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Abstract—Route planning in a vehicular network is a well
known problem. Static solutions for finding a shortest path
have proven their efficiency, however in a dynamic network
such as a vehicular network, they are confronted to dynamic
costs (travel time, consumption, waiting time, ...) and time
constraints (traffic peaks, ghost traffic jam, accidents ...). This
is a practical problem faced by several services providers on
traffic information who want to offer a realistic computation
of a shortest path. This paper propose a model based on the
communication between vehicles (Vehicle to Vehicle: V2V) to
reduce the time spend by travels taking into account the travel
time registered and exchanged between vehicles in real time. In
our model, vehicles act as ants and they choose their itineraries
thanks to a pheromone map affected by the phenomenon of
evaporation. The presented algorithms are evaluated in real
world traffic networks and by modeling and simulating extreme
cases such as accidents, act of terrorism and disasters.

Index Terms—V2V, ant algorithm, travel time, disasters

I. INTRODUCTION

The computation of the shortest path is a fundamental
component in route guidance systems in urban environment.
Methods widely used as Dijkstra’s, Bellman-Ford, Astar and
Floyd-Warshall algorithms are efficient in a static graph, but
loose their performance in a dynamic network. They don’t
use real time information and they do not consider the neigh-
borhood ; that may can lead all vehicles on a same road at
time t. We identify two problems : the information access
in real time and the cooperation between actors. Centralized
approach to solve the problem, has an eye on all the network,
but the quantity of data to treat make it difficult to achieve in
real time, so we focus on decentralized bio-inspired solution.
Crowdsourcing insects rely on their collective brain power.
In this context, we propose Vehicular Crowdsourcing Models
(VCM) where the vehicle is an ant and gathered information
in the urban environment in order to find its path. This
information has a delay and a reliability for the vehicles as the
ants’ pheromone. Our decentralized approach use vehicular ad
hoc network and turns every participating car or infrastructure
device into a node to connect and create a network. The
paper is structured as following : a related works on bio-
inspired shortest path problem is presented in Section II. After
a formalization of the problem in Section III, we describe
different VCM models in Section IV. In Section V, we test and
compare our models on simple scenario and on a real map.

Finally we test extreme cases such as accidents or disasters in
Section VI, and we conclude in Section VII.

II. RELATED WORKS

Among approaches for solving the shortest path problem,
most are inspired by ant behavior (1). They collect real
data and incorporate them in the bio-inspired algorithm by
modifying the heuristic and pheromone functions. Wang et
al. (2) include traffic density in the pheromone function to
solve the shortest path with real time traffic information.
When data are unavailable, Salehinejad et al. (3) use historical
and statistical traffic data as input into the ant algorithm.
In the paper of Huang et al. (4), the distance of adjacent
intersections and the traffic saturation are introduced in the
path optimization process. Other articles are inspired by the
ant algorithm, as in (5), authors improve the initial algorithm.
When ant deposits pheromone to evaluate the quality of a
route, it also deposits pheromone describing the different
regions this route passes through. The algorithm will require
less iteration to find meaningful results. More recently Jyothi
et al. (6) extend the traditional Ant Colony Optimization to a
dynamic decision system for choosing the shortest best route
in highly congested areas. Jindal et al. (7), propose a repulsion
effect in the algorithm to avoid the congestion. Then they
improve it with a particle swarm optimization algorithm (8).
Few method explore extreme situations as Peinado et al. (9)
who describe a model which is useful in a particular limitation
of an emergency situation.

III. PROBLEM STATEMENT

In this section, we present definitions needed in our
vehicular crowdsourcing models.

Definition : Global graph G
A road network can be represented by a graph G = (V,E),
where V = {v1, v2, ..., vn} is a finite set of intersections and
E = (eij)ij is a finite set of road sections. A road section
is determined by two intersections eij = (vi, vj) and G is
directed, eij 6= eji.
Definition : Vehicle Path Pm

A vehicle m has a departure and a destination : Om and
Dm respectively. It uses a path Pm to join Om to Dm.
Pm = {R1, ..., Rn} with Ri = ejl ∈ E, R1 = Om, and



Rn = Dm. The length of a path is the Euclidean distance
noted : L(Pm). And the travel time with the maximum speed
allowed on each edges of the path is noted: TT (Pm).

Definition : map of pheromone
Gm(t) is the graph known by the vehicle m at the time t in
term of travel time. This is a subgraph of G with Em ⊂ E.
Weights on edges in Em represent information in pheromone
known by the vehicle m at time t. We note wmij (t0), the travel
time on the edge eij registered at time t0 by the vehicle m.
The rate in pheromone is given by:

τmij =
wmij

wmij (t0)
(1)

wmij is the travel time on eij with the maximum speed. A pair
of data is associated to each edge: (τmij , t0); τ

m
ij represents

the quality of the edge in term of travel time and t0 is the
time when the vehicle m registers this value, it represents the
validity of the pheromone.

Definition : Carry and Forward
We consider the situation where a vehicle m crosses a vehicle
l at time t. Gm(t) is the graph of knowledge of the vehicle
m and Gl(t) the graph of the vehicle l. The vehicle m keeps
the latest information and updates it (rules are symmetric).

∀eij ∈ Em ∩ El : (τmij , t0)← (τ lij , t
′
0) if t0 < t′0 (2)

eij ∈ El/Em means that the vehicle m does not have
information on eij , therefore it saves (τ lij , t

′
0) for this edge.

Definition : Evaporation of pheromone
With time, the reliability of the information decreases, we
define it by its evaporation as the ants process. Lets t the
current time, t0 the time when the vehicle has registered the
pheromone value on eij , (t − t0) represents the time since
the value is registered on eij . Higher this value is, older
the information is and its useless for the vehicle m. The
evaporation is defined at each time step by:{

(τij , t0)← ((1− ϕ).τij , t0)
(τij , t0)← (0.5,−1) if (t− t0) ≥ T

(3)

With ϕ =
t0
t

(4)

ϕ is the gradient of the evaporation. T is the life time of
the travel time measured. When (t − t0) ≥ T , the vehicle
initializes the edge at 0.5, it means the value is too old.
Using these definitions, we will present three Vehicular
Crowdsourcing Models, based on vehicles cooperation.

IV. VEHICULAR CROWDSOURCING MODELS

In the ant algorithm, each ant m computes a set of feasible
path at each iteration, and moves to one of these in probability.
The probability of choosing a path by the ant m is defined by
the quality of its edges defined by the quantity of pheromone.
We will propose three models to find this path. In the two

first models, the vehicle will use all information of pheromone
gathered on its map to compute the best path to its destination.
In the last model, the vehicle use only pheromone information
around it as a real ant which searches its itinerary.

A. Pheromone on K-Paths: PKP

If the vehicle chooses edge by edge without considering its
destination as a real ants, the exploration can be excessively
too long. Thats why we use a k-path algorithms, which will
give a direction to the destination and avoid useless itinerary
too far from the arrival position. For PKP , the cost on each
edge corresponds to the best travel time to cross it (ie with
the maximum speed). Then the probability to choose a path
Pn = {R1, ..., Rn} among the k-paths is:

p(Pn) =

∑n

i=1
γ.τi

n.L(Pn)∑
n

∑
i

γ.τi
n.L(Pn)

If τi is known γ = 1 else γ = β.

(5)

β allows to give less importance to the unknown pheromone
values. The vehicle chooses the path with the higher proba-
bility. Then if two of them have the same one, the algorithm
chooses the path with the smaller variance in pheromone level
(indeed, the vehicle prefers to take two edges with a medium
fluidity rather than a congested edge and then a fluid edge).

B. K-Pheromone Paths: KPP

In the second method, the algorithm computes the k-shortest
path directly on the pheromone map. The probability to
choose a path Pn among the k-paths is given by is the same
probability defined for the PKP . As the previous model if
two paths have the same probability, the algorithm chooses
the path with the smaller variance in pheromone level.

C. Pheromone on Paths Exploration: PPE

The third method is close to the real ants behaviour. The
probability pmij of moving on the edge eij , for an ant m,
depends on the combination of two values, the attractiveness
µij of the edge eij , computed by some heuristic indicating
the desirability of that move and the level of the move in
pheromone τij , indicating how was the efficiency of this
particular move in the past.
In this model PPE, the vehicle acts like an ant by exploring
its environment. First of all the algorithm computes all possible
paths P in all direction around the vehicle according the
following condition: TT (P ) < T . We recall that T is the
life time of the pheromone value registered by the vehicle and
TT (P ) is the travel time on the path P with the maximum
speed allowed on it. Then the probability to choose a path
Pl = {R1, ..., Rl} among the computed paths is given by:

p(Pl) =

∑s
j=i β.τ

α
j (1− β).µjs∑
k p(Pk)

with µjs =
L(Rj → Dm)

L(Pn) + L(Rs → Dm)

(6)



Ri is the current position of the vehicle m. L(Rs → Dm) is
the euclidean distance of the shortest path between Rs and the
destination of the vehicle m, Dm. If the pheromone value is
known by the vehicle, then α = 1.5 else α = 1, indeed we
give more importance to the pheromone values known by the
vehicle. β allows to give less importance to the pheromone
values or to the length of the path.

V. NUMERICAL RESULTS

A. Environment of the simulations

We use an open source microscopic and continuous road
traffic simulation package, SUMO (Simulation Of Urban
Mobility). We have to calibrate the different parameters: T
which is the life time of the pheromone value and β which
determines the importance of unknown edges. For PKP
and KPP , we choose the value k = 4. Vehicles, in our
simulations, travel between 300 meters or 800 meters ; beyond
4 paths, the trips become too long. We test different values
on the Manhattan map (10; 11). 200 vehicles travelled on the
grid at random with a maximum speed limited to 50 km/h.
We simulate three iterations of this configuration. Vehicles
exchange information to nearest neighbours, therefore a wide
distance of communication is not really important especially
in a congested traffic (the range of communication is set to
60 meters for all simulations).

We evaluate travel and waiting time for each models.
For PPE it appears that T = 25s and β = 0.2 are the best
values. For PKP and KPP , T = 15s and β = 0.4 are the
best values. We notice that unknown edges implies hazard
in the path computation specially for the model PKP . For
KPP , short range for the pheromone evaporation are better.
The table I shows the different parameters. It appears that T
has to be small, that means information around the vehicle is
important for the future path.

Parameters/Models PKP KPP PEE
Limit time of the information T (s) 15 15 25

Importance of unknown information β 0.4 0.4 0.2

TABLE I: Pheromone parameter set

B. Results

1) Real map: We test PKP , KPP and PPE on a real
map. For a realistic scenario, we used the TAPASCologne
dataset (12) - reproducing the urban traffic in the city of
Cologne. The dimension of the map is 1200m x 800m, the
simulation begins at 6.00 am to 6.15 am with 1200 vehicles.
We compare our models with the model PDLAIS - Partial,
Decentralized and Locally Autonomous Strategy - presented in
(13). In this article strategic points in the city (most congested
intersections) are equipped in order to reroute vehicles thanks
to the local information. We also compare our models with the
centralized solution called CS. We evaluate the gain in travel
time and waiting time compared to the scenario NK, with No
Knowledge (Figure 1) and we present the standard deviation
for each model (Table II).

NK PKP KPP PPE CS PDLAIS
SD of TT (min) 8 7.5 7 10.6 6.1 7.5
SD of WT (s) 37.6 33.1 29.6 35.3 23.7 34.5

TABLE II: Standard Deviation (SD) of Travel Time (TT) and
Waiting Time (WT) for the different models

Fig. 1: Results of gain in travel time and waiting time for the different
models on a real map

The three models of crowdsourcing vehicular PKP , KPP
and PPE have good results and improve travel time and
waiting time compared to a situation without information, for
intance KPP is the best in travel time. Further results are
close to the centralized solution as the gain in waiting time
for the PPE model, however its standard deviation is higher
than the other models (see Table II).

VI. INVESTIGATING THE IMPACT OF URBAN INCIDENTS

An incident refers to anything that stops the traffic flow.
There are few options to simulate this kind of events in SUMO,
however some tools allow to create similar conditions. We
test vehicular crowdsourcing models in three situations, a car
accident (or road work), act of terrorism and disaster to test
the robustness in a dynamic environment.

A. Car Accident or Road Work

To simulate a car accident, we just have to stop cars for a
limited period. Road works can be similar to a car accident in
term of simulation in SUMO, stopping a car produces same
effect as a road work. In order to accentuate the scenario we
block an edge during a long time. Unlike a car accident which
is a short event (several hours), road work lasts longer.

1) Simulation and results: We evaluate the travel time and
the waiting time of vehicles, that are not found stuck. We also
note the number of vehicles arriving according to simulated
model, this parameter allows to evaluate the effectiveness of
the model. Higher the number of vehicles able to bypass the
area, the more efficient the model is. Models with the greatest
number of vehicles avoiding the area of the congestion, are
KPP and PPE (Figure 2). However, the standard deviation
of the travel time for KPP is 11, 11 min and 7, 34 min for
PPE, which means that bypasses found by KPP are longer
than those find by PPE. PKP and PDLAIS have same
results as without system. It is important to note that their



Fig. 2: Results in case of road work: number of vehicles
arriving at destination in percentage

mean percentage are lower than others because the number
of arriving vehicles is lower. PDLAIS results depend on
the position of connected intersections in the city, if they
are far from the congestion it fails. PKP computes the k
paths without traffic information at the beginning, this can
create a handicap for vehicles that cross the congested area.
By increasing the value of k, we could perhaps improve the
performance of this model on a larger map but the complexity
of the algorithm Yen and its calculation time will also increase.

B. Terrorism

Several evacuations explore strategies by taking into account
the distribution of the population and vehicle behaviours.
Alazawi et al. (14) propose a system to collect information
from various sources and locations to propagate them into the
network through the V2V communication and the cloud during
an explosion of hazardous materials in a glass factory. Waine et
al. (15), analyze the impact of a nuclear attack on Washington
DC. And Lambert et al. (16) study the transportation demand
and performance in the case of ’dirty bombs’. They study
how detonation can degrade the transport system, especially
during peak periods. They show that the main streets of
the neighborhoods reach their maximum capacity. During an
attack, the number of travellers that leave the buildings to go
home, multiply by two the number of car that evacuate the
area. In addition, the percentage of vehicle that completely
leave the area is 13% of total trips. We use these observations
and analysis to simulate a terrorist attack in a neighborhood
of the city of Cologne. We test our models to disseminate
information and remove vehicles from the danger zone (see
Figure 4).

Fig. 3: Results in case of a act of terrorism

1) Simulation and results: A terrorism scenario has an
impact in all the town, therefore we evaluate travel time of the
entire network. The model PPE which uses local information
pheromone around the vehicle, gets the best results in travel

Fig. 4: Location of a terrorism act

times despite a greatest standard deviations (13, 13 min),
which means that some vehicles are affected by the others.
KPP and PDLAIS have good results with the best standard
deviations (8, 09 min and 8, 35 min respectively). They are
closest to the centralized solution (7, 09 min for standard devi-
ation). However PDLAIS is dependent on the infrastructure,
if the connected intersection is in the danger zone, these results
can not be insured. Models of crowdsourcing vehicular do not
depend on the infrastructure and can be effective regardless of
the location of the explosion.

C. Disaster

Natural disasters in the recent years as the earthquake in
Japan and tsunami disaster increase the importance of emer-
gency response systems. The questions of who evacuates and
what factors influence the evacuate/stay decision are frequently
investigated, mostly in the social sciences, but more recently
by engineers as well. During an earthquake, the locations of
failures on the road cannot be predicted in advance, however
Wisetjindawat et al. (17) propose a model with the probability
that a road is broken according the intensity level of the
disaster. We use this model to simulate an earthquake in an
urban network in order to test the dynamism of our model in
case of disaster. The probability that a link r on the network
is passable is formulated as follows:

pr = e−λ.lr

λ is the constant representing the breakage rate of the road
section, according to the intensity of the earthquake (locations
/ km) and lr is the length (km) of road section r. λ is obtained
from the report by the Disaster Management Working Group
under the Cabinet Office. An intensity equal to 4 on the scale
of the Meteorological seismic Agency of Japan (JMA) does not
cause breakage, 5 JMA could cause between 0.035 and 0.11
breaks per kilometer, 6 JMA concerned around 0.16 breaks
per kilometer and finally 7 JMA concerned 0.48.

1) Simulation and results: An intensity of 7 JMA (maxi-
mum intensity on the scale) is a too catastrophic situation to
be exploited. We use a value of 0.11 which corresponds to
5 JMA. We apply the probability on roads in the area of the
city of Cologne used previously. We assume that the traffic
lights are not available after the disaster. Figure 5 shows the
percentage of chance for an emergency vehicle to arrive at its
destination. We note that PKP and KPP are not performing,
it comes from the computation of the k paths to the destination
which limit the possibilities (the k roads are long and therefore
the possibility to meet a broken roads is high). The model
PDLAIS, more efficient, uses local information, but it is
highly dependent on the state of infrastructure and the position



Fig. 5: Results in case of disaster

of connected intersections compared to the ambulance trip.
Finally, the local solution PPE is the most robust for this
catastrophic event.

VII. DISCUSSION AND CONCLUSION

The vehicular crowdsourcing models presented in this paper
consider the vehicle as an ant searching the best path to
its destination thanks to a pheromone map constructed with
information sent by other vehicles. They have good results
in travel time and waiting time in different urban area with
a reduction until 32% in waiting time and results similar to
the model with connected intersections, PDLAIS (13). The
next step would be to optimize the complexity of KPP and
PKP , focusing on the entire way of the vehicle. We would
test the greatest values of k on a larger map. However, the Yen
algorithm adds complexity and computation time. The latest
model, PPE, which uses only local information pheromone is
an interesting alternative. This model coupled to PDLAIS
with the V2I communication at strategic points in the city,
could give interesting results to study. Both models could
complement, or disturb each other. Next, we will evaluate
the latency limits and the network load. In extreme situations,
packet loss occurs without performance impact, but we need
to evaluate the limits. With these bio-inspired methods, more
vehicles are able to get around unpredictable road works.
In case of terrorist acts, they react quickly allowing faster
evacuation despite the larger number of vehicles. Finally in
case of natural disaster where a part of the city is destroyed, the
information exchanged between vehicles will allow emergency
vehicles to circulate, particularly with the PPE model which
uses local information. The impact of these events is few
studied in literature and crowdsourcing models, with only local
information exchanges, show their robustness.
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