
Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

Post-Quantum Authentication in OpenSSL with
Hash-Based Signatures

Denis Butin, Julian Wälde, and Johannes Buchmann

TU Darmstadt, Germany

1 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

Overall Motivation

I Networking requires authentication; authentication is realized by
cryptographic signature schemes

I Shor’s algorithm (1994): most public-key cryptography (RSA, DSA,
ECDSA) breaks once large quantum computers exist

I Post-quantum cryptography: public-key algorithms thought to be
secure against quantum computer attacks

I Quantum computers are not available yet, but deployment of new
crypto takes time, so transition must start now

I Well established post-quantum signature schemes: hash-based
cryptography (XMSS and variants)

I Our goal: make post-quantum signatures available in a popular
security software library: OpenSSL

2 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

Overall Motivation

I Networking requires authentication; authentication is realized by
cryptographic signature schemes

I Shor’s algorithm (1994): most public-key cryptography (RSA, DSA,
ECDSA) breaks once large quantum computers exist

I Post-quantum cryptography: public-key algorithms thought to be
secure against quantum computer attacks

I Quantum computers are not available yet, but deployment of new
crypto takes time, so transition must start now

I Well established post-quantum signature schemes: hash-based
cryptography (XMSS and variants)

I Our goal: make post-quantum signatures available in a popular
security software library: OpenSSL

3 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

Recalling Hash-Based Signatures

Motivations for Cryptographic Library Integration

Cryptographic Libraries

OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe

Conclusions

4 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

Building Block: One-Time Signature Schemes (I)

I No complexity assumption
I Post-quantum
I Minimal security requirements: secure cryptographic hash function
I Secure meaning collision-resistant or merely

second-preimage-resistant, depending on scheme
I Existing One-Time Signature (OTS) schemes: Lamport-Diffie (1979),

Winternitz, W-OTS+ (2013). . .

5 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

Building Block: One-Time Signature Schemes (II)

I Private key randomly generated, public key is function of private key
involving hash function

I Advanced OTS schemes feature a parameter for time/memory
trade-off

I OTS schemes are inadequate on their own in practice: each OTS
private key can only be used to sign a single message

6 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

Many-Time Signatures: Merkle Signature Scheme (I)

I Make OTS practical by combining many of them in a single structure:
a complete binary tree

I Merkle signature scheme: combine 2h OTS key pairs in a hash tree of
height h

I Public key of the Merkle Signature Scheme is root of the binary tree
I Private key is the collection of OTS private keys

7 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

Many-Time Signatures: Merkle Signature Scheme (II)

I Central idea for signing and verifying with Merkle: authentication
path (sequence of tree nodes to reconstruct path to root from leaf)

I Signatures also contain leaf index, to keep track of which OTS keys
were already used (and therefore cannot be reused securely) —
scheme said to be “stateful”

8 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

XMSS and XMSSMT

Main differences with plain Merkle signature scheme:
I Specifically use the Winternitz OTS (or one of its variants)
I XOR-ing with random bitmasks for node construction
I In XMSSMT, multiple layers of XMSS trees are used. Lowest layer

signs actual messages, other layers sign root nodes of lower XMSS
trees

I Optional in Internet-Draft (see next slide), mandatory in paper: OTS
secret keys are generated from a seed value by a PRNG, so only seed
must be stored

I Mandatory in Internet-Draft, not part of paper: domain separation to
prevent multi-target attacks

9 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

Current Standardisation Process at CFRG / IRTF
Now in IRSG poll, expected to become first RFC on post-quantum
cryptography:

10 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

Motivations for Cryptographic Library Integration

I Bridge the gap towards actual use — system designers generally don’t
use stand-alone crypto scheme implementations

I Crypto library use often needed anyway in new crypto schemes. For
hash-based signatures, we rely on existing implementations of hash
functions, e.g. SHA256

I When local fork mature, pull request expected to speed up adoption
in mainstream releases since library maintainers only need to check
idiomatic leverage of library layers and make strategic decision, not
implement scheme

I Prevent unofficial integration attempts by ill-informed third parties

11 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

Some Popular Cryptographic Libraries

I OpenSSL (C only) — focus on TLS/SSL, some other protocols
supported, wide range of cryptographic algorithms. Security issues
and extensive bug report processing backlog due to unsufficient
manpower. Minimal documentation, but still the single most widely
used crypto library.

I Projects forked from OpenSSL after Heartbleed: LibreSSL (OpenBSD,
since 2014), BoringSSL (Google, since 2014)

I Bouncy Castle (Java, C#) — crypto API, ASN.1, TLS, X.509,
S/MIME (email signing and encryption), CMS, OpenPGP. . . Founded
2000, MIT License

I Many others!

12 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

OpenSSL in General

I Open source toolkit implementing TLS, SSLv3 and a general purpose
crypto library

I Successor of SSLeay (1995–1998)
I Historically, two main components:

I libcrypto: implementation of cryptographic schemes and
corresponding X.509 support

I libssl: TLS/SSL security protocols, relying on libcrypto

I Nowadays: offers command line tool for key parameter creation,
X.509 certificate generation, encryption / decryption, message digest
calculation, S/MIME handling . . .

13 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

OpenSSL Abstraction Layers and Formats

I EVP — high-level cryptographic functions
I ASN.1 — standardised formal notation for networking data

description interoperability
I NIDs — numbered values for ASN.1 object identifiers (OIDs) and

other symbols. Used to identify crypto primitives
I Cipher suites — named combinations of algorithms (including

authentication and encryption) used for client/server negotiation (Not
OpenSSL-specific, but TLS/SSL-specific concept)

14 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

open-quantum-safe

Open Quantum Safe (OQS) project by Mosca and Stebila

Fork of OpenSSL 1.0.2 that adds quantum-safe cryptographic algorithms
(libcrypto extension) and cipher suites (libssl extension)

Currently, focus on RLWE key exchange, but support of other primitives
planned. Includes hybrid cipher suites which also use ECDHE key
exchange.

Currently supports NewHope, Frodo and an older RLWE-KEX from IEEE
S&P 2015.

openquantumsafe.org

15 / 26

https://openquantumsafe.org/

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

Used as Basis: XMSS Reference Implementation

I Follows draft-irtf-cfrg-xmss-hash-based-signatures (Internet-Draft
within the IRTF Crypto Forum Research Group)

I Plain C
I Uses structures for XMSS / XMSSMT keys and signatures for clarity
I Closely follows Internet-Draft
I Prioritises readability, not performance, especially for algorithms not

part of the I-D (since irrelevant for interoperability)

Available: pqsignatures.org » Publications

16 / 26

http://www.pqsignatures.org/index/publications.html

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

EVP Integration — Overview

I EVP functions: high level interface to OpenSSL cryptographic
functions

I Single consistent interface regardless of the underlying algorithm
I Steps:

I Wrote EVP functions mirroring keygen, initialisation, signing, verifying,
etc

I Those functions call corresponding reference implementation functions
and bridge them with EVP

I Inserted new functionality by defining a static EVP_PKEY_METHOD (see
next slide)

17 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

EVP Integration — Method Mapping
void load_pmeth ()

{ static EVP_PKEY_METHOD x = {
NID_xmss , EVP_PKEY_FLAG_AUTOARGLEN ,
pkey_xmss_init , pkey_xmss_copy , pkey_xmss_cleanup ,
0, // paramgen_init
0, // paramgen
pkey_xmss_keygen_init , pkey_xmss_keygen , pkey_xmss_sign_init , pkey_xmss_sign ,
0, // verify_init
pkey_xmss_verify ,
0, // verify_recover_init
0, // verify_recover
0, // signctx_init
0, // signctx
0, // verifyctx_init
0, // verifyctx
0, // encrypt_init
0, // encrypt
0, // decrypt_init
0, // decrypt
0, // derive_init
0, // derive
pkey_xmss_ctrl , pkey_xmss_ctrl_str };
EVP_PKEY_meth_add0 (&x);

}

18 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

ASN.1 Integration (1/2)

I ASN.1 (Abstract Syntax Notation One): standardised formal notation
to describe networking data for (“serialisation”)

I Provides consistency across systems, hiding system-specific
specificities

I Associated with standardised encoding rules, i.e. Distinguished
Encoding Rules (DER)

I Commonly used e.g. in X.509 certificates
I Supported by OpenSSL and required to work with X.509 certificates

19 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

ASN.1 Integration (2/2)
Serialised structures, e.g. for XMSS secret key:
ASN1_SEQUENCE(xmssasn1sk) = {
ASN1_SIMPLE(xmssasn1sk ,idx ,LONG),
ASN1_SIMPLE(xmssasn1sk ,n,LONG),
ASN1_SIMPLE(xmssasn1sk ,param ,wots_param),
ASN1_SIMPLE(xmssasn1sk ,h,LONG),
ASN1_SIMPLE(xmssasn1sk ,PRF ,ASN1_OCTET_STRING),
ASN1_SIMPLE(xmssasn1sk ,root ,ASN1_OCTET_STRING),
ASN1_SIMPLE(xmssasn1sk ,seed ,ASN1_OCTET_STRING),
ASN1_SIMPLE(xmssasn1sk ,nodes ,ASN1_OCTET_STRING),
ASN1_SIMPLE(xmssasn1sk ,wots_keys ,ASN1_OCTET_STRING)}

ASN1_SEQUENCE_END(xmssasn1sk);
// Macros :
DECLARE_ASN1_FUNCTIONS(xmssasn1sk)
IMPLEMENT_ASN1_FUNCTIONS(xmssasn1sk)

20 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

NID Integration

Automatic NID generation using OID as an input

Official NIDs for XMSS will be defined by IANA when Internet-Draft
becomes RFC, so used preliminary value

OpenSSL has internal NID table, can expand statically, e.g. NID_xmss =
OBJ_create(<XMSS OID>, “xmssWithSHA256”, ...)

21 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

Cipher Suite Integration — Overview

We first integrated XMSS in a cipher suite using (pre-quantum) DH key
exchange, in an OpenSSL 1.0.1 release

Then migrated to open-quantum-safe (OpenSSL 1.0.2 fork), which
required some additional changes to non-cipher-suite aspects (OpenSSL
seems to be constantly refactoring)

Finally, integrated XMSS in cipher suite using post-quantum key exchange,
i.e. BCNS15

22 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

Cipher Suite Integration
Cipher suites defined in libssl, i.e. s3_lib.c, as one giant array
OPENSSL_GLOBAL SSL_CIPHER ssl3_ciphers[]

{1,
"RLWE -XMSS -AES256 -GCM -SHA384", // Cipher suite name
TLS1_CK_OQSKEX_GENERIC_XMSS_WITH_AES_256_GCM_SHA384 ,
SSL_kOQSKEX_GENERIC , // KEX (currently BCNS15)
NID_xmss , // NID , generated elsewhere , from OID
SSL_AES256GCM ,
SSL_AEAD ,
SSL_TLSV1_2 ,
SSL_NOT_EXP | SSL_HIGH | SSL_FIPS ,
SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384 ,
256,
256,},

23 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

Implemented Test Framework

I PEM (container file format) file creation utilities for secret key, public
key (using secret key as input), certificate (using keys as input)

I Certificate verification utility
I Format: base64 translation of X.509 ASN.1 keys
I ssl_client and ssl_server utilities that communicate and

perform full TLS/SSL session using a chosen cipher suite
I Works with cipher suites using XMSS for authentication (in TLS/SSL,

server typically authenticates itself to client ; converse is optional)

24 / 26

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

Conclusions

I Post-quantum cryptography must be deployed now to prepare in
advance against quantum computer-aided attacks

I Many post-quantum cryptography schemes exist, but very little
availability in popular security software libraries

I We experimentally integrated hash-based signature schemes such as
XMSS in the popular OpenSSL security library

I Not straightforward, but we hope our account will help others to
integrate post-quantum schemes into OpenSSL

I Not discussed here: we also integrated XMSS (including
optimisations) in the official release of the (Java) Bouncy Castle
library: https://www.bouncycastle.org/releasenotes.html

25 / 26

https://www.bouncycastle.org/releasenotes.html

Recalling Hash-Based Signatures
Motivations for Cryptographic Library Integration

Cryptographic Libraries
OpenSSL & open-quantum-safe

XMSS Certificate Signing in OpenSSL / open-quantum-safe
Conclusions

Thank You!

pqsignatures.org

26 / 26

http://www.pqsignatures.org

	Recalling Hash-Based Signatures
	Motivations for Cryptographic Library Integration
	Cryptographic Libraries
	OpenSSL & open-quantum-safe
	XMSS Certificate Signing in OpenSSL / open-quantum-safe
	Conclusions

