Verifying Privacy by Little Interaction and No Process Equivalence

Denis Butin and Giampaolo Bella

Introduction

- E-voting protocols increasingly used
- Key property: voter privacy / ballot secrecy
- Inductive Method: protocol verification through theorem proving
- Extended for e-voting privacy analysis
- Example: FOO'92

Background

Results

Summary

Future Work

Extensions for E-voting Protocols - Motivation

- Analysis of e-voting dominated by ProVerif automatic verifier
- Powerful, but sometimes limited
- Motivation to fill in the gaps with complementary, alternative approach

Privacy in e-voting

- Ryan / Kremer / Delaune: applied pi calculus, partially mechanized through ProVerif
- Observational equivalence: traces in which two voters swap their votes are equivalent in a sense
- Parts of the proof done by hand

Method: the Inductive approach

- Mathematical induction on protocol steps
- Dolev-Yao threat model

Tool support: Isabelle/HOL interactive theorem prover

Protocols Verified in Isabelle So Far

Protocol	Class	Year	Author(s)
Yahalom	Key sharing, authentication	1996	Paulson
NS symmetric	Key sharing	1996	Paulson & Bella
Otway-Rees (with variants)	Authentication	1996	Paulson
Woo-Lam	Authentication	1996	Paulson
Otway-Bull	Authentication	1996	Paulson
NS asymmetric	Authentication	1997	Paulson
TLS	Multiple	1997	Paulson
Kerberos IV	Mutual authentication	1998	Bella
Kerberos BAN	Mutual authentication	1998	Paulson & Bella
SET suite	Multiple	2000+	Bella <i>et al.</i>
Abadi et al. certified e-mail	Accountability	2003	Bella <i>et al.</i>
Shoup-Rubin smartcard	Key distribution	2003	Bella
Zhou-Gollmann	Non-repudiation	2003	Paulson & Bella
Kerberos V	Mutual authentication	2007	Bella
TESLA	Broadcast authentication	2009	Schaller et al.
Meadows distance bounding	Physical	2009	Basin et al.
Multicast NS symmetric	Key sharing	2011	Martina
Franklin-Reiter	Byzantine	2011	Martina
Onion routing	Anonymising	2011	Li & Pang

E-voting Protocols

- New properties : privacy, verifiability, coercion-resistance...
- Partially studied with applied pi calculus, but with little mechanisation
- Often require modelling new crypto primitives

E-voting protocols: properties

- Eligibility
- Fairness
- Privacy / Receipt freeness / Coercion resistance linkability concept (hard)
- Individual / Universal verifiability

The FOO Protocol

- Fujioka, Okamoto and Ohta, 1992
- Two election officials, bit commitment, blind signatures
- Signed, blinded commitment on a vote
- 6 steps

Specifying Blind Signatures

- Directly in Message.thy limitation of operators interplay
- Solution: as part of inductive model

 $\begin{array}{l} \llbracket evsb \in foo; \ Crypt \ (priSK \ V) \ BSBody \in analz \ (spies \ evsb); \\ BSBody = Crypt \ b \ (Crypt \ c \ (Nonce \ N)); \ b \in symKeys; \\ Key \ b \in analz \ (spies \ evsb) \rrbracket \\ \implies \ Notes \ Spy \ (Crypt \ (priSK \ V) \ (Crypt \ c \ (Nonce \ N))) \ \# \ evsb \in foo \end{array}$

What Is Privacy in E-Voting?

- Crucial point: privacy is NOT confidentiality of vote...
- But unlinkability of voter and vote
- In Pro-Verif, done with observational equivalence between swapped votes

Privacy in the Inductive Method: aanalz

```
primrec aanalz :: "agent => event list => msg set set"
where
 aanalz Nil: "aanalz A [] = {}"
| aanalz Cons:
aanalz A (ev # evs) =
 (if A = Spv then
  (case ev of
   Savs A' B X \Rightarrow
    (if A' ∈ bad then aanalz Spy evs
     else if isAnms X
           then insert
                                      (\{Agent B\} \cup (analzplus \{X\} (analz(knows Spy evs)))) (aanalz Spy evs)
           else insert ({Agent A'} Un {Agent B} ∪ (analzplus {X} (analz(knows Spy evs)))) (aanalz Spy evs)
  | Gets A' X ⇒ aanalz Spy evs
    Notes A' X ⇒ aanalz Spy evs)
  else aanalz A evs)"
```

Extract associations from honest agent's messages

Privacy in the Inductive Method: asynth

inductive_set asynth :: msg set set \Rightarrow msg set set for as :: msg set set where asynth_Build [intro]: [[a1 \in as; a2 \in as; m \in a1; m \in a2; m \neq Agent Adm; m \neq Agent Col] \implies a1 \cup a2 \in asynth as

Build up association sets from associations with common elements. Only pairwise so far!

Privacy in the Inductive Method: Theorem Statement

theorem foo_V_privacy_asynth: [[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))]} \in set evs; $a \in (asynth (aanalz Spy evs));$ Nonce $Nv \in a$; $V \notin bad$; $V \neq Adm$; $V \neq Col$; $evs \in foo$]] $\implies Agent V \neq a$

If a regular voter started the protocol, the corresponding vote and identity are unlinkable.

Privacy in the Inductive Method: Proving Process

- Genericity of steps 2 and 4 yields proof complexity
- Genericity is natural consequence of respecting guarantee availability
- Strategy: map components in asynth to possible origins in aanalz
- Taxonomy of structures of elements in aanalz
- Divide & conquer

- Flexibility of Inductive Method confirmed...
- ... but limitations related to message datatype extension
- ▶ Very different approach from most used tools (ProVerif, Scyther)...
- ... hence potential for complementarity!

- Need stronger association synthesis proof complexity challenge
- Analyse more recent e-voting protocols

Questions?