
Resilient IoT-based Monitoring System for Crude
Oil Pipelines

Safuriyawu Ahmed
University of Lyon, INSA Lyon,

CITI Lab
F-69621 Villeurbanne, France

Email: safuriyawu.ahmed@insa-lyon.fr

Frédéric Le Mouël
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Abstract—Pipeline networks dominate the oil and gas mid-
stream sector, and although the safest means of transportation
for oil and gas products, they are susceptible to failures. These
failures are due to manufacturing defects, environmental effects,
material degradation, or third party interference through sab-
otage and vandalism. Internet of Things (IoT)-based solutions
are promising to address these by monitoring and predicting
failures. However, some challenges remain in the deployment of
industrial IoT-based solutions, as the reliability, the robustness,
the maintainability, the scalability, the energy consumption, etc.
This paper is therefore aimed at highlighting potential solutions
for detection and mitigation of pipeline failures while addressing
the robustness, the cost and scalability issues of such approach
efficiently across the network infrastructure, data and service
layers.

I. INTRODUCTION

Several incidents like nodes and pipeline vandalisation,
corrosion, or leakages have been attributed to pipeline trans-
portation failures both in developing and developed countries.
Vandalisation or third party interferences are the leading cause
of failures in developing countries. These failures have led
to an annual loss of up to 10 billion USD in the United
States [1]. Other effects include environmental disasters [2]
and fatal incidents, one of which recorded deaths of over a
thousand people in Jesse in the year 1998 [3].

Consequently, various systems are deployed to monitor
pipeline infrastructures to reduce and mitigate failures. Cur-
rent monitoring systems include daily overflights using state-
of-the-art high-definition cameras by specialised helicopters,
drones, community and security-based surveillances – all
largely dependent on humans, all truly expensive and not
realtime-based. Alternative wired systems using fibre optics
or copper are used, but are limited by high installation and
maintenance costs, difficulty in fault location and repairs,
inflexibility to harsh terrain and the possibility to be compro-
mised through third party interference [4]. Other monitoring
systems include the use of the supervisory control and data
acquisition system (SCADA) by the computational analysis
of their pressure, volume and temperature through the deploy-
ment of sensor and communication networks [5]. Despite a
popular legacy monitoring system, SCADA is characterised by
its high cost, long delays, and inflexibility to protocol changes
attributes [4], [6], [7], which are in contrary to the fundamental

requirements of monitoring systems from pipeline operators,
i.e. sensitivity, accuracy, and cost [8]. The inefficiency of the
aforementioned monitoring systems is further ascertained with
the recorded loss of crude oil from the pipeline network of
Shell Nigeria to the tune of 11000 barrels per day in 2018
due to failures, an increment of nearly 550% compared to the
previous year [9]. It is therefore paramount to have in place a
system which can monitor – in real-time – operations of the
pipeline to determine in a timely manner any anomaly that
occurs.

Fig. 1. Digital Maturity of Midstream Operations [5]

More recent approaches to monitor pipeline networks are
based on wireless sensor networks (WSN) and Internet of
Things (IoT). Such approaches are shown to be more effi-
cient [10]–[14]. They rely on metrics such as energy con-
sumption, reliability, scalability for long-haul networks [4]
and robustness – to failures and third-party interference. These
constraints affect their cost of implementation, resilience and
maintenance. As a consequence, it limits their adoption by
oil and gas companies. Fig. 1, extracted from [5], shows the
current state of the digital maturity of the midstream sector. It
shows that despite the numerous research, adoption is still an
early stage hence the relevance of this work.



In this paper, we present a preliminary work on an end-to-
end resilient IoT-based monitoring system for a fault-tolerant,
accurate and real-time monitoring of crude oil pipelines. We
propose a distributed placement and estimation for leakage
detection and localisation while considering cost, scalability
and efficiency as a trade-off. The remainder of this work
is structured as follows: in section II, related work will be
discussed, followed by our research plan in section III and
our first simulations in section IV. In section V, we conclude
and present future works.

II. RELATED WORK

Recent research efforts to develop more efficient WSN-
and IoT-based infrastructure monitoring systems vary from
the architectural design, sensor placements, algorithms to data
and service management. The following subsections present
research works in these areas.

A. IoT/WSN for various applications

A four-layered architectural framework covering the sensor
layer to the cloud servers for low power IoT applications
was proposed by Yelmarthi et al. [15]. It is a hybrid of
wired and WSN, which is said to be easily implemented with
minimal resources for diverse application range. Experiments
were carried out on posture and physical activities, damage
detection and power consumption to show its applicability
in multiple industries and prove its low power consumption.
[16] considered generic sensor placement for the optimisation
of the sensor network using both discrete power control
and retransmission for one and two-tier uniformly and non
uniformly distributed WSN. Boubrima et al. [17] worked on
optimal sensor deployment to ensure minimal cost for air
pollution monitoring. The cost was minimised by formulat-
ing the problem using real air pollution dispersion, network
coverage, and connectivity constraints. Their approach, which
has a centralised architecture, showed a considerable reduction
in cost. Jamali-Rad et al. [18], in their work, examined the
feasibility of using IoT-based Low Power Wide Area Networks
(LPWAN) for seismic quality control. They tested LoRaWAN
by observing the packet loss rate over a single link and
small-scaled network and its performance in the presence
of interference and mobility. These tests show that LoRa
performs considerably well with interferences from UMTS
LTE and GSM close to the gateway and also against the
doppler effect. Rudes et al. [19] tested, on a small-scale basis,
the reliability of the LoRaWAN communication protocol for
IoT applications. They conducted the test by working on
varying parameters such as packet size, distance, and terrain
for precision agriculture and wildfire detection. Despite the
lack of optical visibility between some of the nodes and the
central station, the results obtained were promising.
Thus far, we have discussed works focused mainly on general
guidelines for deploying IoT based applications. It was shown
that network coverage, communication protocol, connectivity,
architectural designs, and the propagation model of the mon-
itored quantity affect performance and cost. Proposed archi-

tectures are, however, centralised making them susceptible to
Single Points of Failure (SPOF).

B. IoT/WSN for pipelines

Khan et al. [6] in their work proposed an IoT architecture
for the three sectors of the oil and gas industry. They took
into consideration in each layer, the design aspect that will
guarantee reliability and robustness through hierarchical
architecture by recommending a three-layered architecture.
It was structured to interconnect and collaborate to enhance
performance through intelligent decision makings and reliable
communication while allowing predictive maintenance.
Various processes of using WSN for monitoring pipeline and
mitigating vandalism were shown in [12], [20]–[22]. In their
work, they highlighted the benefits and challenges of using
this approach in comparison with other methods. Yu et al. [13]
proposed a three-layered architecture and an information
collection WSN algorithm using sensor nodes that are capable
of continuously detecting hydraulic pressure flow, quantity oil
and gas leak corrosions in the pipeline. Network optimisation
was done through data delivery algorithm, data fusion and
line deployment strategy. These strategies were expected to
reduce delay for pre-prioritised events, reduce redundancy
and avoid unbalanced energy consumption. The algorithm is
not scalable with the proposed line deployment strategy as
nodes will exponentially increase as the distance to the server
decreases. [23] also worked on node placement in a linear
oil pipeline for maximal lifetime operations. They used an
equal distance scheme with a realistic power distance model
defined by the length of the pipeline segment divided by the
maximum transmission range of the sensor node in which
case we can have the lowest number of sensors deployed. This
method may significantly increase the energy consumption of
the nodes. Other methods of determining sensor placement
include the work of Perelman et al. [24]. They proposed a
minimum test cover approach for fault detection in pipelines
using an approximate solution of the minimum set cover
problem. Sela et al. [25] also worked on robust placement of
sensors in a pipeline network. They proposed robust mixed-
integer optimisation (RMIO) and robust greedy approximation
(RGA) which were enhancement to nominal MIO and GA
using a redundancy and robustness parameter. In most
cases, RMIO and MIO outperformed the robust sub-modular
function optimisation (RSFO), MIO and GA versions in a
test conducted through the simulation of real water networks.
While the works above have demonstrated the feasibility
of their approach, they did not put into consideration the
resiliency of the system, especially in long-distance pipelines.
They also assume that a single sensor can detect failures in
multiple pipelines.

C. Data and Service Management

The operations of the oil and gas industries present a huge
amount of data [26]. In the midstream sector alone, every
150,000 miles of pipeline produces up to 10 terabytes of



data [1]. While several efforts have been made to gain insights
into these data in the upstream and downstream sectors [27],
[28] through big data analytics, the midstream sector is left
almost unexploited. Efficient data and service management
in the midstream sector can reduce the annual downtime by
70% and the associated cost by 22% [29] through timely
failure detection and predictive maintenance. Other driving
factors for pipeline data management consist of ageing in-
frastructure and outdated technology, incessant vandalisation,
and increased vulnerability to cyberattacks [29], [30]. Shoja et
al. [7] illustrated how IoT in the oil and gas industry could be
used to implement a simple, secure, quick, and reliable data
collection. [26], [28] also show the benefits and importance of
data management and analytics in this context. Other works
that can be applied to pipeline data and service management
are as follows: [31]–[33] proposed a data placement strategy
for fog infrastructure aimed to reduce the overall network
or service latency of data storage and retrieval. [34], [35]
worked on middleware architecture and services to ensure
systems robustness. [36] considered fault management and
tolerance services, recovery, and restoration services using the
self-healing through structural adaptation (SHSA) algorithm.
Authors in [37] define an IoT service placement architec-
ture that incorporates cloud and fog computing taking into
consideration latency and system’s condition and implements
a service orchestrator algorithm for the architecture. The
proposed architecture takes advantage of the fog environment
by placing services according to the state of the network and
the user’s and servers’ location.

Authors in [38] proposed an optimal data scheduling policy
using multiple channels to minimise real-time delay through
distributed and 4-layer fog computing architecture.

To the best of our knowledge, no work has considered
placement and distributed leakage estimation as a fault-tolerant
and robust approach to mitigating failures in crude oil pipelines
across multiple layers.

III. CONTRIBUTION AND RESEARCH PLAN

In this work, we propose a hierarchical and distributed
network architecture for the implementation of the pipeline
monitoring system. This kind of architecture prevents single
points of failure (SPOF) usually associated with centralised
systems. Our goal is to allow for a scalable network without
substantially affecting performance metrics such as accuracy
of the leakage detection and localisation, latency, cost, and
energy consumption. As shown in Fig. 2, the proposed network
architecture is based on a 3-tier architecture. Layer 1, consists
of the sensors connecting to other sensors, one or multiple
gateways. Geographically close sensors will share information
to take advantage of the spatial correlation of data allowing
distributed detection and localisation. In Layer 2, we take
advantage of the fog paradigm to reduce latency and energy
consumption for more complex computations in the gateways.
Layer 3 is implemented for long-term storage and historical
analysis of data and services. In terms of communication, we
make use of LoRaWAN for both the short and long-range

communications. We also propose the use of a cellular network
as a backhaul as they are more widely deployed. Based on

Fig. 2. Proposed Network Architecture

Fig. 2, this paper introduces our work on Placement and
Distributed Estimation for Leakage Detection and Localisation
on Oil Pipelines, which is divided into two parts: a) Node
placement, distributed detection and localisation b) Distributed
data and service management. We consider as a tradeoff
the accuracy of leakage detection and localisation, the cost,
the fault-tolerance, the scalability, and the efficiency of the
system in terms of data storage, packets transmitted and energy
consumption.

A. Node placement, distributed detection and localisation

The efficiency of any monitoring system can be largely
influenced by the coverage of the monitored event, the de-
tection technique and the overall resilience of the system to
failures (communication, node, etc.). Therefore, for our node
placement, we put the aforementioned factors into account as
explained later in this subsection. In this work, we concentrate
only on existing long-haul transmission pipeline networks for
better representation of the industrial reality.

Fig. 3. Sensor placement on long transmission crude oil pipelines



1) Coverage: New pipelines are sometimes equipped with
sensors, but only at the key junctions [1] as we have illus-
trated in Fig. 3 using the typical sensors. This method of
sensor placement may not allow detection of small leaks in
transmission lines and are also not resilient to failures like
sensor vandalism, hardware or communication failure. Other
node placement techniques include taking into consideration,
the maximum communication range of the sensors [23] or
the shortest distance between monitored events as in [24],
[25]. However, leakage events are stochastic in nature hence
this distance cannot be predetermined. Therefore, to ensure
maximum event coverage, we propose sensor deployment that
is based on the crude oil propagation properties in a pipeline
and the communication range of the sensors. This is to ensure
a nearly optimal event coverage as demonstrated in [17] where
sensor placement for detecting air pollution was optimised
using the Gaussian dispersion of the pollutant. Our work
differs from theirs however, as we use the pressure wave
generated due to leakage and the resulting changes in the
pressure gradient of the flow. With the increment in density
as a result of such placement the resilience to failure can be
improved as a result of the additional sensor(s) that is able
to detect leakage. Hence if a sensor is failing, detection or
localisation will still be possible using the other ones as shown
on pipeline IV in Fig 3.

However, we also aim to find an optimal distance between
sensors that allows detection of small-sized to big-sized leaks.
To achieve that, we consider the amplitude of the pressure
wave whose value is dependent on the size of the leak and
attenuates with distance. Therefore, the distance constraint
is defined such that it is less than the maximum detecting
distance for flows in a steady state. This can be calculated with
the attenuation model for sound wave where the maximum
distance is the longest distance from the leak point at which
the wave is still detectable. The density of nodes deployed
within this bound can include some level of redundancy to
ensure a trade-off between detectability and failure.

2) Detection Technique: Traditional monitoring system are
characterised by inefficiency and a high false-alarm rate [14].
Although [39]–[41] highlights several techniques for leakage
detection in pipelines, some of these techniques are com-
putationally complex [8] and even more challenging with
resource constraints, i.e. memory, energy consumption, limited
bandwidth/delayed networks [4] such as in WSN which are
also highly prone to failures [42]. Other challenges include
a centralised approach of the previous works, making them
susceptible to SPOF. Thus, in our work, we consider the
implementation of leakage detection and localisation by first
ensuring that the sensor nodes are in a reliable state, i.e. a
considerable number of nodes are behaving as expected. Then,
we make use of the combination of several leakage detection
methods, i.e. pressure point analysis (PPA), the gradient-
based (GM) and the negative pressure wave method (NPWM)
in a distributed manner. These methods are software-based
non-invasive methods that are less computationally complex
compared to others [8], making them suitable for WSN and

easy to deploy on existing pipeline networks. However, the
proposed detection methods have their individual strengths and
weaknesses e.g. the ease of detection of leakages in transient
or steady states, the accuracy of localisation etc. (details can be
found in [8], [41]). We therefore study the fusion of these three
methods by taking advantage of their strengths to improve the
accuracy of detection and reduce or eliminate false positive
through asynchronous consensus. To implement, we follow
these steps:

(i) Ensure that more than half the number of detecting
sensors are not faulty.

(ii) For a detection to be valid, at least two of the imple-
mented techniques must detect leakage.

(iii) Find the leakage region i.e. the region where the nega-
tive pressure wave (NPW) or the change in gradient is
detectable.

(iv) Localise the leakage using only sensors in this region in
a distributed manner.

Contrary to the existing solutions where all information is
collected at the gateway to detect and localise leakages, our
proposed detection technique will make use of partial informa-
tion from a defined set of neighbouring sensors as described in
III-A1. With the limited data, we aim to maintain or improve
the accuracy of the localisation and reduce false positive in
detection. Thus, a performance evaluation will be conducted
to compare our technique and the centralised versions (NPWM
and GM). For such evaluation, we need to define a quantified
criterion expressing the detection and localisation accuracy of
a leakage. Hence, we first define the number of sensors nc

for the classical approach and the number of sensors np for
our proposed approach as described above. Let enc

denote the
error in leakage location and detection using nc sensors and
enp

using np sensors. Our goal is to minimise the objective
function E defined as

E = (enc − enp) (1)

where E = the error margin between the classical approach
and our proposed approach.

3) Resilience: One of the downsides of distributed systems
is the communication overhead and energy consumption re-
sulting from the mesh connection of the nodes. Having a fully-
meshed connection makes scalability expensive but provides
the best resilience. We will like to minimise the number of
connections among the nodes while still ensuring resiliency
to link failure. Hence, we propose a generalised connectivity
constraints to be implemented using an adjacency matrix
which is dependent on the topology of the pipeline network for
communication among the nodes. Such matrix will be subject
to minimising the objective function (O) i.e. the total number
of connections among the nodes. These constraints include the
ability to communicate with an upstream neighbour, a down
stream neighbour and a direct or indirect connection with at
least one gateway. Also, each node should be within distance
constraint explained in subsection III-A1.



Therefore (1) can be modified as

EO = (enc − enp) (2)

where enp
is the error obtained using enp

subject to the
objective function and EO equals the error margin.

B. Data and Service Management

As shown in Fig. 2, we proposed a fog-enabled architecture
that allows the placement of data and services closer to the
user. This is a common requirement for IoT systems to reduce
latency as well as energy consumption. Still in existence
however, are some challenges as follows:

1) Increment in latency due to data misplacements in fog-
enabled architectures [33].

2) Data loss as a result of node failure.
3) Increase in energy consumption due to multi-hop com-

munication or need for spatial or time correlation of data
in distributed systems.

4) Constrained resources i.e storage capacity of nodes.
As such, adequate data and service management becomes

imperative. Thus, we propose such management as an opti-
misation problem through proper placement, replication and
migration of data and services using a game theory approach.
The aim is to improve the availability, fault tolerance and scal-
ability of the system while considering energy consumption,
latency and the storage capacity of the nodes as constraints.

Let player 1 represent the pipeline monitoring system and
player 2 the failure elements. We want to guarantee a certain
level of performance (Z) for the monitoring system M (player
1) in the event of unknown node failures or interference F
(player 2). Z can be defined as the value function to estimate
the performance of M where

ZM = max
M

min
F

ZM (AM , AF ) (3)

We have two sets of actions, AM and AF and two states,
State0 and State1. The timeline t0 and time t1 (t1 > t0) are
for states State0 and State1 respectively.
AM = {Ids, Rds,Mds} represents the set of possible ac-

tions of M (player 1). Ids (initial data and service placement)
denotes the first action taken by M in State0 using random
nodes. Rds and Mds (data and service replication and migra-
tion respectively) denote the subsequent actions i.e in State1.
Whereas Rds is an action taken to counter failures such as
node failures, communication failures etc. Mds is specific
to needs such as lack of storage capacity, increased delay,
insufficient or non-utilisation of resources etc. All actions
taken by M will take into account the overall cost i.e. data
access delay, energy consumption, cost of redirection etc.

AF = {f1, f2, ..., fr} contains a set of potential actions
of F (player 2), where fi represents failures in the network,
i.e. communication failures, packet loss, hardware failures etc.
and r equals the total number of possible actions. For F ,
we assume that all nodes are in a good state at t0 hence no
action taken in State0. On the other hand, any sort of failure
represents the possible action of F in State1.

For the first part of the research, we are currently simulating
oil propagation and leakages in pipeline using NS3. This
simulation is targeted towards obtaining results to determine
the performance of the classical approach in an ideal condition.
The next step is the implementation of our proposed distributed
solution and the comparison of these two methods in both ideal
and non-ideal conditions.

IV. PRELIMINARY RESULTS

To evaluate the individual strengths (detection or localisa-
tion) of the methods mentioned above (NPWM, PPA and GM),
we used NS3 to simulate crude oil propagation and leakages.
This was done in a single horizontal transmission pipeline
segment for a one-phase flow. We aim to determine node
placement that allows efficient detection of small to large-sized
leaks and to check the performance of NPWM and GM based
on this placement. Table (I) shows the simulation parameters.
In these first simulations, we tested NPWM and PPA for
detection, and NPWM and GM for localisation. As a primary
test, we have not included any sort of failure in terms of
communication, node or infrastructure i.e. test are conducted in
ideal conditions for each method. Leakage localisation is also
done in a centralised manner using information from all the
sensor nodes. The results from these simulations will allows us
to carry out a comparative analysis of the centralised version
to our distributed version in future works.

TABLE I
SIMULATION PARAMETERS

Type Transmission line
Material Carbon steel
Length 20km

Wall thickness 0.323m
Inside diameter 0.61m
Height/elevation 0m

Oil kinetic viscosity 2.90mm2/s
Temperature 50◦C

Oil density (ρ) 837kg/m3

Inlet pressure (P0) 1000psi
Reynolds no (Re) 1950

Velocity (U ) 2m/s
Oil modulus elasticity (K) 1.85 ∗ 105psi

Carbon steel modulus elasticity (e) 3 ∗ 106psi
Gravititational force (g) 9.81m/s2

Constant (e) 2.718
Wave speed (c) 14.1m/s

Coefficient of friction (λ) 0.033
Packet size 32bytes
Data rate 1Kbps

A. Node Placement and Detection

We examine the impact of several amplitudes on the de-
tectability of leakages using the NPWM. We tested 0.5kpsi,
5kpsi and 20kpsi at various distances between sensors for
small, medium and large leaks. While the 20kpsi is detectable
at a distance of less than 2500m between sensors, the 0.5kpsi
amplitude is detectable at up to approximately 1500m. Figure
(4) shows the result of this test.



Fig. 4. NPWM and PPA

The PPA method detectability is based on the leakage size.
With a detectable leak size, all sensor nodes along the pipeline
can eventually detect the leakage based on the pre-estimated
pressure and a pre-defined threshold value. With these results,
we identified the number of sensors to be placed on the
pipeline and the distance between them to make small to big-
sized leakages detectable. Fig (4) shows that the NPWM is not
very efficient in detecting leakages from a long-range. Hence
we selected an average distance of 1000m where all three
amplitudes are detectable and also allows a gradient-based
detection.

B. Localisation

The leakage localisation test was conducted by randomly
selecting a sample of leak points across the pipeline. The aim
of this test is to determine the accuracy of localisation using
the centralised NPWM and GM, which will later be compared
to our proposed distributed version. With a confidence level of
98%, the confidence interval of the sample data on which the
test was conducted is approximately 9880m − 14523m. The
localisation accuracy (LA) was calculated using the following
equation:

LA = 100− (
abs(Cl −Al)

Al
∗ 100) (4)

where Cl is the calculated leak location and Al is the actual
leak location.

Additional simulation settings i.e. the number of nodes and
the distance between them are based on the results from
section IV-A. Other results from the simulation, as shown in
Fig (5) shows that NPWM performed excellently well in terms
of localisation compared to the GM. It shows a consistent
localisation accuracy of over 99%. GM performance on the
other hand is not as consistent as that of the NPWM. However,
it also has a very good localisation accuracy with an average
of about 98%.

Fig. 5. NPWM and GM

V. CONCLUSION AND FUTURE WORK

In this paper, we have introduced our work on an IoT-
based monitoring system for crude oil pipelines that ensures
resiliency across the network infrastructure. We propose a sys-
tem that is expected to be cost-efficient, scalable, and efficient
by considering trade-offs between density, detectability and
cost. An implementation through simulation is currently being
carried out to evaluate the performance of the system. The
preliminary results for the centralised detection/localisation
show the performance of each method in detection and or
localisation. To overcome the SPOF issue associated with
this method, we will use data replication and asynchronous
consensus across the nodes for a distributed decision. Besides,
we intend to implement services for data filtering, categorisa-
tion, prioritisation, historical data computation for trends and
emergencies. Further work will also be conducted in deploying
the distributed monitoring system on a real pipeline network.
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