
Experimental Evaluation
Good Practices and Pitfalls to Avoid

Christine Solnon

INSA de Lyon - CITI - INRIA

27 November 2020

1/91

Introduction

Overview of the talk

1 Introduction

2 Experimental Process

3 Analysis of the Results

4 Automatic Algorithm Configuration and Selection

5 Conclusion

2/91

Introduction

Theory versus Experimentation (1/2)

Some properties may be proven by theoretical analysis:

Complexity and decidability of a problem
Complexity, correctness, completeness, termination, ... of an algorithm
Consistency level and time complexity of a constraint propagator
...

But theory has some limits:

A theoretical complexity gives a growth order
...and all exact solvers for NP-hard problems have exp. time complexities
An hand made proof may contain errors
Static analysis may raise false alarms
...

Experimentation is complementary to theoretical analysis:
It provides empirical insights into algorithm properties

3/91

Introduction

Theory versus Experimentation (2/2)

In theory, theory and practice are the same.
In practice, they are not.

(A. Einstein)

Experience without theory is blind,
but theory without experience is mere intellectual play.

(I. Kant)

If you find that you’re spending almost all your time on theory,
start turning some attention to practical things; it will improve
your theories. If you find that you’re spending almost all your
time on practice, start turning some attention to theoretical
things; it will improve your practice.

(D. Knuth)

4/91

Experimental Process

Overview of the talk

1 Introduction

2 Experimental Process
Reproducibility of an experiment
Choice of a Benchmark
Performance Measures

3 Analysis of the Results

4 Automatic Algorithm Configuration and Selection

5 Conclusion

5/91

Experimental Process

Experimental process

Step 1: Prepare the experiment

Formulate a question
; Influence of parameters? Solver competitive with state-of-the-art? ...
Design the experiment
; What should we measure? On which benchmark? . . .
Prepare the test environment
; Scripts for launching tests, Computing infrastructure, . . .

Step 2: Perform the experiment

Run scripts and collect results

Step 3: Analyse results

If question not answered, then go back to Step 1
If question answered, then publish!

Reference: A Guide to Experimental Algorithmics, C. McGeoch, 2012
6/91

Experimental Process

Two types of experiments

Exploratory experiment:

Identify what should be intensively experimented:

Relevant questions?

Parameters which have an impact on the solution process?

Relevant instances?

. . .

; Short cycles for preparing an intensive experiment

Intensive experiment:

Use an efficient and automated experimental process

Goals are well defined
Cycles may be quite long (up to several months in some cases...)

7/91

Experimental Process Reproducibility of an experiment

Overview of the talk

1 Introduction

2 Experimental Process
Reproducibility of an experiment
Choice of a Benchmark
Performance Measures

3 Analysis of the Results

4 Automatic Algorithm Configuration and Selection

5 Conclusion

8/91

Experimental Process Reproducibility of an experiment

Reproducibility of an experiment

Why reproducing an experiment?

To check published results
To compare a new algorithm with a published one
To evaluate a published algorithm on new benchmarks
...

Why is it difficult to reproduce an experiment?

All informations and tools must be available:
Open source + Open data
Values of all parameters
Considered environment (processor, OS, compiler, ...)
Tools used to launch runs and analyse results
...

; Provide virtual machines (see the Recomputation Manifesto, Gent 2013)

9/91

Experimental Process Reproducibility of an experiment

Different Reproducibility Levels [ACM 2016]

Repeatability

Same experimental conditions, same team

Replicability

Same experimental conditions, different team

Reproducibility

Different experimental conditions, different team

See https://www.acm.org/publications/policies/artifact-review-badging

10/91

Experimental Process Reproducibility of an experiment

The Machine Learning Reproducibility Checklist (1/2)
www.cs.mcgill.ca/∼jpineau/ReproducibilityChecklist.pdf (V1.2, Mar.27 2019)

For all models and algorithms presented, check if you include:

A clear description of the mathematical setting, algorithm, and/or model

An analysis of the complexity (time, space, sample size) of any algorithm

A link to a downloadable source code, with specification of all
dependencies, including external libraries

For any theoretical claim, check if you include:

A statement of the result

A clear explanation of any assumptions

A complete proof of the claim

11/91

Experimental Process Reproducibility of an experiment

The Machine Learning Reproducibility Checklist (2/2)
www.cs.mcgill.ca/∼jpineau/ReproducibilityChecklist.pdf (V1.2, Mar.27 2019)

For all figures and tables that present empirical results, check if you include:

A complete description of the data collection process, including sample size
A link to a downloadable version of the dataset or simulation environment
An explanation of any data that were excluded, description of any
pre-processing step
An explanation of how samples were allocated for training / validation / testing
The range of hyper-parameters considered, method to select the best
hyper-parameter configuration, and specification of all hyper-parameters used to
generate results
The exact number of evaluation runs
A description of how experiments were run
A clear definition of the specific measure or statistics used to report results
Clearly defined error bars
A description of results with central tendency (e.g. mean) & variation (e.g.
stddev)
A description of the computing infrastructure used

12/91

Experimental Process Choice of a Benchmark

Overview of the talk

1 Introduction

2 Experimental Process
Reproducibility of an experiment
Choice of a Benchmark
Performance Measures

3 Analysis of the Results

4 Automatic Algorithm Configuration and Selection

5 Conclusion

13/91

Experimental Process Choice of a Benchmark

Choice of a Benchmark

The benchmark depends on the question addressed by the experiment

Is my program correct?
; Stress-test instances (boundary instances, happy path, . . .)
How does it behave in the worst-case?
; Worst-case/bad-case instances
What are its scale-up properties wrt some instance parameters?
; Random instances
Does it scale well for a given application?
; Real-world instances
Is it competitive with state-of-the-art approaches?
; Public benchmark

Homogeneous vs Heterogeneous Benchmarks

Homogeneous benchmark⇒ The analysis of results is simplified
Heterogeneous benchmark⇒ Results are more general
; Decompose benchmarks in homogeneous classes to analyse results

14/91

Experimental Process Choice of a Benchmark

Hardness of Instances

Beware of ceil/floor effects!
Extreme instances are useless to compare algorithms

Too easy⇒ Quickly solved by all algorithms
Too hard⇒ No algorithm can solve them

Reduce the number of instances that are too easy or too hard
Gradually increase instance hardness to study scale-up properties

Factors that may influence hardness:

Input size
Structure of input data
; Example: tree width of the constraint graph
Constrainedness (for decision problems)
; Phase transition
Distribution of local and global optima (for optimisation problems)
; Search landscape

15/91

Experimental Process Choice of a Benchmark

Phase transition (1/2)

Ex.: Satisfiability of a Boolean formula with n var. and p clauses (SAT)

Hardness depends on n...
... but also on the ratio between p and n

p/n small⇒ under-constrained instance⇒ Easy
(except for rare cases which are exceptionally hard!)
p/n large⇒ over-constrained instance⇒ Easy
Between these two cases, things become difficult!

Experiment [Leyton-Brown et al 2014]:

Randomly generate 3-SAT
instances with n = 400
Each instance = a point (x , y)

x = p/n
y = solving time
colour=black if feasible
colour=pink if infeasible

16/91

Experimental Process Choice of a Benchmark

Phase transition (1/2)

Ex.: Satisfiability of a Boolean formula with n var. and p clauses (SAT)

Hardness depends on n...
... but also on the ratio between p and n

p/n small⇒ under-constrained instance⇒ Easy
(except for rare cases which are exceptionally hard!)
p/n large⇒ over-constrained instance⇒ Easy
Between these two cases, things become difficult!

Experiment [Leyton-Brown et al 2014]:

Randomly generate 3-SAT
instances with n = 400
Each instance = a point (x , y)

x = p/n
y = solving time
colour=black if feasible
colour=pink if infeasible

16/91

Experimental Process Choice of a Benchmark

Phase Transition (2/2)

What is a phase transition?

Abrupt state change (satisfiable vs unsatisfiable) wrt parameters
; For uniform 3-SAT: When p/n = 4.26
Corresponding to a hardness pic
Independent from the solving approach

How to locate the transition phase?

Compute the expected number of solutions 〈Sol〉:
〈Sol〉 much smaller than 1 ; Over-constrained instance (easy)
〈Sol〉 close to 1 ; Critically constrained instance (hard)
〈Sol〉 much larger than 1 ; Under-constrained instance (easy)

References:
P. Cheeseman, B. Kanefsky, W. Taylor (1991): Where the Really Hard Problems Are. IJCAI

K. Leyton-Brown, H. Hoos, F. Hutter, L. Xu (2014): Understanding the Empirical Hardness
of NP-Complete Problems. Communications of the ACM

17/91

Experimental Process Choice of a Benchmark

Illustration on the Subgraph Isomorphism Problem (SIP)

Goal: Search for a copy of a pattern graph Gp in a target graph Gt

Gp = (Np,Ep) Gt = (Nt ,Et)

Find an injective mapping f : Np → Nt s.t. ∀(u, v) ∈ Ep : (f (u), f (v)) ∈ Et

Question:
How to control hardness of randomly generated instances of SIP?

Reference:
C. McCreesh, P. Prosser, C. Solnon & J. Trimble (2018): When Subgraph Isomorphism is Really
Hard, and Why This Matters for Graph Databases. Journal of Artificial Intelligence Research

18/91

Experimental Process Choice of a Benchmark

Illustration on the Subgraph Isomorphism Problem (SIP)

Goal: Search for a copy of a pattern graph Gp in a target graph Gt

Gp = (Np,Ep) Gt = (Nt ,Et)

Find an injective mapping f : Np → Nt s.t. ∀(u, v) ∈ Ep : (f (u), f (v)) ∈ Et

Question:
How to control hardness of randomly generated instances of SIP?

Reference:
C. McCreesh, P. Prosser, C. Solnon & J. Trimble (2018): When Subgraph Isomorphism is Really
Hard, and Why This Matters for Graph Databases. Journal of Artificial Intelligence Research

18/91

Experimental Process Choice of a Benchmark

Random generation of an SIP instance

Random generation of a graph G(n,d) wrt Erdös-Rényi model:

n = number of vertices
d = probability of adding an edge between 2 vertices

d close to 0 ; Sparse graphs
d close to 1 ; Dense graphs

Random generation of an SIP instance:

Generation of a pattern graph G(np,dp) and a target graph G(nt ,dt)

Parameters = np, dp, nt , dt

How can we control hardness?
; Probabilities dp and dt control graph densities

Sparse pattern and dense target ; Easy to find a solution
Dense pattern and sparse target ; Easy to prove inconsistency
Hard instances should be between these two extreme cases!?

19/91

Experimental Process Choice of a Benchmark

Phase transition from feasibility to infeasibility

We fix np = 20, nt = 150, dt = 0.4, and we vary dp from 0 to 1
; Each point (x , y) is an instance generated with dp = x

y = Search effort to solve the instance with Glasgow
Colour = Feasibility of the instance (green=yes; blue=no)

20/91

Experimental Process Choice of a Benchmark

Phase transition from feasibility to infeasibility

Satisfiable instances Unsatisfiable instances

Phase transition

dp ≤ 0.44: Satisfiable instances
; Most of them are trivial; a few of them are harder
dp ≥ 0.67: Unsatisfiable instances
; Neither trivial, nor extremely hard
0.44 < dp < 0.67: Phase transition between sat and unsat
; Hardest instances

20/91

Experimental Process Choice of a Benchmark

Phase transition when varying dp and dt

Ta
rg

et
de

ns
ity

none

half

all

Pattern density

We fix np = 30, nt = 150, and we vary dp and dt from 0 to 1
; Each point (x , y) = 10 instances generated with dp = x and dt = y

Colour = proportion of satisfiable instances

Top left: sparse patterns and dense targets ; All satisfiable
Bottom right: dense patterns and sparse targets ; All unsatisfiable

Black line = Theoretical prediction of the phase transition location

21/91

Experimental Process Choice of a Benchmark

Locating the phase transition

Expected number of solutions for pattern G(np,dp) and target G(nt ,dt):

Expected number of pattern edges = dp · np(np−1)
2

Probability for one pattern edge to be mapped to a target edge = dt

Probability for one injective mapping to be a solution = ddp·
np (np−1)

2
t

Number of possible injective mappings = nt · (nt − 1) · ... · (nt − np + 1)

Expected number of solutions:

〈Sol〉 = nt · (nt − 1) · ... · (nt − np + 1) · ddp·
np (np−1)

2
t

Theoretical prediction of the phase transition location:

〈Sol〉 larger than 1 ; Easy to find a solution

〈Sol〉 smaller than 1 ; Not very difficult to prove inconsistency

〈Sol〉 close to 1 ; Really hard instances (black line)

22/91

Experimental Process Choice of a Benchmark

Phase transition vs Search effort

none

half

all

fail

100
102
104
106
108

Black point = Instance not solved by Glasgow within 1000s
White point = Instance solved by Glasgow without backtracking

23/91

Experimental Process Choice of a Benchmark

Scale-up properties when increasing np

np = 10 np = 20 np = 30

none

half

all

fail

100
102
104
106
108

The search effort slowly increases in easy regions
; Empirical polynomial time complexities on these instances

The search effort strongly increases in the phase transition region
; Empirical exponential time complexities on these instances

24/91

Experimental Process Choice of a Benchmark

What about other solvers?

Glasgow:

LAD:

VF2:

RI:

fail

100
102
104
106
108

fail

100
102
104
106
108

fail

100
102
104
106
108

100

102

104

106

108

25/91

Experimental Process Choice of a Benchmark

Hardness for Optimisation Problems
; Case of complete/exact approaches

Most complete approaches solve sequences of decision problems:

1 Search for an assignment a which satisfies the set C of constraints

Use heuristics to find "good" assignments
Use bounding functions to prune the search
...

2 If there does not exist such an assignment, then stop

3 Add the constraint f (X) > f (a) to C and go to (1)

Hardness of the successively solved instances:
The last two instances are the closest to the phase transition

The penultimate one is the most constrained satisfiable instance

The last one is the less constrained unsatisfiable instance

; These two instances are usually the hardest of the sequence
26/91

Experimental Process Choice of a Benchmark

Hardness for Optimisation Problems
; Case of incomplete/meta-heuristic approaches

Heuristic exploration of the search space:

Use mechanisms to build new solutions from previously visited solutions

Neighbourhood graph G = (V ,N) associated with an incomplete
approach:

Vertices: V = set of all possible solutions
Edges: N = {(vi , vj) ∈ V × V : vj can be built from vi}
; Depends on mechanisms used to build solutions
Notation: neighbourhood of vi = N(vi) = {vj / (vi , vj) ∈ N}

Hardness depends on the fitness landscape associated with G

27/91

Experimental Process Choice of a Benchmark

Fitness Landscape (1/2)

Fitness landscape associated with a neighbourhood graph G = (V ,N):

Each solution in V corresponds to a point
The objective function f corresponds to the point height
The neighbourhood N is used to position points wrt other dimensions

28/91

Experimental Process Choice of a Benchmark

Fitness Landscape (2/2)

Topological features of a fitness landscape:

Local optimum = Point with no neighbour strictly better

vi ∈ V such that ∀vj ∈ N(vi), f (vj) < f (vi)

Plateau = Set of connected points in G which all have the same height
Basin of attraction of a local optimum vi = Set of all points from which vi
can be reached by hill-climbing
...

; These features are used to study hardness

29/91

Experimental Process Performance Measures

Overview of the talk

1 Introduction

2 Experimental Process
Reproducibility of an experiment
Choice of a Benchmark
Performance Measures

3 Analysis of the Results

4 Automatic Algorithm Configuration and Selection

5 Conclusion

30/91

Experimental Process Performance Measures

Performance Criteria

Three most common criteria:

Duration

Memory consumption

Quality

Warning: These criteria are often inter-dependent

Duration may be reduced by using more data structures
; Ex: Maintain values instead of recomputing them from scratch

Quality may be improved by spending more time
; Ex: Anytime solvers

31/91

Experimental Process Performance Measures

Performance measures for duration (1/2)

Number of dominant operations:

Identify dominant operations:

Number of comparisons for sorting algorithms
Number of constraint checks when solving constraint satisfaction pb
...

Count the number of times these operations are done

Number of Mems (used by Knuth in TAOCP):

; Number of memory accesses (load and store)

Pros:
Measures independent from the language, the OS, the processor, . . .

Cons:
Not always representative of duration...

32/91

Experimental Process Performance Measures

Performance measures for duration (2/2)

Elapsed real time

Difference of time between the beginning and the end of the run
Not reliable because it depends on the CPU load

CPU time
Total time of CPU utilisation
Also depends on the CPU load!

Illustration [McGeoch 2012]

Experiment on an 8 core HP: CPU time Real time
1 process on 1 core: = 27.9 = 28.2

9 concurrent processes on 8 cores: ∈ [36.0; 37.6] ∈ [43.4; 43.6]

Experiment on a 2 core MAC: CPU time Real time
1 process on 1 core: = 67 = 79

9 concurrent processes on 2 cores: ∈ [97; 100] ∈ [630; 649]

33/91

Experimental Process Performance Measures

Performance measures for duration (2/2)

Elapsed real time

Difference of time between the beginning and the end of the run
Not reliable because it depends on the CPU load

CPU time
Total time of CPU utilisation
Also depends on the CPU load!

Illustration [McGeoch 2012]

Experiment on an 8 core HP: CPU time Real time
1 process on 1 core: = 27.9 = 28.2

9 concurrent processes on 8 cores: ∈ [36.0; 37.6] ∈ [43.4; 43.6]

Experiment on a 2 core MAC: CPU time Real time
1 process on 1 core: = 67 = 79

9 concurrent processes on 2 cores: ∈ [97; 100] ∈ [630; 649]
33/91

Experimental Process Performance Measures

Performance Measures for Optimisation Problems

Exact algorithm that finds the optimal solution a∗ and proves optimality

Performance measure: CPU time, or number of mems/operations

Question: What if some instances aren’t solved within the time limit?

Anytime algorithm that continuously improves the solution

Performance measures for a given time limit t :

Best objective function value f (a′)
Approximation ratio f (a′)

f (a∗) or gap to optimality |f (a
′)−f (a∗)|
f (a∗)

Questions: How to choose t? How to compute f (a′)
f (a∗) if a∗ isn’t known?

34/91

Analysis of the Results

Overview of the talk

1 Introduction

2 Experimental Process

3 Analysis of the Results
Data Analysis for Non Deterministic Algorithms
Data Analysis for Anytime Algorithms
Data Analysis for a Large Benchmark

4 Automatic Algorithm Configuration and Selection

5 Conclusion

35/91

Analysis of the Results

Data Analysis

Goal of data analysis:

Transform raw data into information

Tools for data analysis:

Descriptive statistics: Concise description of the main properties

Graphical data analysis: Visualisation that highlights data properties

Statistical tests: Procedures used to reject or not a statistical hypothesis

Warning:

Do look at raw Data before starting Data analysis

36/91

Analysis of the Results

What are we going to see now?

Data analysis for three different kinds of experimental results:

Non deterministic algorithms
; Illustration on the car sequencing problem
Anytime algorithms
; Illustration on the maximum clique problem
Large and heterogeneous benchmarks
; Illustration on the subgraph isomorphism problem

And what shall we not see (among other things...)?

Data analysis for multi-criteria optimisation problems
Data analysis of parallel algorithms

37/91

Analysis of the Results Data Analysis for Non Deterministic Algorithms

Overview of the talk

1 Introduction

2 Experimental Process

3 Analysis of the Results
Data Analysis for Non Deterministic Algorithms
Data Analysis for Anytime Algorithms
Data Analysis for a Large Benchmark

4 Automatic Algorithm Configuration and Selection

5 Conclusion

38/91

Analysis of the Results Data Analysis for Non Deterministic Algorithms

Data Analysis for Non Deterministic Algorithms

What is a non deterministic algorithm?

Algorithm that uses a (pseudo-)random function⇒ independent runs on the
same input data (except the random seed) do not necessarily return the
same result

How to measure performance of non deterministic algorithms?

Consider each measure as a random variable

Empirical estimation of its probability distribution by collecting a large
number of runs (with different random seeds)

Illustration on the Car Sequencing Problem

Question addressed by the experiment: What is the best parameter setting
(among 5 given settings) of a non deterministic algorithm(1) for solving
instance 26-82?
(1) C. Solnon: Combining two pheromone structures for solving the car sequencing problem

with Ant Colony Optimization, European Journal of Operational Research (EJOR), 2008

39/91

Analysis of the Results Data Analysis for Non Deterministic Algorithms

Performance criterion and measure

Performance criterion:
Duration needed to solve the instance

Performance measure:
Two possible measures: CPU time and number of iterations
An iteration spends (nearly) always the same CPU time

; Measure the number of iterations

Duration limit:
Instances of NP-hard problems can’t always be solved within a
reasonable amount of time (unless P=NP...)
The duration of a run must be limited
; In our case: every run is limited to 150000 iterations
What do we measure when the duration limit is reached?
; Maximum number of iterations (150000)
; Warning: This is a lower bound of the actual measure

40/91

Analysis of the Results Data Analysis for Non Deterministic Algorithms

Let’s start with some descriptive statistics

Central tendency measures:

Mean: X =
∑

xi
n

; Lower bound in case of failures

Median: Middle value in the ordered sequence of values
; In a normal distribution, these 2 measures have very close values

Dispersion measures:

Standard deviation: σ =

√∑
(xi−X)2

n
Inter Quartile Range: IQR = Q3−Q1 where Q1 (resp. Q3) is the
largest value of the 25% lowest (resp. 75%) lowest values

Mean Median

σ IQR

1 8657 8705

3323 4481

2 5082 4743

1813 2725

3 3055 3111

1053 1259

4

≥

56205 1378

- -

5

≥

8746 1728

- 863

Mean ranking: 3, 2, 1, 5, 4

Median ranking: 4, 5, 3, 2, 1

σ not computed in case of failures

IQR not computed in case of failures
before Q3

41/91

Analysis of the Results Data Analysis for Non Deterministic Algorithms

Let’s start with some descriptive statistics

Central tendency measures:

Mean: X =
∑

xi
n ; Lower bound in case of failures

Median: Middle value in the ordered sequence of values
; In a normal distribution, these 2 measures have very close values

Dispersion measures:

Standard deviation: σ =

√∑
(xi−X)2

n
Inter Quartile Range: IQR = Q3−Q1 where Q1 (resp. Q3) is the
largest value of the 25% lowest (resp. 75%) lowest values

Mean Median

σ IQR

1 8657 8705

3323 4481

2 5082 4743

1813 2725

3 3055 3111

1053 1259

4 ≥56205 1378

- -

5 ≥8746 1728

- 863

Mean ranking: 3, 2, 1, 5, 4

Median ranking: 4, 5, 3, 2, 1

σ not computed in case of failures

IQR not computed in case of failures
before Q3

41/91

Analysis of the Results Data Analysis for Non Deterministic Algorithms

Let’s start with some descriptive statistics

Central tendency measures:

Mean: X =
∑

xi
n ; Lower bound in case of failures

Median: Middle value in the ordered sequence of values
; In a normal distribution, these 2 measures have very close values

Dispersion measures:

Standard deviation: σ =

√∑
(xi−X)2

n
Inter Quartile Range: IQR = Q3−Q1 where Q1 (resp. Q3) is the
largest value of the 25% lowest (resp. 75%) lowest values

Mean Median σ IQR
1 8657 8705 3323 4481
2 5082 4743 1813 2725
3 3055 3111 1053 1259
4 ≥56205 1378 - -
5 ≥8746 1728 - 863

Mean ranking: 3, 2, 1, 5, 4

Median ranking: 4, 5, 3, 2, 1

σ not computed in case of failures

IQR not computed in case of failures
before Q3

41/91

Analysis of the Results Data Analysis for Non Deterministic Algorithms

Visualisation of quartiles with Box Plots

With a log scale!

42/91

Analysis of the Results Data Analysis for Non Deterministic Algorithms

Visualisation of quartiles with Box Plots

With a log scale!
42/91

Analysis of the Results Data Analysis for Non Deterministic Algorithms

Utilisation of a Statistical Test

Distributions are not normal
; Use a non parametric test, e.g., Mann–Whitney U test

Null hypothesis H0 for a couple of parameters (pi ,pj):

Proba(time with pi > time with pj) = Proba(time with pi < time with pj)

pi pj U p-value
1 2 1690.5 3.1e-16 Reject H0
1 3 542.5 6.4e-28 Reject H0
1 4 4307.0 0.045 Reject ?
1 5 974.0 3.9e-23 Reject H0
2 3 1675.0 2.2e-16 Reject H0
2 4 4412.0 0.075
2 5 1164.0 3.5e-21 Reject H0
3 4 4509.0 0.115
3 5 2218.0 5.3e-12 Reject H0
4 5 4826.0 0.335

43/91

Analysis of the Results Data Analysis for Non Deterministic Algorithms

Comparison of Cumulative Distribution Functions (CDF)

What is the CDF of a random variable X?
FX (x) = Probability that X is smaller than or equal to x
If X = random variable associated with the number of iterations:
FX (x) = Proba. that the instance is solved in at most x iterations
Empirical estimation by considering a large number of runs

With a logscale...

44/91

Analysis of the Results Data Analysis for Non Deterministic Algorithms

Comparison of Cumulative Distribution Functions (CDF)

What is the CDF of a random variable X?
FX (x) = Probability that X is smaller than or equal to x
If X = random variable associated with the number of iterations:
FX (x) = Proba. that the instance is solved in at most x iterations
Empirical estimation by considering a large number of runs

With a logscale...

44/91

Analysis of the Results Data Analysis for Non Deterministic Algorithms

Comparison of Cumulative Distribution Functions (CDF)

How to compute the CDF for a solver s?

For each run i of s, let mi be the measure for this run
Initialise a counter c to 0
Sort all measures by increasing order and for each measure mi :
Increase c and plot the point (mi ,

c
n) where n = total number of runs

With a logscale...

44/91

Analysis of the Results Data Analysis for Non Deterministic Algorithms

Conclusion of this experiment

Param. 1 and Param. 2 are dominated by Param. 3
Choice between Param. 3, 4 and 5 depends on the nb of iterations we
are willing to do ; Compromise between time and solution quality

45/91

Analysis of the Results Data Analysis for Anytime Algorithms

Overview of the talk

1 Introduction

2 Experimental Process

3 Analysis of the Results
Data Analysis for Non Deterministic Algorithms
Data Analysis for Anytime Algorithms
Data Analysis for a Large Benchmark

4 Automatic Algorithm Configuration and Selection

5 Conclusion

46/91

Analysis of the Results Data Analysis for Anytime Algorithms

Data Analysis for Anytime Algorithms

What is an anytime algorithm?

Algorithm that produces a sequence of solutions of increasing quality
The longer the time limit, the better the solution

; Many algorithms for optimisation problems are anytime algorithms

Illustration on the Maximum Clique Problem

Question addressed by the experiment: Given 4 parameter settings of a non
deterministic algorithm(1), what is the best setting for three classes of graphs
(C, gen, and brock)

(1) C. Solnon & S. Fenet: A study of ACO capabilities for solving the Maximum Clique Problem,
Journal of Heuristics, 12(3):155-180, Springer, 2006

Performance measures:
Duration measure: Number of iterations
Quality measure: Size of the clique

47/91

Analysis of the Results Data Analysis for Anytime Algorithms

Can we study each criterion separately?
; Fix the quality and plot the CDF associated with duration

Probability of finding a clique of size k wrt number of iterations:

Result for instance C500.9
when k=57

What if an algorithm
does not find a clique of
size 57?

CDFs for different values of k :
k=57: k=55: k=53:

How to choose k?

48/91

Analysis of the Results Data Analysis for Anytime Algorithms

Can we study each criterion separately?
; Fix the quality and plot the CDF associated with duration

CDFs for different values of k :
k=57: k=55: k=53:

How to choose k?

48/91

Analysis of the Results Data Analysis for Anytime Algorithms

Can we study each criterion separately?
; Fix the number of iterations and plot the CDF associated with quality

Probability of finding a clique of size x in less than t iterations:

Result for instance C500.9
when t=3000

CDFs for different values of t:
t=3000: t=1000: t=100:

How to choose the number of iterations?

49/91

Analysis of the Results Data Analysis for Anytime Algorithms

Can we study each criterion separately?
; Fix the number of iterations and plot the CDF associated with quality

CDFs for different values of t:
t=3000: t=1000: t=100:

How to choose the number of iterations?

49/91

Analysis of the Results Data Analysis for Anytime Algorithms

Evolution of Quality with respect to Duration

Plot f (x) = size of the best clique found within x iterations

Non deterministic algorithm ; Empirical estimation of the expected size
by considering a large number of runs

Visualisation for C500.9:

How to aggregate plots of different
instances (that have maximum cliques
of different sizes)?

50/91

Analysis of the Results Data Analysis for Anytime Algorithms

Evolution of Quality with respect to Duration

Plot f (x) = size of the best clique found within x iterations

Non deterministic algorithm ; Empirical estimation of the expected size
by considering a large number of runs

Visualisation for C500.9:

How to aggregate plots of different
instances (that have maximum cliques
of different sizes)?

50/91

Analysis of the Results Data Analysis for Anytime Algorithms

Let’s normalise the measure!

Gap to the optimal solution:

gap = f (s∗)−f (s)
f (s∗)

; gap = 0 when f (s) = f (s∗)

; gap > 0 when f (s) < f (s∗)

Ratio to the optimal solution:

ratio = f (s)
f (s∗)

; ratio = 1 when f (s) = f (s∗)

; ratio < 1 when f (s) < f (s∗)

51/91

Analysis of the Results Data Analysis for Anytime Algorithms

Average Gap for each Class of Graphs
Gen graphs: C graphs: Brock graphs:

Can we explain why results are different from a class to another?
; Correlation between clique size and distance to the max clique

 0

 10

 20

 30

 40

 50

 60

 20 25 30 35 40 45 50 55

N
um

be
r

of
 v

er
tic

es
 s

ha
re

d
w

ith
 th

e
m

ax
im

um
 c

liq
ue

Size of the clique

gen200_p0.9_55

 0

 5

 10

 15

 20

 25

 30

 35

 15 20 25 30 35

N
um

be
r

of
 v

er
tic

es
 s

ha
re

d
w

ith
 th

e
m

ax
im

um
 c

liq
ue

Size of the clique

C125.9

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 6 8 10 12 14 16 18

N
um

be
r

of
 v

er
tic

es
 s

ha
re

d
w

ith
 th

e
m

ax
im

um
 c

liq
ue

Size of the clique

brock200_4

52/91

Analysis of the Results Data Analysis for Anytime Algorithms

Average Gap for each Class of Graphs
Gen graphs: C graphs: Brock graphs:

Can we explain why results are different from a class to another?
; Correlation between clique size and distance to the max clique

 0

 10

 20

 30

 40

 50

 60

 20 25 30 35 40 45 50 55

N
um

be
r

of
 v

er
tic

es
 s

ha
re

d
w

ith
 th

e
m

ax
im

um
 c

liq
ue

Size of the clique

gen200_p0.9_55

 0

 5

 10

 15

 20

 25

 30

 35

 15 20 25 30 35

N
um

be
r

of
 v

er
tic

es
 s

ha
re

d
w

ith
 th

e
m

ax
im

um
 c

liq
ue

Size of the clique

C125.9

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 6 8 10 12 14 16 18
N

um
be

r
of

 v
er

tic
es

 s
ha

re
d

w
ith

 th
e

m
ax

im
um

 c
liq

ue

Size of the clique

brock200_4

52/91

Analysis of the Results Data Analysis for Anytime Algorithms

Conclusion of this experiment

Duration and quality are inter-dependent criteria for anytime algorithms

Plot the evolution of quality wrt duration

Normalise measures to compare results of different instances
; Gap or ratio to the optimal solution

Performance changes from an instance to another

Analyse performance for each instance separately
; Aggregate results by grouping similar instances

Use automatic selection and configuration technics
; see point 4 of this lecture

53/91

Analysis of the Results Data Analysis for a Large Benchmark

Overview of the talk

1 Introduction

2 Experimental Process

3 Analysis of the Results
Data Analysis for Non Deterministic Algorithms
Data Analysis for Anytime Algorithms
Data Analysis for a Large Benchmark

4 Automatic Algorithm Configuration and Selection

5 Conclusion

54/91

Analysis of the Results Data Analysis for a Large Benchmark

Illustration on the Subgraph Isomorphism Problem (SIP)

Question addressed by the experiment:

What is the best solver among VF2(1), LAD(2), Glasgow(3) and RI(4)?

Performance measure:
CPU time on dual Intel Xeon E5-2695 v4 CPUs and 256GBytes RAM
Each run is limited to 1000 seconds

Some instances are not solved within this limit
Some instances are still not solved when the limit is 100,000s

References:
(1) L. Cordella, P. Foggia, C. Sansone, M. Vento: A (sub)graph isomorphism

algorithm for matching large graphs, in PAMI 2004

(2) C. Solnon: Alldifferent-based filtering for subgraph isomorphism, in AI 2010

(3) C. McCreesh, P. Prosser: A parallel, backjumping subgraph isomorphism
algorithm using supplemental graphs, in CP 2015

(4) V. Bonnici, R. Giugno: On the variable ordering in subgraph isomorphism
algorithms, in IEEE/ACM Trans. Comput. Biology Bioinform. 2017

55/91

Analysis of the Results Data Analysis for a Large Benchmark

Benchmark Description

14,621 instances coming from 8 existing benchmarks

Instances coming from real applications: Images and Meshes
Random instances: randBVG, randER, randERP, randM, randSF
Instances generated from a graph database: LV

Number of nodes: Number of edges:

56/91

Analysis of the Results Data Analysis for a Large Benchmark

Can we compare scale-up properties?

No: plotting the evolution of time wrt graph sizes is meaningless

Standard deviations are very high

Some instances are not solved within the CPU time limit

Time (y -axis) wrt nb of pattern nodes (x-axis) for Glasgow, LAD, VF2, and RI:

Time (y -axis) wrt nb of target nodes (x-axis) for Glasgow, LAD, VF2, and RI:

57/91

Analysis of the Results Data Analysis for a Large Benchmark

What statistic can we compute to answer the question?
Glasgow LAD VF2 RI

fastest 1 464 2 581 1 245 11 890

solved in 1 000s 14 356 14 176 12 528 13 725
solved in 0.001s 441 1 540 1 102 9 014
avg time for solved instances 1.61 4.73 9.41 4.93
bound on the avg solving time 19.71 35.03 151.21 65.91

1 Number of instances for which a solver is the fastest
2 Number of instances whose solving time is lower than 1,000s
3 Number of instances whose solving time is lower than or equal to .001s
4 Time (in seconds) to solve an instance

; Average on solved instances (different sets depending on the solver)
5 Lower bound of the average solving time on the 14,621 instances

; The time for an unsolved instance is bounded by the time limit

First conclusions:

Glasgow is able to solve more instances within a time limit of 1000s
But RI is able to solve more instances within a time limit of 0.001s

Glasgow has the smallest average solving time
But RI is the fastest for a wide majority of instances

LAD is always the second best solver, for the 5 considered statistics

There is no clear winner!
; Let’s visualise Data

58/91

Analysis of the Results Data Analysis for a Large Benchmark

What statistic can we compute to answer the question?
Glasgow LAD VF2 RI

fastest 1 464 2 581 1 245 11 890
solved in 1 000s 14 356 14 176 12 528 13 725

solved in 0.001s 441 1 540 1 102 9 014
avg time for solved instances 1.61 4.73 9.41 4.93
bound on the avg solving time 19.71 35.03 151.21 65.91

1 Number of instances for which a solver is the fastest
2 Number of instances whose solving time is lower than 1,000s
3 Number of instances whose solving time is lower than or equal to .001s
4 Time (in seconds) to solve an instance

; Average on solved instances (different sets depending on the solver)
5 Lower bound of the average solving time on the 14,621 instances

; The time for an unsolved instance is bounded by the time limit

First conclusions:

Glasgow is able to solve more instances within a time limit of 1000s
But RI is able to solve more instances within a time limit of 0.001s

Glasgow has the smallest average solving time
But RI is the fastest for a wide majority of instances

LAD is always the second best solver, for the 5 considered statistics

There is no clear winner!
; Let’s visualise Data

58/91

Analysis of the Results Data Analysis for a Large Benchmark

What statistic can we compute to answer the question?
Glasgow LAD VF2 RI

fastest 1 464 2 581 1 245 11 890
solved in 1 000s 14 356 14 176 12 528 13 725
solved in 0.001s 441 1 540 1 102 9 014

avg time for solved instances 1.61 4.73 9.41 4.93
bound on the avg solving time 19.71 35.03 151.21 65.91

1 Number of instances for which a solver is the fastest
2 Number of instances whose solving time is lower than 1,000s
3 Number of instances whose solving time is lower than or equal to .001s
4 Time (in seconds) to solve an instance

; Average on solved instances (different sets depending on the solver)
5 Lower bound of the average solving time on the 14,621 instances

; The time for an unsolved instance is bounded by the time limit

First conclusions:

Glasgow is able to solve more instances within a time limit of 1000s
But RI is able to solve more instances within a time limit of 0.001s

Glasgow has the smallest average solving time
But RI is the fastest for a wide majority of instances

LAD is always the second best solver, for the 5 considered statistics

There is no clear winner!
; Let’s visualise Data

58/91

Analysis of the Results Data Analysis for a Large Benchmark

What statistic can we compute to answer the question?
Glasgow LAD VF2 RI

fastest 1 464 2 581 1 245 11 890
solved in 1 000s 14 356 14 176 12 528 13 725
solved in 0.001s 441 1 540 1 102 9 014
avg time for solved instances 1.61 4.73 9.41 4.93

bound on the avg solving time 19.71 35.03 151.21 65.91

1 Number of instances for which a solver is the fastest
2 Number of instances whose solving time is lower than 1,000s
3 Number of instances whose solving time is lower than or equal to .001s
4 Time (in seconds) to solve an instance

; Average on solved instances (different sets depending on the solver)
5 Lower bound of the average solving time on the 14,621 instances

; The time for an unsolved instance is bounded by the time limit

First conclusions:

Glasgow is able to solve more instances within a time limit of 1000s
But RI is able to solve more instances within a time limit of 0.001s

Glasgow has the smallest average solving time
But RI is the fastest for a wide majority of instances

LAD is always the second best solver, for the 5 considered statistics

There is no clear winner!
; Let’s visualise Data

58/91

Analysis of the Results Data Analysis for a Large Benchmark

What statistic can we compute to answer the question?
Glasgow LAD VF2 RI

fastest 1 464 2 581 1 245 11 890
solved in 1 000s 14 356 14 176 12 528 13 725
solved in 0.001s 441 1 540 1 102 9 014
avg time for solved instances 1.61 4.73 9.41 4.93
bound on the avg solving time 19.71 35.03 151.21 65.91

1 Number of instances for which a solver is the fastest
2 Number of instances whose solving time is lower than 1,000s
3 Number of instances whose solving time is lower than or equal to .001s
4 Time (in seconds) to solve an instance

; Average on solved instances (different sets depending on the solver)
5 Lower bound of the average solving time on the 14,621 instances

; The time for an unsolved instance is bounded by the time limit

First conclusions:

Glasgow is able to solve more instances within a time limit of 1000s
But RI is able to solve more instances within a time limit of 0.001s

Glasgow has the smallest average solving time
But RI is the fastest for a wide majority of instances

LAD is always the second best solver, for the 5 considered statistics

There is no clear winner!
; Let’s visualise Data

58/91

Analysis of the Results Data Analysis for a Large Benchmark

What statistic can we compute to answer the question?

Glasgow LAD VF2 RI
fastest 1 464 2 581 1 245 11 890
solved in 1 000s 14 356 14 176 12 528 13 725
solved in 0.001s 441 1 540 1 102 9 014
avg time for solved instances 1.61 4.73 9.41 4.93
bound on the avg solving time 19.71 35.03 151.21 65.91

First conclusions:

Glasgow is able to solve more instances within a time limit of 1000s
But RI is able to solve more instances within a time limit of 0.001s

Glasgow has the smallest average solving time
But RI is the fastest for a wide majority of instances

LAD is always the second best solver, for the 5 considered statistics

There is no clear winner!
; Let’s visualise Data

58/91

Analysis of the Results Data Analysis for a Large Benchmark

Cactus Plot: Number of solved instances wrt time

How to produce a cactus plot for a solver s?

For each instance i , let ti be the time spent by s to solve i
Initialise a counter c to 0
For each solving time ti , taken by increasing order:
Increase c and plot the point (c, ti)

With a linear scale: With a logarithmic scale:

59/91

Analysis of the Results Data Analysis for a Large Benchmark

CDF: Probability of success wrt time

How to obtain a CDF from a cactus plot?

Divide the number of solved instances by the total number of instances

Invert the two axis

With a linear scale: With a logarithmic scale:

60/91

Analysis of the Results Data Analysis for a Large Benchmark

Virtual Best Solver (VBS)

VBS associated with a set S of solvers and a set I of instances:

∀s ∈ S,∀i ∈ I, let ts
i be the time of s on i

∀i ∈ I, time of VBS on s: tVBS
i = mins∈S ts

i

61/91

Analysis of the Results Data Analysis for a Large Benchmark

Performance profiles

Performance profile of a solver s:

Performance ratio of s on an instance i : r s
i = ts

i /t
VBS
i

; If r s
i > 1 then s is r s

i times as long as VBS
Performance profile of s = CDF of r s

; Probability that s is within a factor x of VBS

tRI = tVBS for 81% of the instances

tRI ≤ 1000 ∗ tVBS for 93% of the instances

tGlasgow = tVBS for 10% of the instances

tGlasgow ≤ 1000 ∗ tVBS for 97% of the inst.

Warning: This is a global picture for an
unbalanced benchmark that contains a lot of
easy instances and a few very hard instances
; Analyse results for each class separately

62/91

Analysis of the Results Data Analysis for a Large Benchmark

Results on the 6302 instances of Class Images

CDF: Performance profile:

Conclusions:
RI = VBS for all instances of this class
; It never needs more than 0.1s to solve an instance
Glasgow, LAD and VF2 are also able to solve all instances but they are
several orders longer

63/91

Analysis of the Results Data Analysis for a Large Benchmark

Results on the 3018 instances of Class Meshes

CDF: Performance profile:

Conclusions:
RI is the most successful when time < 0.1s
LAD is the most successful when 0.1s < time < 2s
Glasgow is the most successful when time > 2s

64/91

Analysis of the Results Data Analysis for a Large Benchmark

Results on the 3828 instances of Class LV

CDF: Performance profile:

Conclusions:
RI is the most successful when time < 0.03s
LAD is the most successful when 0.03s < time < 2s
Glasgow is the most successful when time > 2s

65/91

Analysis of the Results Data Analysis for a Large Benchmark

Results on the 1000 instances of RandBVG, RandM, and RandSF

CDF: Performance profile:

Conclusions:
RI is the most successful when time < 0.15s
Glasgow is the most successful when time > 0.15s

66/91

Analysis of the Results Data Analysis for a Large Benchmark

Results on the 270 instances of Class RandER

CDF: Performance profile:

Conclusions:
RI is the most successful when time < 0.02s
Glasgow is the most successful when time > 0.02s
; It is the only solver able to solve all instances within 1000s
VF2 solves only 2 instances within 1000s 67/91

Analysis of the Results Data Analysis for a Large Benchmark

Results on the 200 instances of Class RandPhase

CDF: Performance profile:

Conclusions:
Glasgow = VBS for all solved instances of this class
; It solves 59% of the instances within 1000s
LAD and RI solve less than 15% instances and are several orders longer
VF2 is not able to solve any instance of this class 68/91

Analysis of the Results Data Analysis for a Large Benchmark

Comparison of RI and Glasgow for each instance separately
; Scatter plot: each instance i is a point (x , y) with x = tGlasgow

i and y = tRI
i

69/91

Analysis of the Results Data Analysis for a Large Benchmark

Conclusion of this experiment

Modern solvers are able to quickly solve large instances...

...But there are small instances that are still very challenging
; Don’t forget to evaluate your favorite solver on these instances too!

Plotting the evolution of time wrt size is not very meaningful

Better pictures are given by plotting CDF, perf. profiles and scatter plots

Advertisement: Have a look at Metrics Studio (http://crillab-metrics.cloud/dash/)

Conclusions are different from a benchmark to another

Consider as many benchmarks as possible

Analyse results for each benchmark separately, especially in case of
unbalanced benchmarks

Use automatic selection tools to improve performance

70/91

Automatic Algorithm Configuration and Selection

Overview of the talk

1 Introduction

2 Experimental Process

3 Analysis of the Results

4 Automatic Algorithm Configuration and Selection
Automatic Configuration
Automatic Selection

5 Conclusion

71/91

Automatic Algorithm Configuration and Selection Automatic Configuration

Overview of the talk

1 Introduction

2 Experimental Process

3 Analysis of the Results

4 Automatic Algorithm Configuration and Selection
Automatic Configuration
Automatic Selection

5 Conclusion

72/91

Automatic Algorithm Configuration and Selection Automatic Configuration

Parameters and Hyper-Parameters

Parameters = Variables that define thresholds, weights, frequencies, . . .

A parameter changes the algorithm performance
Examples:

Initial temperature, or Cooling rate for Simulated Annealing
Tabu list length for Tabu Search
Population size, Cross-over rate, or Mutation rate for GAs

Hyper-parameters = Variables that correspond to design choices

An hyper-parameter changes the algorithm
Examples:

Bound function for Branch & Bound
Neighborhood function for Local Search
Filtering algorithm for Constraint Programming

Both param. and hyper-param. are called "Parameters" in what follows

73/91

Automatic Algorithm Configuration and Selection Automatic Configuration

The Vocabulary of Experimentation
Factors = Parameters that are studied in the experiment
; Identify “important” parameters, and fix the other parameters

Levels = Set of possible values for a factor
Symbolic factor: 1 level per value
Numeric factor: Identify intervals of relevant values by sampling
; Use a geometric serie to sample: 1, 2, 4, 8, . . . or 1, 10, 100, . . .

Configuration = An assignment of one level to each factor

Design Point = Configuration that must be experimentally evaluated
Full factorial design = All Factor/Level combinations (grid search)

Pros: Identify all factor effects, including interaction effects due to
inter-dependency of factors
Cons: Exponential number of combinations wrt number of factors

Fractional factorial design = Selection of a subset of configurations
; How to select configurations that must be evaluated?

74/91

Automatic Algorithm Configuration and Selection Automatic Configuration

Manual Tuning vs Automatic Configuration

Main drawbacks of manual parameter tuning:

It is time consuming

Intuitions may be misleading

It may not be fair
; The tuning effort may be different from a solver to another

The tuning protocol is not reproducible

Programming by Optimisation [Hoos 2012]:

Developers specify a potentially large design space of programs that
accomplish a given task, from which versions of the program optimised for
various use contexts are generated automatically.

[Hoos 2012]: Communications of the ACM 55(2), pp. 70-80, February 2012

75/91

Automatic Algorithm Configuration and Selection Automatic Configuration

Automatic Configuration

Definition of the problem:

Given:
A set of configurations Θ of an algorithm A
A distribution D over the set of instances I of the problem solved by A
A performance measure m : Θ× I → R

Search for θ∗ ∈ Θ which optimises the expectation of m(θ∗, i) when i ∼ D

How to define the distribution D?
D should be representative of the actual instances that must be solved
; Gather a set S of representative instances

How to obtain training instances from S?

Solution 1: Design a model for randomly generating instances that have
the same distribution as S

Solution 2: Use S as a finite support definition of D
; Split S into training and test sets for cross-validation

76/91

Automatic Algorithm Configuration and Selection Automatic Configuration

Example of Automatic Configuration Tool
; Sequential Model-based Algorithm Configuration (SMAC)

Basic Idea:

Perform an initial set R of runs and select a first configuration θ∗

Iterate the following steps:

Use R to build a model for predicting configuration performances
Use that model to select promising configurations
For each selected configuration θ:

Compare θ with θ∗ using Random Online Agressive Racing (ROAR)
Update θ∗ if θ wins the race, and update the set R of runs

Reference:
F. Hutter, H. Hoos, K. Leyton-Brown (2011): Sequential Model-Based
Optimization for General Algorithm Configuration. LION

Source code available at http://www.cs.ubc.ca/labs/beta/Projects/SMAC/

77/91

Automatic Algorithm Configuration and Selection Automatic Configuration

Some other Automatic Configuration Tools

ParamILS: Greedy Local Search with Restarts

F. Hutter, H. Hoos, K. Leyton-Brown, T. Stützle (2009): ParamILS: An
Automatic Algorithm Configuration Framework. JAIR

Source code available at http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

Iterated F-race: Iteratively sample configurations to race

M. Lopez-Ibanez, J. Dubois-Lacoste, L. Perez Caceres, M. Birattari, T.
Stuetzle (2016): The irace package: Iterated racing for automatic algorithm
configuration. Operations Research Perspectives

Available as a R package

78/91

Automatic Algorithm Configuration and Selection Automatic Selection

Overview of the talk

1 Introduction

2 Experimental Process

3 Analysis of the Results

4 Automatic Algorithm Configuration and Selection
Automatic Configuration
Automatic Selection

5 Conclusion

79/91

Automatic Algorithm Configuration and Selection Automatic Selection

From Configuration to Selection

Automatic configuration finds the Single Best Solver (SBS)...

...But SBS may be far from VBS when instances are heterogeneous

Illustration on the subgraph isomorphism problem

CDF for RandPhase instances:

SBS = VBS = Glasgow
; No need for automatic selection

CDF for LV instances:

SBS depends on time limit
VBS outperforms SBSs

; Use automatic selection!
80/91

Automatic Algorithm Configuration and Selection Automatic Selection

Per Instance Algorithm Selection

Definition of the problem:

Given a portfolio P of algorithms (or of algorithm configurations) and an
instance i , select an algorithm A ∈ P expected to perform best on i

Offline training:

Given:
A distribution D over the set of instances I
A performance measure m : P × I → R
An embedding function f : I → F where F ⊆ Rm is the feature space
; Each instance i ∈ I is described by f (i) ∈ F

Build a selector S : F → P which optimises m(S(f (i)), i) when i ∼ D

Online selection of an algorithm for an instance i ∈ I
Return S(f (i))

81/91

Automatic Algorithm Configuration and Selection Automatic Selection

Examples of existing Automatic Selection Approaches

SATzilla 2009:
Offline: Learn a model for each algorithm
; Prediction of performance given instance features
Online selection of an algorithm to solve a new instance i :
; Predict performance for each algorithm
; Select the algorithm with the best predicted performance

See L. Xu, F. Hutter, H. H. Hoos, K. Leyton-Brown (2009): SATzilla2009: an Automatic Algorithm
Portfolio for SAT . SAT Competition 2009

ISAC [Kadioglu et al. 2010]:

Offline: Partition instances into homogeneous clusters and use
automatic configuration to determine the best algorithm for each cluster
Online selection of an algorithm to solve a new instance i :
; Search for the cluster of i and select the corresponding algorithm

See S Kadioglu, Y Malitsky, M Sellmann, K Tierney (2010): ISAC-Instance-Specific Algorithm
Configuration. ECAI 82/91

Automatic Algorithm Configuration and Selection Automatic Selection

Related Problems

Reference:
P. Kerschke, H. Hoos, F. Neumann, H. Trautmann (2019): Automated Algorithm Selection:
Survey and Perspectives. ECJ

83/91

Automatic Algorithm Configuration and Selection Automatic Selection

Illustration: Algorithm Selection for Subgraph Isomorphism
; CDF of 8 algorithms + VBS

 0

 1000

 2000

 3000

 4000

 5000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

Virtual Best Solver (VBS)

84/91

Automatic Algorithm Configuration and Selection Automatic Selection

Overview of the process

Offline:

Describe each training instance by a feature vector

Train a model that predicts the best algorithm for each training instance

Online: Solve a new instance i ∈ I

Sequentially run 2 very fast and complementary algorithms
; Solve very easy instances
; Collect dynamic features for instances that are not solved

If instance not solved:

Extract features from i
Ask the model to select an algorithm given the features
Run the algorithm

85/91

Automatic Algorithm Configuration and Selection Automatic Selection

Feature extraction

Static features extracted from the graphs

Number of vertices and edges

Density

Number of loops

Mean and max. degrees

Mean and max. distance between all pairs of vertices

Proportion of vertex pairs which are at least 2, 3 and 4 apart

Binary features: Regular? Connected?

Dynamic features collected when running the 2 algorithms

Number of value removals

Percentage (average, min and max) of removed values per variable

Algorithm solving time
86/91

Automatic Algorithm Configuration and Selection Automatic Selection

Selection model: LLAMA [Khotthoff 2013]

R package for designing algorithm selectors

Includes different models
; Best results: Pairwise regression
approach with random forest regression

For each pair of algorithm, train a model
to predict performance difference
Choose algorithm with highest
cumulative performance difference

87/91

Automatic Algorithm Configuration and Selection Automatic Selection

Experimental evaluation (1/2)

Experimental setup:

10-fold cross-validation

Performance measures:

MCP: MisClassification Penalty
; Additional time required to solve an instance wrt VBS
solved = number of instances that are solved
Time: time required to solve the instance, or 108 if not solved
; Lower bound of the actual time

Results:

Model Mean MCP # solved Mean time
VBS 0 5,608 2,375,913
LLAMA 287,704 5,592 2,664,293
SBS 798,660 5,562 3,174,573

88/91

Automatic Algorithm Configuration and Selection Automatic Selection

Experimental evaluation (2/2)

89/91

Conclusion

Overview of the talk

1 Introduction

2 Experimental Process

3 Analysis of the Results

4 Automatic Algorithm Configuration and Selection

5 Conclusion

90/91

Conclusion

Conclusion

It’s quite easy to obtain huge amounts of experimental Data

; Much easier than in other sciences such as biology, for example

But do not kill machines!
; Carefully prepare your experiment before running tests

It’s more difficult to extract knowledge from experimental Data

; Use appropriate Data analysis tools

Use automatic configuration to tune parameters...

; Fair and reproducible experimental process

...And algorithm selection to exploit algorithm complementarity!

91/91

	Introduction
	Experimental Process
	Reproducibility of an experiment
	Choice of a Benchmark
	Performance Measures

	Analysis of the Results
	Data Analysis for Non Deterministic Algorithms
	Data Analysis for Anytime Algorithms
	Data Analysis for a Large Benchmark

	Automatic Algorithm Configuration and Selection
	Automatic Configuration
	Automatic Selection

	Conclusion

