Towards Verifying Voter Privacy Through Unlinkability

Denis Butin (Inria), David Gray (DCU) & Giampaolo Bella (Catania)

Introduction

- E-voting protocols increasingly used need for formal verification!
- Key property: voter privacy / ballot secrecy
- Inductive Method: protocol verification through theorem proving
- Extension for e-voting privacy analysis through unlinkability

Background

Results

Summary

Future Work

Extensions for E-voting Protocols — Motivation

- Analysis of e-voting dominated by the indistinguishability approach, with automated tools: ProVerif, more recently AKiSs
- Powerful, but sometimes limited (approximations / termination issues)
- Motivation for complementary, alternative approach
- This work: first specification of voter privacy in an interactive theorem prover

E-voting Protocols

- New properties when compared to classic security protocols: privacy, verifiability, coercion-resistance...
- Partially studied with applied pi calculus, but with little mechanisation
- Often require modelling new cryptographic primitives (e.g. blind signatures)

Privacy in E-Voting

- Crucial point: privacy is not confidentiality of ballot...
- ...But unlinkability between voter and ballot! Operational view / natural threat model
- In ProVerif, done with observational equivalence between swapped votes

- Ryan / Kremer / Delaune: applied pi calculus, partially mechanized through ProVerif
- Observational equivalence: traces in which two voters swap their votes are equivalent in a sense
- Parts of the proof done by hand

Method: the Inductive approach

- Mathematical induction on protocol steps: one subgoal per step
- Dolev-Yao threat model
- Tool support: Isabelle, a generic interactive theorem prover, using HOL

Protocols Verified in Isabelle So Far

Protocol	Class	Year	Author(s)
Yahalom	Key sharing, authentication	1996	Paulson
NS symmetric	Key sharing	1996	Paulson & Bella
Otway-Rees (with variants)	Authentication	1996	Paulson
Woo-Lam	Authentication	1996	Paulson
Otway-Bull	Authentication	1996	Paulson
NS asymmetric	Authentication	1997	Paulson
TLS	Multiple	1997	Paulson
Kerberos IV	Mutual authentication	1998	Bella
Kerberos BAN	Mutual authentication	1998	Paulson & Bella
SET suite	Multiple	2000+	Bella <i>et al.</i>
Abadi et al. certified e-mail	Accountability	2003	Bella et al.
Shoup-Rubin smartcard	Key distribution	2003	Bella
Zhou-Gollmann	Non-repudiation	2003	Paulson & Bella
Kerberos V	Mutual authentication	2007	Bella
TESLA	Broadcast authentication	2009	Schaller et al.
Meadows distance bounding	Physical	2009	Basin <i>et al.</i>
Multicast NS symmetric	Key sharing	2011	Martina
Franklin-Reiter	Byzantine	2011	Martina
Onion routing	Anonymising	2011	Li & Pang

The FOO Protocol

- Fujioka, Okamoto and Ohta, 1992
- Two election officials, bit commitment, blind signatures
- Signed, blinded commitment on a vote
- 6 steps

Specifying Blind Signatures

- Directly in Message.thy limitation of operators interplay
- Solution: as part of inductive model

[[evsb ∈ foo; Crypt (priSK V) BSBody ∈ analz (spies evsb);
BSBody = Crypt b (Crypt c (Nonce N)); b ∈ symKeys;
Key b ∈ analz (spies evsb)]]
$$\implies$$
 Notes Spy (Crypt (priSK V) (Crypt c (Nonce N))) # evsb ∈ foo

Plain signature obtained from knowledge of blind signature and corresponding (symmetric) blinding factor

Privacy in the Inductive Method: aanalz

```
primrec aanalz :: agent => event list => msg set set
where
 aanalz_Nil: aanalz A [] = \{\}
 aanalz_Cons:
 aanalz A (ev # evs) =
  (if A = Spy then
   (case ev of
     Savs A' B X \Rightarrow
     (if A' \in bad then aanalz Spy evs
      else if isAnms X
           then insert ({Agent B} \cup (analzplus {X} (analz(knows Spy evs))))
                        (aanalz Spy evs)
           else insert ({Agent B} \cup {Agent A'} \cup
                      (analzplus {X} (analz(knows Spy evs)))) (aanalz Spy evs))
    Gets A' X \Rightarrow aanalz Spy evs
    Notes A' X \Rightarrow aanalz Spy evs)
   else aanalz A evs)
```

Extract associations from honest agent's messages (Spy's point of view)

Privacy in the Inductive Method: asynth

inductive_set asynth :: msg set set \Rightarrow msg set set for as :: msg set set where asynth_Build [intro]: [[a1 \in as; a2 \in as; m \in a1; m \in a2; m \neq Agent Adm; m \neq Agent Col] \implies a1 \cup a2 \in asynth as

Build up association sets from associations with common elements. Only pairwise so far!

Privacy in the Inductive Method: Theorem Statement

theorem foo_V_privacy_asynth: [[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))]} \in set evs; $a \in (asynth (aanalz Spy evs));$ Nonce $Nv \in a$; $V \notin bad$; $V \neq Adm$; $V \neq Col$; $evs \in foo$]] $\implies Agent V \neq a$

If a regular voter started the protocol, the corresponding vote and identity are unlinkable.

Privacy in the Inductive Method: Proving Process

- Genericity of steps 2 and 4 yields proof complexity
- Genericity is natural consequence of respecting guarantee availability
- Strategy: map components in asynth to possible origins in aanalz
- Taxonomy of structures of elements in aanalz
- Divide & conquer

Privacy in the Inductive Method: Proving Ingredients

- asynth_insert: splits the association synthesis set three disjunctions yielding simpler subgoals
- Third disjunction bulk of work: structure of sets in *aanalz*, needs more specialised lemmas
- Family of lemmas stating that fresh nonces do not appear in association syntheses
- aanalz_traffic: relates non-agent names elements in associations with traffic

Privacy in the Inductive Method — Lessons Learned

- Initial proof effort significant, magnitude larger than effort for reuse (even between protocol subgoals)
- Coherent line of reasoning emerged hope for re-usability
- Protocol-independent results about crypto operators
- Greater insight into protocol intricacies
- Main issue: association synthesis not general enough

- Flexibility of Inductive Method confirmed...
- ... but limitations related to message datatype extension
- Very different approach from most used tools (ProVerif, AKiSs)...
- ... hence potential for complementarity!

- Need stronger association synthesis proof complexity challenge
- Modelling and analysis of related properties: receipt-freeness, coercion-resistance
- Investigation of recent e-voting protocols that are problematic for existing tools

Questions?