
MySIM: A Spontaneous Service Integration Middleware for
Pervasive Environments

Noha Ibrahim
∗

Grenoble Informatics
Laboratory
Grenoble
France

noha.ibrahim@imag.fr

Frédéric Le Mouël
Université de Lyon, INRIA

INSA-Lyon, CITI
F-69621, France

frederic.le-mouel@insa-
lyon.fr

Stéphane Frénot
Université de Lyon, INRIA

INSA-Lyon, CITI
F-69621, France

stephane.frenot@insa-
lyon.fr

ABSTRACT
A computing infrastructure where “everything is a ser-
vice” offers many new system and application possibilities.
Among the main challenges, however, is the issue of service
integration for the application development in such hetero-
geneous environments. Service integration has been con-
sidered by major middleware as a user centric approach as
it responds to user requests and needs. In this article, we
propose a novel way to integrate services considering only
their availability, the functionalities they propose and their
non functional QoS properties rather than the users direct
requests. We define MySIM, a spontaneous service integra-
tion middleware. MySIM integrates services spontaneously
on an event based mechanism and transparently for users
and applications, extending by that the environment with
functionalities. We developed a prototype as a proof of con-
cept and evaluated its efficiency over a real use case.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability—Dis-
tributed objects

General Terms
Design, theory

Keywords
Middleware, pervasive, service integration

1. INTRODUCTION
Building pervasive computing applications can be a te-

dious task if performed from scratch. The developer will
need to deal with low level networking protocols to high

∗This article describes the work performed when the author
was employed in the CITI lab, Université de Lyon, INRIA,
France

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPS’09, July 13–17, 2009, London, United Kingdom.
Copyright 2009 ACM 978-1-60558-644-1/09/07 ...$10.00.

level application context awareness. This, of course, devi-
ates the attention of the developers to tasks that are not the
purpose of the application itself. Instead, they should only
concentrate on the application logic, that is, the tasks the
application must perform. This is why developing middle-
ware for pervasive computing is essential for building and
managing pervasive applications. Middleware are enabling
technologies for the development, execution and interaction
of applications, standing between the operating systems and
applications. The service-oriented architecture (SOA) mid-
dleware emerged to describe the approach of building loosely
coupled distributed systems with minimal shared under-
standing among system components. A computing infras-
tructure where “everything is a service” offers many new
system and application possibilities. Among the main chal-
lenges, however, is the issue of application development in
such heterogeneous environments. The natural way of doing
this is by performing service integration [9], either by creat-
ing services and composing them according to requirements,
or adapting and reusing existing services in order to achieve
a given task. In such open environment the ability of services
to adapt and be composed represents the primary driving
force. These two actions of composition and adaptation are
only possible if services are implemented and described in
interoperable languages. For that reason, service transfor-
mation is a critical step preceding any composition or adap-
tation action. Many middleware dealt with one or more of
these functional aspects and proposed middleware for com-
posing, adapting, replacing, and/or transforming services.
However, these middleware are user centric as they obey to
user or application needs and requests. Users searching for
specific functionalities will trigger the service integration in
order to fulfill their needs. We state that these middleware
are goal-oriented as they fulfill a goal in executing a user
request.

In this article, we propose MySIM a spontaneous service
integration middleware adapted for pervasive environments.
The idea behind MySIM is:

• to define a service integration as the combination of
three functional aspects: service transformation, ser-
vice composition, and service adaptation, taking place
at run-time and concerning the computational and be-
havioral parts of services.

• to propose a middleware that is user transparent and
event based. It reacts to the appearance and disap-
pearance of services by spontaneously integrating ser-

vices into their new inhabitance in a completely trans-
parent way for users and applications.

• to define a metric based on functional service aspects
(syntactic and semantic descriptions) and non func-
tional QoS aspects (qualitative and quantitative) in
order to provide a way to compare, evaluate and find
the best service configuration.

Spontaneous service integration is an interesting feature in
pervasive environments, as services meet when the users en-
counter, and interesting service compositions, substitutions
and adaptations can be generated from these meetings, even
though not required at that moment by users. We need to
point out that MySIM is also capable of integrating services
in a goal-oriented way, as the major middleware do. In this
article, we only develop the spontaneous service integration
aspect.

One can ask why providing these new services if not re-
quired? why not just wait until the user ask for this com-
bination and then execute the integration? The answer lies
in the definition of a pervasive environment and its poten-
tial to provide continuously more to users with less work
from their sides. We argue that a user would be more than
satisfied to find a multitude of services at his vicinity, and
can always decide whether or not to use these services. An
environment gains to transparently evolve from a state to
another - proposing new services and new substitutions -
without disturbing the user, but still taking full advantages
of what is available around the user.

Use Case 1. All along the article, we choose to illustrate
our spontaneous service integration using the following use
case (cf. figure 1).

Figure 1: MyStudio use case

MyStudio use case is composed of five services - webcam,
storage, printer, printing and packaging - that offer diverse
functionalities with different non functional QoS properties
to users and applications. The chosen use case is simple
and allows to understand the key elements of our proposal.
Considering these services, a spontaneous composition could
be, if possible, combining two services together, for example,
packaging and storage, even if not required by users. Users
will have access to the two services storage via similar in-
terfaces but the two services offer different implementations.
One service allows to only store a picture in a defined loca-
tion where the other one allows not only to store it but also
to resize it to the user convenience. The spontaneous compo-
sition deploys a new service in the environment for the user
intention. A spontaneous adaptation is also possible. If one
of the printing service is unavailable, the middleware pro-
poses the other printer service, or any other available print-

ing service, spontaneously and transparently to the users, as
the two services publish similar interfaces. For the user,
these substitutions are transparent.

The rest of the article is as follows. Section 2 presents a
state of the art of the three major families of service integra-
tion middleware - transformation, composition, and adapta-
tion middleware - and highlights the lacks of these middle-
ware in providing spontaneity. Section 3 explains and details
the spontaneous service integration. Section 4 presents our
MySIM middleware. Section 5 presents the prototype and its
evaluation results. Finally, section 6 concludes and gives
perspectives.

2. STATE OF THE ART
We survey in this section research efforts investigating ser-

vice integration middleware for pervasive computing. We
examined these middleware by paying attention to three as-
pects: the unified vision for the integration, the manage-
ment of the non functional QoS properties of services, and
the spontaneity. We divided the state of the art into three
families of middleware.

Service transformation middleware tackle the problem of
heterogeneity brought by pervasiveness. They propose to
transform the different service technologies available in the
vicinity into one common model to enable service interac-
tion and communication. The area that tackles this prob-
lem is the Model-Driven Development [11]. It proposes a
software development methodology in which software are
developed not by writing code directly in implementation
languages, but by constructing high level models that can
be transformed into code by automated transformation en-
gines and code generators. The slogan of MDD is “Model
one, generate anywhere”. The two service transformation
middleware reposing on MDD principles are Perv-ML [12]
and MIDAS [4].

Service composition allows the combination of multiple
services into a single composite service, which may be
achieved at design-time (static) or at run-time (dynamic).
In current middleware and systems, dynamic service com-
position is very often associated with the realization of user
tasks on the fly. Indeed, service composition can be a major
key for the user-centrism paradigm by enabling the user to
be at the heart of the realization of his daily tasks through
the combination of relevant services available in the vicinity.
Major service composition middleware such as PERSE [10],
SeGSeC [6], Broker [3] are all goal-oriented as they dynam-
ically compose services in response to a user task. They
provide their own service model and use semantic descrip-
tions to compare and match services before composing them
on the fly.

Service adaptation middleware adapt the functional and
non functional behavior of a service to meet the applica-
tion needs. This adaptation is done at run-time (dynamic),
as pervasive applications need to cope with unpredictable
changes. While an adaptive behavior implies the capability
of a middleware to run in a number of different configu-
rations, these middleware also need to dynamically perceive
the characteristics of the surrounding environments and that
by being context aware. Adaptation to changes might hap-
pen in middleware such in Carisma [2], and Madam [5] or in
the applications such in Socam [7].

Figure 2 classifies these middleware under the three as-

Figure 2: Classification of the major pervasive mid-
dleware

pects defined above: unified vision of the integration, the
QoS service management, and the spontaneity issue. If some
of the current approaches deal with one or two aspects of the
integration, no unified vision for the integration as we de-
fine it is provided. If the dynamism aspect is tackled by
the major middleware, no middleware proposes solution for
spontaneous integration of services in a proactive and trans-
parent way, without the user intervention. A need for a
spontaneous service integration middleware with respect to
the non functional QoS properties of services appears.

3. SPONTANEOUS SERVICE
INTEGRATION

We begin by defining and formalizing our service model as
a first step before integrating services. Then, we explain the
notion of spontaneity for the service integration. We give a
brief explanation of the integration techniques. Finally, we
list the events that lead to applying the integration actions.

3.1 Service Model
We define a generic service model as composed of several

parts: an interface, an implementation and QoS non func-
tional properties. A functional interface specifies operations
that can be performed on the service. An operation is de-
scribed by a concept, a set of inputs and an output. The im-
plementation is the implementation of the operations defined
in the functional interface. The QoS non functional prop-
erties describe the operation capabilities. These capabilities
reflect the quality of the functionality expected from the ser-
vice, such as dependability (including availability, reliability,
security and safety), accuracy of the operation, speed of the
operation, and so on. The service is also semantically de-
scribed. The semantic description is upon the operations
and QoS properties and is based upon common ontology
concepts.

Consider finite sets of grammatical alphabet Σ, ontologies
O, concepts N belongings to these ontologies O, operations
Op, inputs In, outputs Out, concepts Cpt, non functional
properties Np, quantitative and qualitative non-functional
properties NpQN , NpQL.

Consider the following operators: ∗ (repetition zero or
more times), + (repetition one or more times), and 0..1
(repetition zero or one time). We define an operation op
belonging to Op ⊂ Op as follows:

(op ∈ Op ⇔ ∃ In ⊂ In, ∃ Out ⊂ Out, ∃ cpt ∈
Cpt, ∃ Np ⊂ Np, ∃ NpQN ⊂ NpQN , ∃ NpQL ⊂ NpQL):

op : < In∗, Out0..1, cpt, Np∗ >

in : < name, type, semantic >, name ∈ Σ∗

out : < type, semantic >
cpt : < name, semantic >, name ∈ Σ∗

type : < language, name >, {name, language} ∈ Σ∗

semantic : < o, n >, o ∈ O ⊂ O, n ∈ N ⊂ N

np : < Np∗QL, Np∗QN >
npQL : < name, semantic >, name ∈ Σ∗

npQN : < name, numericV alue, operator >, name ∈ Σ∗

numericV alue ∈ R
operator : {<, >, ≤, ≥}
where:

• In is the set of the operation op inputs. in is defined
as a tuple where name is the chosen input syntactic
name, type is the syntactic input type, and semantic
the input semantic description.

• out ∈ Out is the operation op output. out is defined
as a tuple where type is the output syntactic type, and
semantic its semantic description.

• cpt is the concept the operation op defines. The oper-
ation op concept cpt is defined as a tuple, where name
is the syntactic name through which the operation is
called and semantic its semantic description.

• Np is the set of non functional properties charac-
terizing op. Np can be qualitative or quantitative.
npQN ∈ NpQL is the qualitative non functional
properties defined as a tuple < name, semantic >.
npQN ∈ NpQN is the quantitative non functional
properties defined as a tuple, where numericV alue ∈
R and operator ∈ {>, <, ≤, ≥}. operator specifies
the order applied to numericV alue. For {>, ≥} the
greater the numericV alue is, the best is the QoS prop-
erty for the service runtime execution. For {<, ≤} the
smaller the numericV alue is, the best is the QoS prop-
erty for the service runtime execution.

The type depends strongly on the programming language the
op is defined in, whereas the semantic is independent of the
technology and more related to the set of defined ontologies
O.

Use Case 2. In our MyStudio use case, the five services
- webcam, storage, printer, printing, and packaging - are de-
scribed under the generic service model as depicted figure 3.
For simplicity, the five services have five interfaces contain-
ing each, one operation. Each operation has a set of inputs
described by a name, a type (Java language), and a semantic
description, an output described by a type (Java) and a se-
mantic description, and a concept described by a name and
a semantic concept. Each operation can have one or several
non functional properties, qualitative or quantitative.

Figure 3: MyStudio syntactic and semantic service
descriptions

3.2 A Generic Service Integration
A Transparent Service Integration

In nowadays middleware, a specific demand need to be for-
mulated by applications for executing a service integration.
Users specify their demands explicitly - searching for spe-
cific functionalities or specific non functional QoS properties
- and the environment tries to respond to these demands by
integrating the available services, if no atomic services can
directly respond to these requests. On the contrary, the
spontaneity of a service integration is in providing users and
applications with new services (new functionalities or better
non functional QoS properties) but in a completely transpar-
ent way and without previous user demand or external con-
trol over the integration. Indeed, a spontaneous integration
is not initially required by users and applications, and the
proactivity of the middleware need to be transparent enough
to hide the integration results from users and at the same
time provide them with the best capabilities their environ-
ment can offer. This spontaneous service integration is done
technically in three ways (cf. figure 4): spontaneous ser-
vice transformation, spontaneous service composition, and
spontaneous service adaptation.

Figure 4: Service integration techniques

The spontaneous service transformation enables a given
service expressed and provided in a predefined technology
to be transformed into our generic service model and later

on into another technology. This service transformation al-
lows applications to re-use the services even if provided in
different technologies. The transformation is essential in or-
der to allow applications to use the available services in their
vicinity but also to compose services together once they are
expressed in the same model or formalism.

The spontaneous service composition enables services to
be composed two by two, extending by that the environment
with new functionalities. For this composition to be trans-
parent, for users and applications, the new resulting “com-
posed” services need to publish the same interface descrip-
tion (syntactic or semantic) as the already available services
in the environment as users and applications access services
via these interfaces. Providing new services with the same
interfaces but different implementations and hence different
functionalities, or different QoS properties remain transpar-
ent for users.

The spontaneous service adaptation adapts the service ex-
ecution at runtime, by transparently insuring to users and
applications a viable service for their executions. If a ser-
vice is unavailable for any reason, the middleware searches
for functionally equivalent services in the environment, to
replace these services without disturbing user tasks nor ap-
plication execution. If a new service is available and fits bet-
ter the application needs, the middleware searches to sub-
stitute the already existing services with this new service.
Users and applications have access to the service interface,
and by accessing the same interface all the time, they are
not aware of the implementation changes done behind.

We define our spontaneous service integration as a trans-
parent integration of several services that returns new ser-
vices with the same well known interfaces for the users and
applications, but different functionalities, implementations,
and non-functional QoS properties (cf. figure 5). The en-
vironments that are enriched with the spontaneous integra-
tion middleware, extend and shrink with service implemen-
tations, service non functional QoS properties, depending on
what is available in the environment at a certain time. For
the users and applications, the environment still publishes
the same functional interfaces as before the spontaneous in-
tegration.

Figure 5: Available services, before and after spon-
taneous integration

An Event Based Service Integration
We distinguish two major events that can affect an environ-
ment in term of services and by that can lead to a sponta-
neous service integration:

• New services appearing in the environment leading to
an automatic execution of the spontaneous integration

(transformation, composition, and adaptation) that
extends the environment with their new functionali-
ties and non functional QoS properties. When a new
service appears in the environment, it brings with it a
new functionality accessed by a new interface. The
spontaneous integration is the ability of integrating
this service with the already existing services, offer-
ing by that extended functionalities and/or different
non functional properties, for the user of these environ-
ments. The service is first transformed into the service
model understood by the middleware. Once this trans-
formation done, the middleware will seek to compose
this service with other services in a transparent way,
which mean creating a composite service with a well
know interface but new implementations, and new non
functional QoS properties. The interface corresponds
to the user visible part of the service, and by keeping a
well-known interface, users can still access the service.
The middleware will also seek to substitute already
existing services with the new service if this one offers
the same functionalities as these pre-existing services
but better non-functional QoS properties for the ap-
plications.

• Services leaving the environment leading to sponta-
neous service adaptation for users and applications.
Service adaptation replaces the vanishing services with
others publishing the same interfaces but not neces-
sarily the same implementations nor the same non-
functional QoS properties. The middleware will seek,
in the environment, for services that provide the same
functionality as the disappearing service and for that
publishing the same interfaces. In that case the new
service can be transparently accessed by the applica-
tions as it publishes the same interfaces, even if the im-
plementations and non functional QoS properties are
slightly different.

The spontaneous service integration has its own life cycle,
and stops automatically once there is no new services, new
implementations, or new non functional QoS properties to
add. For that, a stop condition is provided to prevent dupli-
cating services. For more details on the spontaneous service
integration life cycle please refer to C-ANIS [8].

4. MYSIM MIDDLEWARE

Figure 6: MySIM middleware

MySIM is composed of several services, gathered under four
modules (cf. figure 6): the Translator module responsible
for the service transformation, the Generator module re-
sponsible for the functional service relations (equivalence or
composition), the Evaluator module responsible for evalu-
ating the QoS non functional properties of the service rela-

tions, and finally the Builder module responsible for exe-
cuting the real service integration, registering and monitor-
ing the services. We will detail each module, explaining the
techniques that are employed and illustrating them with the
MyStudio use case.

4.1 The Translator Module
The Translator Service translates the diverse service

technologies offering the functionalities available in the en-
vironment into our generic service model. The transforma-
tion rules extract and identify the three main parts of a
service: the interface by extracting the operation signatures
and semantic description, the implementations by extracting
the operation implementations and the QoS non-functional
properties by extracting the operation non functional prop-
erties. Depending on the technology the transformation can
range from simple to complex. If the service provider has the
same service model as the one we propose (such as OSGi,
Web service, Fractal) the translation is relatively easy. If
not, more complex mechanisms need to be introduced. Our
Translator Service provides rules to map from OSGi ser-
vices, and Web service descriptions to our service model.
We only detail the OSGi mapping rules. The OSGi specifi-
cations [1] define a standardized, component oriented, com-
puting environment for networked services. Adding an OSGi
Service Platform to a networked device (embedded as well
as servers), adds the capability to manage the life cycle of
the software components in the device from anywhere in
the network. OSGi proposes a service layer where an OSGi
service is a Java interface, provided by a bundle (unit of de-
ployment) and registered to a repository. An OSGi service
can be implemented in different ways, and can have several
implementations for a same interface. The OSGi service
layer is composed of the following parts: service interfaces,
service references and bundles. Service interfaces specify the
service public methods. Service references encapsulate prop-
erties and meta data information about the service. Bundle
is the unit of deployment and provides the service imple-
mentations. Mapping the OSGi specification to our generic
service model is relatively easy and is done as follows:

• Service interfaces in OSGi correspond to the functional
interface of our service model. If in OSGi a service can
publish multiple interfaces, it will be mapped to our
service model as different services, as a service corre-
spond to one functional interface. The OSGi methods
are the operations of the service, the OSGi parameters
of the method are the inputs, and the result returned
by the methods is the output. The name of the OSGi
method through which the method is called is the con-
cept part of the operation.

• Service references in OSGi are the semantic description
of the operations and the non-functional QoS proper-
ties. These meta-data information about a service pro-
vide non-functional property descriptions of a service.

• OSGi bundles are the implementations of the service
operations.

4.2 The Generator Module
The Generator Service is responsible of the syntactic

(operation signatures) and semantic matching of the func-
tional interfaces (set of operations) of services in order to

compose, substitute or adapt services. It returns all possible
functional relations between services: the functional equiva-
lence and composition relations. Two services are syntactic
(or semantic) equivalent if they have syntactic (or seman-
tic) equivalent interfaces - set of operations. Two opera-
tions are syntactic (or semantic) equivalent if respectively
their inputs, output and concept are syntactic (or semantic)
equivalent. The syntactic equivalence is a simple type equiv-
alence for inputs and outputs and a simple name equivalence
for the concept. The semantic equivalence relies on the se-
mantic matching proposed by Paolucci [13]. It defines four
level for the semantic matching between two concepts (ex-
act, plug in, subsume and fail). We stipulate that a concept
may substitue another one if an exact or plug in matching
relations are defined between the two conceps. Two services
are composable if syntactically (or semantically) the output
of one operation of a service can be used as an input for
an operation of the other service as explained figure 7. For
the syntactic equivalence, the output type need to be of the
same type or a sub-type of the input type. For the semantic
equivalence, the output concept need to be exact or plug in
matching with the input concept.

Figure 7: Service composition type or semantic com-
patibility

In the composition process, the Generator Service finds,
for each service, all the services that respond to a composi-
tion relation, syntactic or semantic, between the functional
parts of services. From all these combinations the Gener-

ator Service will only keep the services that are interface
equivalent to an already existing service in the environment
(cf. figure 8).

Figure 8: Transparent service composition for users
and applications

This combination of the composition and equivalence re-
lations guarantees a transparent composition for users and
applications using the services of the environment. Indeed,
the new composite services will still publish well known in-
terfaces with new implementations corresponding to the ser-
vice composition.

Use Case 3. In our MyStudio use case, the Generator

Service distinguish one syntactic transparent composition -
webcam and packaging - and one semantic transparent com-
position - storage and packaging (cf. figure 10). These ser-
vice compositions produce new services, respectively a web-
cam and a storage service, publishing the same interfaces as
the initial webcam and storage services but adding the pack-
aging functionality to these services.

In the adaptation process, for each new service in the
environment, the Generator Service finds all the services
available in the environment and that are syntactically or
semantically equivalent. This notion of equivalence is based
on the functional part of a service. By that, the middle-
ware can propose the new service as a substitute to these
services if the implementation it proposes or the non func-
tional properties fit better the application needs. On the
other hand, when a service is no longer available, the middle-
ware searches, in the environment, for interface equivalent
services to propose them as a substitute for the applications.

Use Case 4. In our MyStudio use case, the Generator

Service distinguishes one syntactic transparent equivalence
- printing and printer. The two services have equivalent op-
eration signatures but different non functional QoS proper-
ties (cf. figure 3).

4.3 The Evaluator Module
The QoS Service is responsible of evaluating the previous

equivalence or composition relations by analyzing the service
non-functional QoS properties. If the Generator Service

indicates the possible functional relations between services,
it does not pay attention to the service non-functional QoS
properties. We distinguish the service composition issue and
the service adaptation one. In a service composition, com-
bining functionalities without paying attention to the ser-
vice non-functional QoS can lead to non executable service
composition. QoS Service needs to check for every service
composition, that the non-functional QoS properties of in-
puts and outputs of service operations are compatible (cf.
figure 9).

Figure 9: QoS properties compatibility

Use Case 5. Combining webcam and packaging, packag-
ing and storing is possible as the non functional QoS prop-
erties of the output of the webcam operation (respectively
packaging operation) respect the non functional QoS prop-
erties of the input of the packaging operation (respectively
storing operation) (cf. figure 10).

Figure 10: Composing transparently services: web-
cam and packaging, packaging and storing

In a service adaptation, a service is replaced by another
one, providing equivalent functionalities. Two services
can be functionally equivalent but provide different non-
functional QoS properties. The QoS Service assures good
substitution between equivalent services by choosing the
best QoS properties of services for a given application.
We define a metric that measures the non-functional QoS
degree of equivalence. This metric allows to assign a nor-
malized degree that measures the degree of non-functional
QoS similarities between two equivalent syntactic or se-
mantic services. The non-functional equivalence degree
QoSDegree(opi, opj) between two functional equivalent op-
erations is evaluated upon their quantitative and qualitative
property similarities. Considering two operations opi and
opj, we define the degree of equivalence between the two
operations QoSDegree(opi, opj) as a function that measures
how close is opj from opi in terms of non-functional QoS.
We consider the non-functional properties of opi, NPopi

and calculate as follows the degree of equivalence opj has
upon these properties:

QoSDegree(opi, opj) =
P|Npopi|

k=1 wk ∗ deg(npkopi, npkopj)

where, wk is the assigned weight for a particular non-
functional QoS property with the following conditionsP|Npopi|

k=1 (wk) = 1. The more wk is closer to zero, the
more important is the property Npk. This ponderation
allows to decide, when searching for equivalent services,
if certain non-functional QoS properties are more impor-
tant than others for the required service replacement.
deg(npkopi, npkopj) are normalized values between 0 and
1 corresponding to the equivalence degree between npkopi

and npkopj . These values are calculated using the z-score or
standardization of the npk values for quantitative properties
and semantic distance between concepts belonging to the
same ontology for qualitative properties. The z-score of
a quantitative property npQN , indicates how far and in
what direction, the property deviates from its distribution’s
mean, expressed in units of its distribution’s standard

deviation. We use the z-score standardization in order to
provide a way of comparing all the different non-functional
QoS by including consideration of their respective distribu-
tions. The semantic distance to compare the concepts of the
qualitative properties returns a normalized value between 0
and 1. The more the concepts are close (parents/children
depth association in the ontology) the more the value is
close to zero. The QoSDegree between two services will
return a value that indicates how close these two operations
are, related to their non functional properties. The less
this value is, the closest the operations are in terms of non
functional QoS similarities.

Use Case 6. A new service the Impression has ap-
peared in the environment (cf. figure 11). Considering the
Printing operation, it is syntactically equivalent to Printer
and semantically equivalent to Impression. We calcu-
late the non-functional QoS degree of equivalence to deter-
mine which of Printer or Impression replaces the better
Printing.

Figure 11: Three syntactic or semantic equivalent
operations

The z-score is computed by normalizing the values ob-
tained by the mean and deviation for each quantitative
property (nbpage and price). The semantic distance for
the qualitative property (access) is based upon the matching
value between concepts (0 for the exact matching, 0.2 for
the plugin matching, 0.8 for the subsume matching and 1
for the fail matching).
The QoSDegree of the three operations are:

QoSDegree(Printing, Impression) = w1 ∗
deg(nbpageprinting , nbpageimpression) + w2 ∗
deg(priceprinting , priceimpression + w3 ∗
deg(accessprinting , accessimpression

QoSDegree(Printing, Impression) = w1 ∗ 0.27 + w2 ∗ 0.35 +

w3 ∗ 0.2

QoSDegree(Printing, Printer) = w1 ∗
deg(nbpageprinting , nbpageprinter) + w2 ∗
deg(priceprinting , priceprinter + w3 ∗
deg(accessprinting , accessprinter

QoSDegree(Printing, Printer) = w1 ∗ 0.33 + w2 ∗ 0.33 + w3 ∗ 1

The QoS degree of the nbpage property shows that
the Impression service is closer to Printing service
(0.27 < 0.33). The nbpage operator > indicates that higher
the value is, the better service it proposes. In that case,
Impression service can print 100 pages per minute which
satisfies the 60 pages proposed by Printing service. For the
price property, the price operator < indicates that lower the
value is, the better service it proposes. The Printer service
is more suitable in replacing the Printing service and this is
reflected in the QoS degree 0.33 < 0.35. For the qualitative
property price, the ”wifi” and ”wireless” are plugin matching
(”wireless” is a parent of ”wifi” in the ontology), and the
value of QoS degree is close to zero (0.2), where as for
”wifi” and ”bluetooth” that are fail matching, the value of
QoS degree is 1. If we suppose the three non-functional
QoS properties of the same importance w1 + w2 + w3 = 1,
we obtain: QoSDegree(Printing, Impression) = 0.27, and
QoSDegree(Printing, Printer) = 0.55. The Impression
operation offers non-functional QoS that are closer to
Printing if we assign the same weight to the three non-
functional properties. Thus, if Printing service disappear
the Impression service is more appropriate to replace it
than the Printer service.

The Decision Service is based on an event-based mech-
anism of service appearance and disappearance. It uses the
Generator Service and the QoS Service to construct ab-
stract possible equivalence relations or composition compat-
ibilities between services. For a spontaneous service compo-
sition, the Decision Service needs to ask the Generator

Service and the QoS Service to provide all the possible
transparent service composition, even if these compositions
were not initially required by users. Nevertheless, interface
equivalence relations, defined and verified by the Decision

Service and executed by the Generator Service and the
QoS Service need to be applied in order to allow a trans-
parent use and access to these new implemented services.
The Decision Service makes sure not to compose the same
services over and over again. For that, a stop condition is
needed. The Decision Service analyses the available ser-
vices, by analyzing the interfaces they publish but also the
implementations they propose. A new service is a service
with new interface or an already existing interface but new
implementations or/and non functional QoS properties. By
that, it can verifies if the proposed composition plans are
already available in the environment or really provide a new
service to the environment and decides not to initiate a new
composition that will duplicate services in the environment.

A spontaneous service adaptation may occur upon the
appearance and/or disappearance of services. In case of a
disappearance, the Decision Service asks the Generator

Service and the QoS Service to provide all the available
services that are equivalent (syntactically or semantically)
to the disappeared service. The Decision Service chooses
from all these available and equivalent services, atomic or
composed ones, the most appropriate one depending on the
QoS properties they provide. It uses the QoS degree func-
tion defined above to compute which service is the best to
replace the disappearing service. The best service is the one
minimizing the QoS degree function (cf. figure 12). In case
of a service appearance, the Decision Service checks via
the Generator Service if some other services, equivalent to
the new one, are being used by applications.

Figure 12: Choosing the best equivalent service ac-
cording to non functional properties

If so, using the QoS degree proposed by the QoS Service,
it computes whether the new service is QoS closer to the
application needs than the services being used. In that case,
a transparent substitution can be made.

4.4 The Builder Module
The Builder Service implements the combinations pro-

vided by the Generator Service and the QoS Service and
approved by the Decision Service. The service integra-
tion is technically realized. The Builder Service creates
new functionalities respecting the service model and directly
implements these services in a chosen technology model.
These newly implemented and generated services will con-
tinue to exist even after a user or application has finished
using them. If many integration middleware propose to
integrate services on the fly, as a runtime workflow where
services are chained at execution time, few implement and
generate at runtime new services as independent compo-
nents. The Builder Service proposes several techniques
to realize the real integration of services. Whether the inte-
gration is a transformation, composition, or an adaptation
the techniques are different. For the service transformation,
the Builder Service implements the desired service in an
OSGi service and that by creating a new unit of deployment,
a bundle that implements the published interface. For the
service composition the Builder Service proposes the com-
position by service replication or the composition by service
redirection. Redirection consists in creating OSGi services
that redirect every call to the service to a set of chained
services. Replication consists in creating OSGi services that
replicate within their implementations the implementations
of other services in order to be independent of them. For a
service adaptation, the Builder Service proposes a facade
pattern that adapt the service execution to the real service
implementations available in the environment.

The Registry Service registers the interfaces of the
newly transformed or/and composed services in the envi-
ronment and monitors these services as they are very often
dependent on the services they integrate. They are also de-
pendent on the employed integration technique. The Reg-

istry Service checks periodically if these services execute
correctly. When needed, it can suspend, stop, and start the
services. Accessing these services can sometimes be impos-
sible as one of the services involved in the integration can be
unavailable. In that case, the new service does not execute
properly and the Registry Service is quickly aware of this
change.

The Registry Service notifies the Decision Service of
the events related to service appearance (new service reg-
istering) or disappearance (services unregistering or being
stopped).

Use Case 7. The newly composed services (new webcam
service extended with packaging, new impression service re-
placing printing service, and new storage service extended
with packaging) are deployed in the environment (cf. fig-
ure 13). They publish their interfaces for a possible use.
This deployment is completely transparent for users, as the
published interfaces are similar to the already available in-
terfaces - webcam, storage, and printing interfaces. Only
the middleware is aware of the implementation or non func-
tional QoS property differences between the services and can
propose to user the best implementations or non functional
QoS properties he can ask for.

Figure 13: MyStudio after spontaneous service in-
tegration

5. MYSIM PROTOTYPE
EVALUATIONS

We implemented all the major functionalities of our MySIM
middleware under an OSGi service platform implementa-
tion, the Apache Felix. The service transformation rules
are for now statically defined and can transform OSGi ser-
vices and Web services (via their WSDL descriptions) to our
generic service model. The service builder is OSGi based
and implements new services in the OSGi technology. The
composition is done syntactically using the Java language,
the Java API introspection and semantically using online
reasoner OWL-S ontologies and the matching relations of
Paolucci [13]. The non functional QoS properties are for
now defined in the service description and we do not yet con-
sider the dynamic changes affecting these properties while
service execution. For the evaluations we developed a use
case composed of 10 OSGi services, inspired from the MyS-
tudio use case. Then, we extended the platform test to 100
services in a small environment deployed on three laptops
(Dell Latitude D410, 1,73 GHz, and 0,99 Go of memory).

The service composition and service generation time is
approximatively 1 second for transparently composing two
services. It is costly in terms of memory as it uses the
sun.tools.javac.Main and sun.tools.jar.Main classes to
build services from scratch. The MySIM service composition
implements and generates new units of deployment for the
new services in the environment. If this feature is interesting
for the persistence of services in the environment, it is much
less interesting in terms of memory consuming than the ap-
proaches that compose services on the fly without generating
unit of deployment for these service composition.

Figure 14 gives time and memory values for syntactic ser-
vice matching done by the Generator Service in order to
find all the spontaneous composable services in the envi-
ronment. The syntactic spontaneous composition - based
on operation signatures - takes no time at all, and can be
executed over relatively constraints devices.

Figure 14: Time and memory consumption for syn-
tactic service matching

The semantic matching - based on interface semantic de-
scription - is much longer than the syntactic one (cf. fig-
ure 15). The OWL-S API takes about 12 seconds to com-
pare and matches 10 services owl-s descriptions (MyStudio)
and 55 seconds for about 100 services. The pellet match-
ing engine that reads all the owl-s files by adding them to
the reasoner and extracts the inputs, outputs and concepts
fields is much slower and much more memory consumer than
as simple syntactic matching based on introspection meth-
ods provided by the Java language. We can improve the se-
mantic matching time and memory consuming by employing
techniques as in PERSE [10] that propose efficient semantic
service matching using encoding classified ontologies.

Figure 15: Time execution for semantic service
matching

Figure 16: Time and memory consumption for QoS
degree computing

Figure 16 gives the time execution and memory consump-
tion for quantitative non-functional properties QoSdegree

function computing. We suppose that each service has one

quantitative non-functional property. When a service leaves
the environment, the time to adapt to this changes is the
time required to compute and sort the QoS degree of avail-
able services publishing the same interfaces. When a service
appears in the environment, the QoS Service computes the
QoS degree of this services to find if it better suits the appli-
cations using equivalent services. If so, the Registry Ser-

vice will propose to applications the new service and the
adaptation would be done in no time for the application, as
it is showed figure 16.

6. CONCLUSION
In pervasive environments, many middleware dealt with

one or more of our service problems - transformation, com-
position, adaptation - but few proposed a unified vision for
the service integration in pervasive environment, a manage-
ment of the functional and non-functional properties of ser-
vices during the integration, and especially, a spontaneous
service integration based on events affecting the environ-
ment rather than explicit demands coming from the appli-
cation layer. In this article, we proposed MySIM middleware
a service integration middleware that spontaneously and in a
transparent way transforms, composes and adapts services.
The users and applications are unaware of these integrations
and use all the possibilities provided by the middleware in
a transparent way. We proposed a metric to compare ser-
vices, based on syntactic and semantic interface matching,
and a metric for computing the non functional QoS property
similarities between services. We implemented a prototype
under Java OSGi framework as a proof of concept and eval-
uated the efficiency of our proposal. One of the aspects that
is not yet tackled by our MySIM middleware is the state of
a service [14] that disappears while executing. If a service
disappears while executing an application needs, to replace
it in a transparent way, MySIM needs not only to find equiv-
alent services in terms of functional and non-functional QoS
properties but to know from which state to start the exe-
cution of the new service, so that the application does not
loose what has been already executed by the previous ser-
vice. Mechanisms of logging and checkpoints need to be in-
troduced at the service execution time level to save the state
of a service at runtime. These mechanisms allow our MySIM

middleware to keep a trace over the state of services and to
know when they disappear at which state of execution they
were. Another important issue would be to test our pro-
totype in large pervasive environments, such as university
campus, were thousands of services may meet and where a
real end user experience could be tested to evaluate the in-
terest of our spontaneous approach vis à vis to users. Our
spontaneous service integration would surely have problem
to scale to these service numbers and a more smart selec-
tion, based on semantic ontologies and user profiles, would
be appropriate to choose a subset of services to compose,
adapt, and transform.

7. REFERENCES
[1] OSGI Alliance. OSGi Service Platform, Core

Specification Release 4. Draft, 07 2007.

[2] Licia Capra, Wolfgang Emmerich, and Cecilia
Mascolo. Carisma: Context-aware reflective
middleware system for mobile applications. IEEE
Transactions on Software Engineering,
29(10):929–945, 2003.

[3] Dipanjan Chakraborty, Anupam Joshi, Tim Finin,
and Yelena Yesha. Service Composition for Mobile
Environments. Journal on Mobile Networking and
Applications, Special Issue on Mobile Services,
10(4):435–451, 2005.

[4] Valeria de Castro, Esperanza Marcos, and
Marcos López Sanz. A model driven method for
service composition modelling: a case study. Int. J.
Web Engineering and Technology, 2(4):335–353, 2006.

[5] Jacqueline Floch, editor. Theory of adaptation,
Delivrable D2.2, Mobility and ADaptation enAbling
Middleware (MADAM), 2006.

[6] Keita Fujii and Tatsuya Suda. Semantics-based
dynamic service composition. IEEE Journal on
Selected Areas in Communications, 23(12):2361– 2372,
December 2005.

[7] Tao Gu, Hung Keng Pung, and Da Qing Zhang. A
Middleware for Building Context-Aware Mobile
Services. In Proceedings of IEEE Vehicular Technology
Conference, Los Angeles, USA, September 2004.

[8] Noha Ibrahim, Frédéric Le Mouël, and Stéphane
Frénot. C-ANIS: a Contextual, Automatic and
Dynamic Service-Oriented Integration Framework. In
International Symposium on Ubiquitous Computing
Systems (UCS), volume 4836/2008. LNCS, November
2007.

[9] Fuyuki Ishikawa, Nobukazu Yoshioka, and Shinichi
Honiden. Mobile agent system for web service
integration in pervasive network. Syst. Comput.
Japan, 36(11):34–48, 2005.

[10] Sonia Ben Mokhtar. Semantic Middleware for
Service-Oriented Pervasive Computing. PhD thesis,
University of Paris 6, December 2007.

[11] Jishnu Mukerji and Joaquin Miller. Technical guide to
model driven architecture: The mda guide v1.0.1.
Technical report, OMG’s Architecture Board, June
2003.

[12] Javier Munoz, Vicente Pelechano, and J.Fons. Model
driven development of pervasive systems. In
International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software
(MOMPES), June 2004.

[13] Massimo Paolucci, Takahiro Kawamura, Terry R.
Payne, and Katia Sycara. Semantic matching of web
services capabilities. The semantic Web - ISWC,
2342/2002, 2002.

[14] Davy Preuveneers and Yolande Berbers. Pervasive
services on the move: Smart service diffusion on the
osgi framework. In UIC ’08: Proceedings of the 5th
international conference on Ubiquitous Intelligence
and Computing, Berlin, Heidelberg, 2008.
Springer-Verlag.

