C-ANIS: a Contextual, Automatic and Dynamic
Service-Oriented Integration Framework

Noha Ibrahim, Frédéric Le Mouél and Stéphane Frénot
{noha.ibrahim, frederic.le-mouel, stephane.frenot}@insa-lyon.fr

ARES INRIA / CITI, INSA-Lyon, F-69621, France

Abstract. Ubiquitous computing environments are highly dynamic by
nature. Services provided by different devices can appear and disappear
as, for example, devices join and leave these environments. This arti-
cle contributes to the handling of this dynamicity by discussing service
integration in the context of service-oriented architectures. We propose
C-ANIS: a Contextual, Automatic and dyNamic Integration framework
of Services. C-ANIS distinguishes two different approaches to service in-
tegration: automatic integration and on-demand integration. Automatic
integration automatically extends the capabilities of an existing service
S, leaving the interface of S unchanged. On-demand integration builds a
new service on request from a list of given services. We have implemented
C-ANIS based on the OSGi/Felix framework and thereby demonstrated
the feasibility of these two service integration concepts. We have also
implemented a toolkit providing two different techniques to realize the
automatic and on-demand service integration concepts: Redirection, i.e.
calling interfaces and replication, i.e. copying implementations of ser-
vices®.

1 Introduction

Ubiquitous computing environments are highly dynamic by nature. Services pro-
vided by different devices can appear and disappear as, for example, devices join
and leave these environments. This article contributes to the handling of this
dynamicity by discussing service integration in the context of service-oriented
architectures. We propose to distinguish two different approaches to service inte-
gration: automatic integration and on-demand integration. Automatic integra-
tion automatically extends the functionality of an existing service S by integrat-
ing it with compatible services in the environment, but leaving the interface of S
unchanged. This way, the extension in functionality of S can be kept transparent
to applications or users employing this service. On-demand integration builds a
new service on request from a list of given services. It integrates an existing ser-
vice S with a list of services in the environment, creating new interfaces. These
new interfaces are employed at least by the users or applications which have
requested their creation.

! This work is part of the ongoing European project: IST Amigo-Ambient Intelligence
for the Networked Home Environment [1].

In line with the service paradigm, we assume that every relevant context
parameter of a ubiquitous computing environment is provided by some service.
Consequently, we generally define context as the collection of services available in
such an environment. Employing this definition of context, we propose C-ANIS: a
Contextual Automatic and dyNamic Integration framework of Services. C-ANIS
integrates automatically and on-demand the available services at run time while
taking the whole context into account, and if intended, it can also dis-integrate
services again.

A use case is described all along the article to motivate, explain and evaluate
our two integration approaches.

® \\Nebcam ® Naming ® Storage
Service Service Service

@ Storage

Service

Context

Fig. 1. use case

The use case defines three services:

— The webcam service: a service that enables to take a photo via a webcam.

— The storage service: a service that enables to store an object on a device.
Two different services offer the same functionality. One implementation is
for local storage, the other one for remote storage.

— The naming service: a service that execute a naming strategy defined by a
user to name his files and objects.

These services are provided by different devices (cf. fig 1) that can join or leave
the environment leading these services to appear and disappear at any time.
We have implemented C-ANIS based on the OSGi/Felix framework and thereby
demonstrated the feasibility of the two service integration concepts. We have also
implemented a toolkit providing two different techniques to realize the automatic
and on-demand service integration concepts: Redirection, i.e. calling interfaces
and replication, i.e. copying implementations of services.

In the following, we will start by introducing our service model along with our
notion of service integration (section 2). This is followed, section 3 and section 4,
by the presentation of our two services integration approaches along with their

life cycle. In section 5, we discuss the implementation of our concepts, followed
by a first evaluation (section 6). In section 7, we will review relevant related work
to position our work. Finally, we present conclusions and open issues (section 8).

2 Basic Definitions of our Service-Integration Approach

2.1 Service Model

A service is composed of three parts:

— interfaces: A service can hold two kinds of interfaces. Provided functional
interfaces defining the functional behavior of the service. Required interfaces
specifying required functionalities from other services. A functional interface
specifies methods that can be performed on the service.

— implementations: Implementations realize the functionality expected from
the service. These are the implementations of the methods defined in the
functional interfaces.

— properties: a service will register its interfaces under certain properties. The
property is used by the framework to choose services that offer the same
interfaces, but different implementations.

We model a functional interface of a service S, its implementation and
property as follow:

ml(paramsl) — rl

Ifcs
mk(paramsk) — rk
Impll(ml)
Impls :
Implk(mk)

propertys : (Ifcs)atomic

Where Ifcg is one functional interface of the service S, mk the method
name, paramsk the list of parameters, rk the return result, and implg(mk) the
implementation of method mk.

Use case. the use case’ services (webcam, storage and naming) are modeled
as follows:

Ifewebcam = getSnapShot() — Image
webcam { Implyebcam : impl(getSnapShot)

PTrOPwebcam : WebcaMatomic

I fcstorage @ save(Object obj, String I1D) — void
storage ¢ Implstorage : iMpliocal (save)

Propstorage : storagelocalatomic

Ifestorage : save(Object obj, String 1D) — void

storage Implstorage : implftp('save)

ProPstorage : Storage ftpatomic
I fcnaming : getNextName(String 1D) — String
naming < Implpaming : impl(getNext Name)

propnaming : namingatomic

The property describes the interface implementation and specifies whether this
implementation is atomic or integrated (resulting from integration). To execute
a service, the framework can choose services’ interfaces considering the property
they publish. If no property is specified the framework will randomly choose a
service’ interface implementation.

Two services are considered by users/applications to be the same if they have
the same functional interfaces. They indeed provide, externally, the same func-
tionalities. The two storage services are considered to be the same by users. The
implementations of these services is kept transparent from the users/applications
(cf. fig 2).

Two services are considered by the run-time framework to be the same, if they
have not only the same interface but especially the same property. Two services
publishing the same interface but under different properties are considered by
the framework to be different. The properties describe the implementation of
the functional interface and different implementations mean different services.
For the run-time framework, the two storage interface are registered under two
different properties (storageftpatomic and storagelocalyiomic) and considered as
two different services (cf. fig 2).

Our service model is independent of any implementations and can be ap-
plied to EJBs [2], Fractal components [3], OSGi bundles/services [4] or Web
Services [5].

2.2 Service Integration Approaches

In ubiquitous computing environments, services provided by different devices
can appear and disappear as devices join and leave these environments. These
services are employed by users or applications being in the environment. New
services only come from new devices joining the environment. The only other

Service webcam Service storage Service naming
A A A . _ 3 dlfferent 4
/ \ e r \ services for
Ifc . users/applications
Ifeyepcam If Cstora ge Ifi “storage naming ‘
_/ _ 4 different
~ services for
the run-time
Impl(webcam) Impl(storage) Impl(storage) Impl(naming) framework
local ‘ fip
\ % I
y : i /
webcam . storagelocal . sloragcfttp . naming . //
atomic atomic atomic atomic

Fig. 2. Different services

way to offer new services in these environments is to respond to an external
demand of integration. If new services are offered, without being requested, they
are likely not to be used.

For that, we distinguish on-demand integration that builds new services upon
users/applications’ requests and automatic integration that extends the func-
tionalities of existing services.

— On-demand service integration: The framework responds to an external de-
mand by providing new services in the environment. This demand comes
from users or applications being in the environment. Applications or users
tend to use services available everywhere in the context and would like to,
whenever it is possible and/or needed, integrate services offered by the con-
text. In particular, if no single service can satisfy the functionality required
by the application, combining existing services together should be a possi-
bility in order to fulfill the request [6]. The result of this integration is a
new service with new interfaces (new methods), new implementations (new
functionalities) and new properties.

— Automatic service integration: The framework selects automatically all the
compatible services in the environment and integrates them. The result of
these integrations is the same services enriched with new functionalities.
The service interfaces and methods do not change, only its functionality and
properties change. This way, the extension in functionality can be kept trans-
parent to applications or users employing the services. Once new services are
in the environment, the framework automatically compares these services to
existent services and if compatible services are found, the automatic integra-
tion can take place.

3 On-Demand Service Integration

On-demand integration builds a new service on request from a list of given
services. We will first define our compatibility notion, followed by the life-cycle

of our on-demand integration approach. Finally, we show its application on our
use case example.

3.1 Definition of Compatibility

Two services are compatible if they have two compatible functional interfaces.
Two functional interfaces are defined to be compatible if they have at least two
compatible methods. Two methods are compatible if the return result of one
method is of the same type of one parameter of the other method (cf. fig 3).

parami: type. paramj: typej paramk: type .
i
§

method2 |

2 type i

param1: typeI

method1

'
1t
r:type

Fig. 3. Combining compatible methods: methodl & method2

Based on the compatibility definition, we define the integration of services as
the combination, two by two, of all their compatible functional interfaces, and
so of all their compatible methods. The combination of methodl and method2
(cf. fig 3) creates a new methodl with new parameters type corresponding to
the parameters of method2 and part of methodl’ parameters.

3.2 Life Cycle of On-Demand Service Integration

When integrating the services (cf. fig 4), all their methods are listed and only
compatible methods are selected. The framework selects the most appropriate
service’ implementations to create the new service. This selection is context
aware and must depend on the users/applications preferences. For now no strate-
gies are defined and the selection is done statically. Once the implementations
chosen, the new service is created, with its new interfaces, implementations and
properties. The new service is installed, started, monitored and its interfaces
published. If services involved in the integration leave the environment, the ser-
vice newly created, is dis-integrated and a new service is created. For that a
contextual selection of new service’ implementations is done. In the meanwhile,
all the calls to the service are buffered.

On-demand Integration of services:\

'

Method signature matching algorithm

Contextual selection of service' implementations

' J Interfaces
Creation of the integrated service Implementations

l Properties
Installing/starting/publishing the service

Monitoring the service

l Services leaving

Buffering method call

Dis-integration of integrated service & redirection to the
new integrated service

Fig. 4. on-demand integration life cycle

3.3 Example Use Case

An on-demand integration example is the integration of service Webcam and
storage (cf. fig 5). The two methods save and getSnapShot are compatible.
Indeed, the return result of getSnapShot is of type Image which inherits Object
the type of one parameter of save. The two methods can be combined as shown
fig 5, and a new method saveGetSnapShot can be created. To integrate the two
services storage and Webcam, the framework must choose the most appropriate
services’ implementations. A contextual choice is made upon users/applications
preferences. If a user has a constraint device, he will probably prefer to store
the image on a remote computer and for that the framework will choose the ftp
storage implementation. If the user has a PDA and would like to store the photo
on his device, the local storage is selected by the framework. For now, strategies
are hard coded and chosen statically.

4 Automatic Service Integration

Automatic integration automatically extends the functionality of an existing ser-
vice S by integrating it with compatible services in the environment, but leaving
the interface of S unchanged. We will first define the modified compatibility def-
inition for automatic integration, followed by its life-cycle. Finally, we show its
application on our use case example.

void

|

Obj: Object
getSnapShot

ID: String

ID: String void

getSnapShot

save(GetSnapShot

Image

save

Void
Fig. 5. on-demand service webcam and storage integration

4.1 Definition of Condition-Compatibility

The notion of compatibility is the same as defined for on-demand integration but
with additional condition. The automatic integration must remain transparent
to the users and applications. The new method1l must have the same signature
as the initial methodl so that it can be employed by applications and for that
some conditions must be fulfilled. Method2 must have only one parameter and
of the same type as its return result (cf. fig 6).

The condition that needs to be satisfied in order to have an automatic inte-
gration of services without generating new functional interfaces in the context
is:

condition. One of the two methods to combine must have only one parameter
and this parameter must have the same type as the return result of the method.
Two methods are condition-compatible if they are compatible and one of the
method verifies condition. We define the automatic integration of two services
as the combination, two by two, of all their condition-compatible methods.

4.2 Life Cycle of Automatic Service Integration

Automatic service integration is applied upon each appearance of new services
in the context. The integration is contextual because it is very dependent on

param1: type1 paramk: typek

/ method2

r2:type;

metnod
para'm1 type,

thod1 J
{ metho]/

|
r1: type
h

Fig. 6. Keeping the same signature as methodl

|Ad hoc Integration of services: | : New services
Automatically called upon
each service

v
Method signature matching algorithm entrance in the context

A\
Property matching algorithm

' Interfaces

Creation of the integrated service < Implementations

| L Properties
Installing/starting/publishing the integrated service

New services

A\
Monitoring the integrated services

Services leaving

A\
Dis-integration of services & redirection to other services
publishing same services

Fig. 7. automatic integration life cycle

the services in the context, automatic because it is done by the framework upon
each appearance of new services.

For the run-time framework a new service is a service with new functional
interfaces or new properties.

New services appearing: If these services have new interfaces and so new
methods, the framework applies the method matching algorithm. This algorithm
returns a list of all condition-compatible methods. The automatic integration can
take place and new services are created (same interfaces, new properties). If the
services already exist, the framework do the matching on the property to deter-
mine if the services are new in the context, which means new atomic property
or new integrated property. In case of new atomic property, the framework ver-

10

ifies if the methods of these services belong to the list of condition-compatible
methods and if it is the case, automatically integrates these methods and cre-
ates new services (same interfaces, new properties). In case of new integrated
property, the framework needs to insure that no integration must be done if it
involves the same services already integrated. This condition insures the stop
of our automatic integration. Indeed, the framework never re-integrates services
that were previously integrated. All the new services are installed, published and
monitored.

Services disappearing: The framework needs to dis-integrate the integrated
services. The call to these services will be automatically redirected to other
available services offering same interfaces but with different properties. This
redirection is kept transparent to the users and applications.

4.3 Example Use Case

New services: storage, naming and webcam are now available in the context
(fig. 1). The framework automatically executes the steps defined in the life-cycle
(fig. 7).

These services have all new interfaces. The framework lists all the interfaces
available in the context. Once the interfaces known, a list M of all their methods
is created (cf. fig 8).

ID: String Obj: Object volid ID:lString
| | ,
save ‘ getSnapShot } k_:]etNextName
Void Image String

Fig. 8. M: list of all available methods in the context

The framework selects all the methods in this list that has the same parame-
ter and result type. This matching will return a list C of the methods that fulfil
the condition defined section 3.1 (cf. fig 9).

ID: String
}

getNextName

l

String

Fig. 9. C: list of methods that has the same parameter and result type

11

The framework verifies the compatibility of all the methods of M to all the
methods of C. The result is a list of all condition-compatible methods (cf. fig 10).

/

e \‘\\
7 ™~ \‘ i
{_ID: String/ Obj: Object ID: String
12; Strng’Q ' |
save etNextName‘
‘\ - J
Void h

N ¢ string ™

Fig. 10. compatible methods: save and getNextName

The integrated services resulting from automatic integration are services hav-
ing the same interfaces (cf. fig 11) but different implementations and properties.

Obj: (iject ID: String
) |

Ve ‘ PR .

[getNextName

\ String

—i~ save

\ { save ‘ (extended with |

. T 1 getNextName) /
13

Void

Fig. 11. Same methods signature, different implementations

The new services are now available in the context and registered under these
new properties:

Storagelocalintegrutad(namingatomic)7 Storageftpintegrated(namingatomic)~

These new services are reconsidered for a possible re-integration by the frame-
work. As the interfaces are not new, the properties are checked and only non
previously integrated services are allowed to integrate (cf. Table 1).

webcamatomic|NAMINGatomic

storagelocalintegrated (NamMingatomic) no no

Storageftpintegrated(namingatomic) no no
Table 1. Property matching

12

The run-time framework reconsiders these new services for integration, but
the property matching algorithm indicates that all the integration possibilities
have been already done (cf. Table 1). Indeed, the run-time framework considers
two interfaces registered under the same property to be the same.

5 Contextual Service-Integration Toolkit

We developed a toolkit for the C-ANIS framework under Felix/OSGi. The OSGi
specifications define a standardized, component oriented, computing environ-
ment for networked services. Adding an OSGi Service Platform to a networked
device (embedded as well as servers), adds the capability to manage the life cycle
of the software components in the device from anywhere in the network. A unit
of deployment called bundle offers the services in the framework. We implement
our developing framework on Felix which is open source implementation of OSGi
framework specification.
The integration call is done by the framework.

— automatic integration call:

integrate (context);

Listing 1.1. Integrating services of the context

The framework executes this integration call upon each entrance of a new
service in the context. The new service is compared to all other services
available in the environment.

— on-demand integration: Integrating the specified services is done via an in-
tegration call:

integrate (webcam, storage);

Listing 1.2. Integrating services storage and webcam

In OSGi, creating the service is done by creating the unit of deployment, called
bundle. An OSGi bundle is comprised of Java classes and other resources which
together can provide functions, services and packages to other bundles. A bundle
is distributed as a JAR file. To create a bundle we need to tackle several needs:

— unit of deployment: a bundle to deploy the new integrated service.

— integration glue (Table 2): The java code that do the technical integration.
We provide two different techniques: the redirection or interface call, done
via method call and RMI, and the replication or implementations copy done
via method call to the local replicated implementations.

— needed libraries: in case of replication, the implementations of the replicated
services are needed and added to the bundle.

— services dependencies: the new service will have to verify the dependencies
of the services involved in the integration.

13

unit of de-|integration |needed li-|services de-
ployment glue braries pendencies
Redirection|Bundle (jar) |Method Call or S1, S2
RMI
Replication|Bundle (jar) |Method Call [S1 bundle, S2|dependencies
bundle S1, S2

Table 2. Integration techniques

Once the service created, it is installed, started and its interfaces registered
in the context (listing 1.3).

Properties props = new Properties ();
props.put(” Storagelfc”, ”Storage—integrated (Naming—atomic)”);
context.registerService (

Storagelfc.class.getName(), serv, props);

Listing 1.3. Example of a service registration

The run-time framework monitors all the integrated services. For each change
in the context involving the integrated services, the framework stops the services
and dis-integrates them. For automatic integration, all the calls are redirected
to services publishing the same interfaces but with different properties. For on-
demand integration, the calls are buffered, for a certain time, while the service
is re-created with new services’ implementations.

6 Evaluation

To test our prototype we implemented the above described use case employing
a Logitech USB webcam (vifw:Microsoft WDM Image Capture (Win32):0), two
Dell Latitude D410 laptops (Intel(R) Pentium(R) M, processor 1.73GHz, 0,99Go
RAM) running Microsoft Windows XP Professional (version 2002) and Ubuntu
6.06 LTS.

We measured the time of our matching algorithm, service-integration techniques,
execution of the services (cf. fig 12) and bundles’ size (cf. fig 13).

The time of our integration techniques is about 1 second for integrating two
services. One can choose which technique to apply depending on the context.
The redirection technique is more appropriate for constraints devices whereas
the replication technique is more recommended for integrating services executing
on devices that disconnect very often. The contextual choice of the technique
will be the subject of another article.

The integrated service has the same execution time as any other atomic
service (cf. fig 12).

For n services in the run-time framework, the complexity of our automatic
matching algorithm is O(n) upon each entry of a service in the context and
O(n?) if a matching is done between all the services of the context.

The matching algorithm is relatively quick, but the automatic integration
time is not scalable for large context. For run-time frameworks with 100 services,

14

if matching only takes 329 ms, the integration time is much slower. Adding to
that the time it takes to get distant access between remote run-time frameworks,
one can quickly see the limits of the automaticity in large context.

Integration & execution times Size of bundles (services’ unit of deployment)
seconds 01
0 o.078 0.329 1 1.168 1.231
; 2
A
oa\w‘“ D
I S
5 o g
g o 10
T — 5
2 I
ks
i : .
o o ot T 8 e
o8 & o o o P
o
[Bundles
Column 1: Redirection: calling interfaces Bundlel: Webcam
Column 2: Replication: copying implementations Bundle2: Storage
(/“olumn 3 Rcdu‘cctlon and Replication Bundle3: Storage-Webcam (Redirection)
Column 4: Execution time of matching algorithm on 100 services Bundled: Storage-Webeam (Replication)

Column 5: Execution time of an integrated service
Column 6: Execution time of a normal service

Bundle5: Storage-Webcam (Redirection & Replication)
Fig. 12. Average of a 100 test runs Fig. 13. Bundle size for on-demand inte-
gration of webcam and storage services

7 Related Work

There has been a lot of work in developing different kinds of pervasive computing
environments such as Gaia [7], Oxygen [8], Project Aura [9] and PCOM [10]
to cite only these. All these environments try to make life easier for users by
deploying various devices and supporting middlewares.

Project Oxygen [8] enables pervasive, human-centered computing through a
combination of specific user and system technologies. Oxygen aims to enable per-
vasive, unobtrusive computing. The project proposes a user-centric support for
ubiquitous applications, emphasizing specially the automatic and personalized
access to information, adapting applications to users preferences and necessities
as they moves through different spaces.

Aura’s [9] goal is to provide each user with an invisible halo of computing and
information services that persists regardless of location. Meeting this goal will
require effort at every level: from the hardware and network layers, through the
operating system and middleware, to the user interface and applications. Aura
separates the user’s intent from the application she uses to satisfy that intent
and tries maintain the user’s intent as the computing environment changes.

The Gaia system [7] provides a ubiquitous computing infrastructure for ac-
tive spaces or smart rooms. Pervasive computing required the use of discovery,
authentication, events and notification, repositories, location, and trading. Gaia
depends on a distributed object, client/server architecture. Gaia adds a level

15

of indirection between traditional applications and input/output resources to
enable resource swapping.

These systems structure pervasive applications in terms of tasks and their
subtasks, which is a software composition problem. The aim of these systems
is to realize users demands. Our approach proposes not only the integration of
services on an on-demand basis but also providing an automatic generation of
services that can be or not used by the users. It deals more with the proactive
property of pervasive environment. Another distinction is that our framework is
distributed on the contrary of the previous systems which usually have a star-
shaped architecture with central components.

PCOM [10] is a light-weight component system supporting strategy-based
adaptation in spontaneous networked pervasive computing environments. Us-
ing PCOM, application programmers rely on a component abstraction where
interdependencies are contractually specified. PCOM is all about adaptation
of applications in pervasive environments and integration is seen as contract
dependencies between components. PCOM is not service-oriented. An applica-
tion is modeled as a tree of components and their dependencies where the root
component identifies the application. Components are unit of composition with
contractually specified interfaces and explicit context dependencies. Whereas our
application and context abstraction are represented as services.

8 Conclusion and Future Work

In this article, we proposed C-ANIS: a Contextual Automatic and dyNamic Inte-
gration framework of Services. C-ANIS framework realizes automatically and at
runtime the integration of available services in the environment, generating en-
riched services and new services as described in our two integration approaches.
We have implemented C-ANIS based on the OSGi/Felix framework and thereby
demonstrated the feasibility of these two service integration concepts.

The contributions of C-ANIS are in its:

— automaticity: Each time a new service is in the framework, a possible integra-
tion is done. We distinguished two major integration approaches: automatic
integration and on-demand integration.

— context-awareness: Both automatic and on-demand integrations are context-
aware. For on-demand integration, The choice of the services’ implementa-
tions is depending on the context. For automatic integration, the services
available in the context define the integration to do.

— dynamicity: Once the integration decided (method matching signature done),
the choice of the implementations is done at run-time and can changes with
the context changes.

The perspectives of our approach are:

— service model: Our service model do not take into consideration for now the
non-functional properties and the state of the services. These two character-
istics are important in pervasive environment especially when updating the
integration due to context changes.

16

— generality of the matching algorithm: If a return type of method2 matches

several parameters’ types of methodl, only one match is taken into consider-
ation. Indeed, the properties specify that two services are already integrated
and two methods can not be combined more than once. To resolve that issue,
we want to describe semantically our services. The matching will be done
on semantic description and not only on methods’ signature to take all the
cases into consideration.

interoperability: The offered toolkit is only for java technology. We plan to
use Amigo interoperable services [1] and extend our toolkit to .Net.
context-awareness: The context is for now restricted to the set of services
available in the environment. Commonly, context also reflects the social con-
text of users and their preferences. We want to define contextual strategies
for the run-time framework for choosing the integration techniques (replica-
tion or redirection) and services’ implementations depending on the context.
And for that a new notion of context needs to be defined.

References

10.

Georgantas, N., ed.: Detailed Design of the Amigo Middleware Core: Service Spec-
ification, Interoperable Middleware Core. Delivrable D3.1b, IST Amigo project
(2005)

Monson-Haefel, R.: Entreprise JavaBeans. O’Reilly & Associates (2000)
Bruneton, E.: Developing with Fractal. The ObjectWeb Consortium, France Tele-
com (R&D). (2004) version 1.0.3.

OSGlalliance: About the OSGI service platform. Technical report, OSGI alliance
(2004) revision 3.0.

Iverson, W.: Real Web services. O’Reilly (2004)

Ponnekanti, S.R., Fox, A.: SWORD: A Developer Toolkit for Web Service Com-
position. In: 11th World Wide Web Conference. (2002) Honolulu, USA.

Roman, M., Campbell, R.H.: A Middleware-Based Application Framework for Ac-
tive Space Applications. In: ACM/IFIP/USENIX International Middleware Con-
ference (Middleware 2003). (2003)

MIT. Project Oxygen: Pervasive, Human-Centered Computing. = Website:
http://oxygen.lcs.mit.edu/ (2007)

Garlan, D., Siewiorek, D., Smailagic, A., , Steenkiste, P.: Project aura: Towards
distraction-free pervasive computing. IEEE Pervasive Computing, special issue on
“Integrated Pervasive Computing Environments” 21(2) (2002) 22-31

Becker, C., Handte, M., Schiele, G., Rothermel, K.: PCOM - A Component Sys-
tem for Pervasive Computing. In: the 2nd IEEE Annual Conference on Pervasive
Computing and Communications (PERCOM’04), Washington, DC, USA, IEEE
Computer Society (2004)

