.5

The dataset of GPS locations, named EGPS in the following, contains GPS data collected via a6

custom Android application installed on the volunteers’ personal mobile phone, so as to track their7

movements with high resolution and in a continued manner during the observation period.8

The NSD dataset, named ENSD in the following, contains all network signaling events associated9

to the mobile devices of the four voluntaries, across 2G, 3G and 4G technologies. We highlight that10

(i) all volunteers were Orange subscribers at the time of the data collection campaign, and (ii) they11

were explicitly invited to maintain their regular mobile communication and service consumption12

habits during the measurement period.13

Overall, the validation datasets EGPS and ENSD provide corresponding GPS and NSD data. We14

applied a recent segmentation approach for spatio-temporal GPS data [27] for the traces in EGPS .15

The resulting set of trajectories is denoted as MGT . TRANSIT is applied on ENSD and outputs16

the set M̂ of mobile sessions with augmented trajectories which is the input of our map-matching17

approach. Then, we manually labeled the transport mode of all trajectories in MGT by associating18

one sub-graph Gj of G for each trajectory. In total, ground-truth data contain 111 trajectories19

related to public transport, 72 to car and 12 to train, for a total of 195 trajectories.20

It is worth highlighting that the choice of the parameters of the Hidden Markov Model presented21

in Sec. 3.3 makes our map-matching approach suitable for GPS trajectories according to recent22

works on GPS map-matching [15, 25]. The only difference with the map-matching of signaling23

trajectories concerns the definition of emissions. For GPS trajectories, they are defined as the24

unique set of x-y coordinates in MGT . Based on the extremely high accuracy (above 95%) of25

the map-matching process on GPS trajectories [15, 25], we consider the set of map-matched GPS26

trajectories as ground-truth in the evaluation.27

Finally, we apply our map-matching approach on different NSD-based sets of trajectories, specif-28

ically: M , MR, M̂R and M̂, defined as follows. M is the set of signaling trajectories that the29

trajectory segmentation step of TRANSIT outputs, prior to any further processing. MR is the30

set of recurrent trajectories identified by TRANSIT, without any trajectory enhancement. M̂R is31

the set of recurrent trajectories that have received a trajectory enhancement by TRANSIT. M̂ is32

the whole set of trajectories, possibly augmented, produced at the end of TRANSIT. These sets of33

trajectories covers the four volunteer users considered in the microscopic validation.34

4.1.2. Parameter choice35

Our map-matching approach depends on two parameters, namely α and β, respectively associated36

to the emission and transition probabilities of the Hidden Markov Model. In order to choose the37

best values for such parameters, we apply our approach on M and M̂R and then compute the38

average F1 score for different combinations of values for α and β, using the corresponding map-39

matched GPS trajectories as ground-truth. The sensitivity analysis on M and M̂R is respectively40

considered for choosing the best parameters for applying map-matching on raw signaling trajectories41

and TRANSIT enhanced trajectories. The F1 score is a metric for evaluating the performance of42

the map-matching at the trajectory level. To evaluate the performance on a set of trajectories, we43

average the F1 score obtained for each NSD-based trajectory. This score is defined as follows:44

Precision =
TP

(TP + FP )
, Recall =

TP

(TP + FN)
and F1 score = 2 · Precision · Recall

(Precision + Recall)
(4)
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where: (i) the number of true positives TP is the number of edges in common between the ground-1

truth GPS and NSD map-matched trajectories; (ii) the number of false positives FP represents2

the number of edges in the NSD map-matched trajectory that do not belong to the corresponding3

ground-truth GPS map-matched trajectory; (iii) the number of false negatives FN represents the4

number of edges from the ground-truth GPS map-matched trajectory that do not belong to the5

NSD map-matched one.6

Fig. 2 shows the sensitivity analysis on the parameters α and β of our approach on the two7

sets of NSD-based trajectories M and M̂R for two transportation sub-networks: road and public8

transport. We do not dispose of enough trajectories to conduct a sensitivity analysis on train trips.9

We recall thatM is the set of raw signaling trajectories identified after the TRANSIT segmentation10

step and M̂R is the set of recurrent trajectories as enhanced by TRANSIT. From the figure, it can11

be noted that both the nature of the transportation mode and the enhancement performed by12

TRANSIT have a relevant impact for the optimal choice of α and β. Thus, the sensitivity analysis13

appears necessary for choosing the most appropriate combination of values for parameters α and14

β and thus for optimizing the performance of the map-matching procedure. In addition, all the15

figures exhibit a very similar trend: performance globally grows when both alpha and beta grow.16

Finally, the optimal values of β and α are located around the yellow diagonal of the two heatmaps17

in Fig. 2 (higher values of F1 score). Based on such results, we choose the following settings for18

the parameters: for road raw signaling trips, (α, β) = (0.75, 250); for public transport raw signaling19

trips, (α, β) = (0.5, 500); for road TRANSIT enhanced trips, (α, β) = (0.5, 250); and for public20

transport TRANSIT enhanced trips, (α, β) = (0.25, 100). For the train sub-network, we make21

the assumption that this transport mode is more similar to the public transport one than to the22

car-mode. Thus, we decided to adopt, for this mode, the same parameters as those used for the23

public transport one.24

4.1.3. Map-matching performance25

Once the parameters set, to evaluate the map-matching performance, we use two additional met-26

rics, which complement the information provided by the F1 score i.e., the matching rate and the27

geographical error. The matching rate, MR is the percentage of correctly map-matched edges by28

our approach. The geographical error, Ge is the distance between the NSD-based map-matched tra-29

jectory and the GPS-based one: it is computed as the average geodesic distance between each node30

in the inferred trajectory from NSD data and its closest node in space from the GPS map-matched31

trajectory. Formally:32

MR =
TP

TP + FN + FP
and, Ge =

1

|mNSD|
∑

en∈mNSD

min
en′∈mGPS

d(ln, ln′) (5)

where TP, FP and FN correspond respectively to the number of true positives, false positives and33

false negatives as defined above. mGPS and mNSD are, respectively, two map-matched trajectories34

(sequence of nodes in the transportation network) from GPS and mobile network data, respectively.35

The operator | · | denotes the cardinality of the argument set, i.e., the number of samples contained36

in the trajectory, while the operator d(·, ·) denotes the geodesic distance.37

In our evaluation, we compare the result of the map-matching procedure with and without38

prior knowledge on the transportation mode. In case the map-matching is done without any prior39

knowledge on transportation mode, we map-matched the trajectories to all the sub-graphs of G,40

and we output the one with the highest probability from the Viterbi algorithm. Table 2 reports41

on the performance of our map-matching approach on 5 different input sets of trajectories, namely42

M̂ without prior knowledge on the transportation mode and M , MR, M̂R and M̂ with prior43
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(a) M - Road (b) M̂R - Road

(c) M - Public transport (d) M̂R - Public transport

Figure 2: Sensitivity analysis on parameters α and β for raw signaling trajectories with
road (a) and public transport (c); for transit enhanced trajectories with road (b) and public
transport (d)

knowledge on the transportation mode. The results clearly highlights the importance of adding a1

prior information on transportation knowledge in order to improve the overall performance of the2

map-matching approach. The improvement is particularly relevant in relation to the matching rate,3

allowing an increase of 13% with respect to the case without any prior knowledge. Similarly, the F14

score increases from 0.59 without prior transportation mode knowledge, to 0.77 when considering it.5

In the following, we thus assume to dispose of transportation mode information before applying our6

map-matching approach. We can observe that despite the large uncertainty of NSD, our approach7

can map-match the NSD trajectories rather accurately. For the whole set of mobile sessions, the8

geographical error is in fact equal to only 60m, matching attains a 77% success rate and the F19

score equals 0.77. By comparing the performance of the map-matching on M̂R andMR we are also10

able to appreciate the positive impact of TRANSIT on the map-matching performance. The results11

show that the enhancement step performed by TRANSIT on MR allows improving significantly12

the map-matching process: the geographical error is divided by a factor 2, the matching rate13

increase by 10% and the F1 score reaches 0.80 on M̂R (with TRANSIT) instead of 0.64 on MR14

(without TRANSIT). Then, in the worst case, i.e., for the set M of trajectories which are not15

enhanced by TRANSIT, the performance of the map-matching remains good with a geographical16

error inferior than 100m and a matching rate of 71%. Finally, it can be noticed that the result of the17

map-matching approach is superior, with respect to all considered metrics, in the public transport18

sub-network case than the road one. Such a result is explained by the more complex topology of19
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Set of trajectories
Transportation
mode knowledge

Mode Ge (km) MR F1 score

M̂ No All modes 0.11 63 0.59

M Yes
Road 0.14 63 0.57
TC 0.05 78 0.71
All 0.09 71 0.65

MR Yes
Road 0.14 60 0.56
TC 0.05 78 0.70

All modes 0.09 70 0.64

M̂R Yes
Road 0.08 68 0.69
TC 0.02 86 0.89

All modes 0.05 78 0.80

M̂ Yes
Road 0.10 67 0.67
TC 0.03 86 0.86

All modes 0.06 77 0.77

Table 2: Result of the map-matching approach on different sets of trajectories: M̂ without
prior knowledge on the transportation mode and M ,MR, M̂R and M̂ with prior knowledge
on the transportation mode.

the road network compared to that of the public transport one, which makes the map-matching1

problem harder in the former case.2

4.1.4. Impact of sampling rate3

To further evaluate the performance of our approach, we also quantify in the following the impact4

of spatio-temporal sparsity of NSD data that are fed to TRANSIT before map-matching. We do5

this by randomly sub-sampling the NSD of each user down to a fraction of the original mobile6

events in every sessions in M̂; we then run our map-matching approach on the sparser trajectories,7

after performing or not trajectory augmentation with TRANSIT. Due to the stochastic nature of8

the sub-sampling, we averaged the F1 score over 10 trials (random samples selected with a given9

frequency) for each distinct sampling rate.10

We can observe that the average value of the F1 score follows different trends in the case of11

the raw signaling trajectories and the TRANSIT-enhanced ones. Values of the F1-score increase12

for small growing values of the sampling frequency, both in the case of raw NSD and in the13

TRANSIT one. The difference of the performance between TRANSIT and raw NSD is constant14

and close to 0.15 for the smaller values. Differently, for higher sampling frequency, the F1 score15

remains approximately constant for raw NSD, regardless of the sampling frequency, whereas it keeps16

increasing for TRANSIT. Indeed, there is no reason why an increased number of raw NSD events17

would improve the intrinsic spatial uncertainty proper to such kind of data, as the map-mathing18

error is linked to the geographical sparsity of the antennas in the raw NSD case. In fact, the distance19

between NSD and the closest GPS position stays constant, and, consequently, the map-matching20

process cannot rely on additional spatial information to improve its performance when a higher21

sampling frequency is available. On the contrary, TRANSIT decouples trajectory samples from22

base station locations, and can better approximate the actual position of the user by averaging over23

a higher number of NSD samples collected at different antennas. As TRANSIT achieves to better24
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Figure 3: Performance of the map-matching with and without TRANSIT with varying events
sampling rate.

reconstructing spatial information, the map-matching on TRANSIT-enhanced trajectory attains1

increased performance even with higher sampling frequency. This lets TRANSIT increase its F12

score up to 0.8 as the sampling rate grows.3

4.2. Macroscopic validation4

4.2.1. Dataset5

The raw dataset used for macroscopic validation covers all the Orange subscribers’ network signal-6

ing data for the city of Lyon, France. Data have been pseudonymized and treated with TRANSIT7

by the mobile phone network operator to extract (possibly enhanced) trips for a limited subset of8

Origin-Destination (OD) pairs. No personal information has been made available and trips from9

different users have been treated together, thus preventing any form of individual re-identification.10

Specifically, we only keep in our analysis TRANSIT trips whose origin (first position) and desti-11

nation (last position) respectively fall into the origin and destination of the considered OD-pair.12

In particular, we focus our macroscopic analysis on three OD-pairs in Lyon: 4653 trips from the13

neighborhood of Confluence to the one of Cordeliers (the set of trips is denoted as C1), 3222 trips14

from Part Dieu to Cailloux-sur-Fontaines (the set of trips is denoted as C2) and 402 trips from15

Bellecour to Saint-Priest (the set of trips is denoted as C3). These OD-pairs have been chosen to16

stress our map-matching approach in complex settings: multiple transportation modes (car, train17

and public transport), multimodal trips (public transport case). In addition, these OD-pairs are18

interesting to study because they connect zones of interest in the city of Lyon that contain high19

numbers of transport stations and hubs, touristic attractions, residential areas or commercial zones.20

The data from the Orange network probes used in this work were collected as part of the CAN-21

CAN - Content and Context based Adaptation in Mobile Networks collaborative research project22

funded by the French National Research Agency (ANR). The collection of this personal data has23

been authorized by the Data Protection Officer (DPO) of Orange according to article 89 of the24

General Data Protection Regulation (GDPR)3, which provides an exemption for research, in par-25

ticular for scientific and research purposes. Additionally, sensitive data have been processed by26

authorized personnel only at Orange facilities.27

3https://gdpr.eu/tag/gdpr/
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4.2.2. Results1

To validate our map-matching approach at macroscopic level, we apply our approach on three2

different pairs of OD, namely: C1, C2 and C3. It is worth highlighting that C1, C2 and C33

are composed of raw signaling trips as well as TRANSIT enhanced trips related to the whole4

subscribers’ base that have traversed these zones. As discussed in Sec. 4.1.3, the performance5

of the map-matching process is superior when considering prior knowledge on the transportation6

mode. Thus, we apply a simple, yet effective, speed-based heuristic to infer the transportation mode7

(either car, public transport or train) of each trip in C1, C2 and C3. This heuristic is based on the8

assumption that public transport trips speed is lower than car trips speed which is lower than train9

speed. Ideas for improving such a basic inference approach are given in Sec. 5. Then, we apply10

our map-matching approach on C1, C2 and C3. For evaluating the result of the map-matching, we11

compare the reconstructed paths obtained for each OD pair via our approach with reference paths,12

that we call ground-truth popular paths in the following. The latter have been obtained using a13

variety of route planners4. The former have been obtained by summing the number of occurrences14

of each edge of the transportation network from the map-matched trajectories obtained by means15

of our approach. Results are graphically presented in Fig.4, while the performance of our approach16

is assessed via visual inspection, as discussed in the following.17

Concerning the OD pair C1, related trips belong either to the road or to public transport sub-18

networks. For public transport trips, in Fig. 4a and Fig. 4b, we can observe that our approach19

correctly inferred the main two ground-truth popular paths as obtained via commonly-used route20

planners. The first one is a bus itinerary and the second one is a multi-modal public transport21

itinerary, consisting in a tramway segment followed by a subway one. Regarding car trips, in Fig. 4c22

and Fig. 4d, our approach completely retrieved ground-truth itineraries 1, 2, while retrieving only23

a portion of itinerary 3. In particular, our approach seems to wrongly infer a popular itinerary24

in the center of the figure. This itinerary is located between the retrieved itineraries 1 and 2. It25

is possible that, our speed-based heuristic approach failed at inferring the correct transportation26

mode for some trips. As a result, our approach map-matched trips to the wrong transportation27

network. In our case, it is likely that some public transport trips have been wrongly matched to28

the road network thus generating a fake road-based popular path, which is spatially close to a29

well-known public transport segment (included in itinerary 1 from Fig. 4b).30

For the OD pair C2, trips are associated either to the road or to the train sub-networks.31

For train trips, in Fig. 4e and Fig. 4f the only popular itinerary is correctly retrieved by our32

approach. Concerning car trips, in Fig. 4g and Fig. 4h, two main popular paths are present in33

our ground-truth data. The first one (itinerary 1) is correctly detected by our approach, whereas34

the second one (itinerary 2) is not. It is worth highlighting that ground-truth popular paths35

proposed by the route planners give some reasonable indications on popular paths, but may not36

necessarily be representative of actual route-choice preferences of users. This can explain some of37

the differences observed when inferring popular paths via our approach that relies on large-scale38

fresh data describing actual movements of large crowds of people, as observed through the lens of39

the mobile phone communication network.40

Finally, for the C3 OD pair, as reported in Fig. 4i, Fig. 4j, Fig. 4k and Fig. 4l, trips are associated41

either to the road or to the public transport sub-networks. For both car and public transport trips,42

a good match for popular paths can be observed: our approach retrieves almost all the popular43

paths detected via route planners. We also highlight that popular itinerary 1 for public transport44

is a multi-modal one.45

All these aggregate results show a very promising application of our approach for inferring fine-46

4https://www.google.fr/maps, https://www.viamichelin.fr/web/Itineraires
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grained mobility information, i.e., popular paths, by transportation mode at macroscopic level.1

Reported results also prove the capability of our solution to perform accurate map-matching even2

in the case of complex urban and multi-modal settings.3

5. DISCUSSION AND CONCLUSION4

In this paper, we performed an empirical study, based on real signaling traces collected in the city5

of Lyon, France, by a major telecommunication operator, aimed at investigating the potential of6

network signalling data to provide fine-grained spatio-temporal information to reconstruct users’7

mobility. We developed a HMM-based map-matching algorithm for mapping sparse and noisy8

cellular trajectories to the underlying multi-modal transportation network. The map-matching9

approach is coupled with TRANSIT, a network signaling data pre-processing framework developed10

by our team, able to enhance in both space and time the raw signaling trips.11

To validate our approach, we have analyzed an original case study, related to French city of12

Lyon, by leveraging both real cellular traces collected by a major network operator and GPS data13

collected via a mobile phone application. This data has been leveraged to perform a microscopic14

validation, aimed at both fine-tuning the parameters of the HMM-based map-matching step and at15

showing the capability of our approach to accurately map-matching cellular trajectories on multiple16

transportation mode. We also demonstrated the importance of having prior rough transportation17

mode knowledge before applying the map-matching process to improve the performance of the18

latter.19

Finally, using simple coarse transportation mode inference, we have demonstrated the possibly20

to retrieve popular paths by transportation mode for multiple OD-pairs. We underline the fact21

that, by relying on our approach and network signaling data, such a knowledge can be provided at22

very large scale (an entire country), with a temporal description (popular paths can be different at23

given moments of the day or during week-ends), and at much higher spatial resolution (covering also24

peripheral areas, or regions hardly observed via GPS-based data) than the one provided via simple25

traditional route planners, thus proving the utility of our approach and interest of the analyzed26

case study.27

Future work includes improvement on the transportation mode inference technique. Indeed,28

instead of using only the speed, a lot of features could be used for the inference such as: the29

probability that the virterbi algorithm outputs, start time/duration of the trip and total static30

activity duration within the trip. Detailed analysis of the results deriving from a country-scale31

application of our solution could be explored as future directions.32
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(a) C1 - Reconstructed
popular paths - PT

(b) C1 - Ground-truth
popular paths - PT

(c) C1 - Reconstructed
popular paths - Road

(d) C1 - Ground-truth
popular paths - Road

(e) C2 - Reconstructed
popular paths - Train

(f) C2 - Ground-truth
popular path - Train

(g) C2 - Reconstructed
popular paths - Road

(h) C2 - Ground-truth
popular paths - Road

(i) C3 - Reconstructed
popular paths - PT

(j) C3 - Ground-truth
popular path - PT

(k) C3 - Reconstructed
popular paths - Road

(l) C3 - Ground-truth
popular paths - Road

Figure 4: Comparison between reconstructed popular paths reconstructed by our approach
and ground-truth popular paths for 3 case studies: C1, C2 and C2.
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