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Abstract: A computing infrastructure where ‘everything is a service’ offers 
many new system and application possibilities. Among the main challenges, 
however, is the issue of service substitution for the application execution in 
such heterogeneous environments. An application would like to continue to 
execute even when a service disappears, or it would like to benefit from the 
environment by using better services with better QoS when possible. In this 
article, we define a generic service model and describe the equivalence 
relations between services considering the functionalities they propose and 
their non-functional QoS properties. We define semantic equivalence relations 
between services and equivalence degree between non-functional QoS 
properties. Using these relations we propose semantic substitution mechanisms 
upon the appearance and disappearance of services that fit the application needs 
in a pervasive environment. We developed a prototype as a proof of concept 
and evaluated its efficiency over a real use case. 
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1 Introduction 

A computing infrastructure (Erl, 2005) where ‘everything is a service’ offers many new 
system and application possibilities. Among the main challenges, however, is the issue of 
service substitution for the application execution in such heterogeneous environments. 
An application would like to continue to execute even when a service disappears, or it 
would like to benefit from the services in the environment by using better services with 
better quality of service when possible. 

A service publishes a functional interface, describing all the operations that the 
service can execute. This description is based on semantics and ontologies (Bittner et al., 
2005) as pervasive environments (Weiser, 1991; Satyanarayanan, 2001) are populated 
with services from different providers and technologies. Besides the semantic interface 
description, the interface operations have non-functional properties corresponding to their 
quality of service. Many middleware and architectures proposed solutions for service 
substitution (Fredj et al., 2008) or service adaptation (Floch, 2006), but very few 
described by models, definitions and metrics semantic service substitution adapted for 
pervasive environments and based on functional interface matching and quality of service 
computing. 

The major contributions of the article are in defining and formalising: 

• The equivalence relations between services considering the functionalities they 
propose via their functional interfaces. We define and formalise the service model 
and the service equivalence relations based on the semantic description of their 
interfaces and operations. Theses relations allow to define if two services are 
functionally equivalent or not. 

• The QoS degree equivalence functions between the operations and the services. 
Services can be functionally equivalent but offer and/or require different parameters 
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for quality of service. The QoS equivalence degree gives a metric that indicates how 
close two services are in terms of their quality of services. 

• Service substitution mechanisms for applications executing in pervasive 
environments. Based on service equivalence relations and QoS equivalence degree, 
the pervasive environment can decide to substitute services by functionally 
equivalent ones, with better QoS computed via the QoS equivalence degree. These 
service substitution are done transparently and spontaneously as services appear and 
disappear in the environment with the users coming and leaving. 

To define, formalise and explain our relations and metrics we adopted the following 
model. The ‘DEFINITION’ paragraphs define the relations and functions between 
concepts, operations and services using simple grammar and language, whereas the 
‘EXAMPLE’ paragraphs illustrate and explain these definitions via a use case. 

We begin in Section 2 by exposing the state of the art. We define in Section 3 the 
service equivalence relations and the non-functional QoS degree equivalence metrics. We 
then explain in Section 4 the semantic service substitution in pervasive environments. 
Section 5 details the developed proof-of-concept prototype and its results. Finally, 
Section 6 concludes and gives perspectives for this work. 

2 State of the art 

In pervasive environments, service substitution (Fredj et al., 2008; Santhanam et al., 
2009) and service similarity problems (Kokash, 2006; Mokhtar, 2007; Aït-Bachir and 
Fauvet, 2009) have become the new trends in the service-oriented community after the 
service discovery and service composition problems. Once services are deployed, 
accessed, executed and composed, the pervasiveness of the environment imposes 
researchers to find solutions for the service unavailability problem. Indeed, in a pervasive 
environment, services can come and go without prior notification and finding the right 
substitute for a given service is very often a hard task to achieve. In the literature, we 
distinguish three types of service similarity: those concerning the structural part or 
functional property of services, those concerning the behavioural part of services and 
those that deal with the non-functional properties of services. 

Structural similarity between services (Kokash, 2006) is a functional matching 
algorithm between the interface WSDL descriptions of web services. The algorithm takes 
the description of web services and is able to tell if the two services are similar using a 
semantic similarity metric. But this work need to be optimised and especially the  
non-functional parts of services need to be taken into account. Perse (Mokhtar, 2007) 
proposes a QoS metric for web services based on normalisation functions but this metric 
is used to dynamically compose services together. Perse does not consider service 
substitution as a separate problem from service composition. Finally, EurekaBESERIAL 
(Aït-Bachir and Fauvet, 2009) proposes an algorithm that is capable of detecting all the 
incompatibilities between two interface behaviour for web services and based on these 
incompatibilities it introduces a similarity function to compare two web services 
behaviour but it does not take into account the non-functional properties of services. 

Some works deal with service substitution (Fredj et al., 2008; Santhanam et al., 
2009). Siroco (Fredj et al., 2008) proposes a framework that substitutes stateful web 
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services, taking into account the state of a service when executing and ensuring to 
applications a service continuity when substituting the service. But Siroco does not deal 
for now with non-functional properties. Santhanam et al. (2009) propose a web service 
substitution based on preferences over non-functional attributes but their description of 
non-functional properties is not general enough to take all types of non-functional 
properties into consideration. In this article, we do not limit our model to web services as 
all major systems do but propose a general model of a service, describing its functional 
and non-functional properties (quantitative or qualitative) and based on this model we 
propose different metrics for computing non-functional service similarities. Than, we 
propose a mechanism for service substitution that substitute services not only upon their 
unavailability as the major systems do, but also when a new service fits better an 
application. 

3 Service functional and non-functional QoS equivalence relations 

3.1 Service model 

We define a generic service model as composed of a functional interface and  
non-functional QoS properties. A functional interface specifies operations that can be 
performed on the service. An operation is described by a concept, a set of inputs and an 
output. The QoS non-functional properties describe the operation capabilities. These 
capabilities reflect the quality of the functionality expected from the service, such as 
dependability (including availability, reliability, security and safety), accuracy of the 
operation, speed of the operation, and so on. The service is also semantically described. 
The semantic description is upon the operations and QoS properties and is based upon 
common ontology concepts. 

Consider finite sets of grammatical alphabet Σ, ontologies O, concepts N belongings 
to these ontologies O, operations Op, inputs In, outputs Out, concepts Cpt, non-functional 
properties Np, quantitative and qualitative non-functional properties NpQN, NpQL. 
Consider the following operators: * (repetition zero or more times), + (repetition one or 
more times), | | (the number of occurrences) and 0..1 (repetition zero or one time). 

We define an operation op belonging to Op ⊂ Op as follows: 

(
)

In, Out, Cpt,

Np , , :QN QN QL QL

op Op In Out cpt Np

Np Np Np Np

∈ ⇔ ∃ ⊂ ∃ ⊂ ∃ ∈ ∃

⊂ ⊂ ∃ ⊂ ∃ ⊂
 

0..1: *, , , *op In Out cpt Np< >  

: , , , Σ*in name type semantic name< > ∈  

: , , Σ*cpt name semantic name< > ∈  

: , , { , } Σ*type language name name language< > ∈  

: , , O, Nsemantic o n o O n N< > ∈ ⊂ ∈ ⊂  

* *: ,QL QNnp Np Np< >  
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: , , Σ*QLnp name semantic name< > ∈  

: , , , Σ*QNnp name numericValue operator name< > ∈  

numericValue∈\  

: { , , , }operator < > ≤ ≥  

where 

• In is the set of the operation op inputs. in is defined as a tuple where name is the 
chosen input syntactic name, type is the syntactic input type, and semantic the input 
semantic description. 

• out Out∈  is the operation op output. out is defined as a tuple where type is the 
output syntactic type, and semantic its semantic description. 

• cpt is the concept the operation op defines. The operation op concept cpt is defined 
as a tuple, where name is the syntactic name through which the operation is called 
and semantic its semantic description. 

• Np is the set of non-functional properties characterising op. Np can be qualitative or 
quantitative. QN QLnp Np∈  is the qualitative non-functional properties defined as a 
tuple <name, semantic>. QN QNnp Np∈  is the quantitative non-functional properties 
defined as a tuple, where numeriValue∈\  and { , , , }.operator∈ > < ≤ ≥  operator 
specifies the order applied to numericValue. For {>, ≥} the greater the numericValue 
is, the best is the QoS property for the service runtime execution. For {<, ≤} the 
smaller the numericValue is, the best is the QoS property for the service runtime 
execution. 

The type depends strongly on the programming language the op is defined in, whereas the 
semantic is independent of the technology and more related to the set of defined 
ontologies O. 

Our service model is general enough to respect the SOA specifications, and to offer a 
common model to the heterogeneous technologies usually available in pervasive 
environments. The model proposes semantic descriptions relying on common ontologies, 
and by that it allows to abstract from the programming languages. 

Example 1: We consider three operations (c.f., Figure 1) and three interfaces (c.f.,  
Figure 2) described under the generic service model. Each operation has a set of inputs 
described by a name, a type, and a semantic description, an output described by a type 
and a semantic description, and a concept described by a name and a semantic concept. 
Each operation can have one or several non-functional properties, qualitative or 
quantitative. These three operations (c.f., Figure 1) and three interfaces (c.f., Figure 2) are 
used in the following examples to illustrate the upcoming definitions. 
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Figure 1 Three operation specifications (see online version for colours) 

 

Figure 2 Three interface specifications (see online version for colours) 
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3.2 Service equivalence relations 

Service equivalence relations determine whether two services offer the same functionality 
or not. A service is considered equivalent to another one if it can offer the same 
functionality (same interface) even with different non-functional QoS properties. The aim 
of this section is to provide definitions of possible relations between services in order to 
identify and decide when a service can be replaced by another one. Two relations are 
introduced: the equivalence (≡) and the almost equivalence ( )�  relations. In an 
equivalence relation, the two equivalent entities can interchange and be replaced one by 
the other. The equivalence relation is reflexive, symmetric, and transitive. In an almost 
equivalence relation only one entity can replace the other one. This relation is  
non-reflexive, asymmetric, and transitive. It is based on sub-concept relations in the 
ontologies used to describe services of the environments. The relations tackle two main 
parts of a service: its functional interface and its non-functional QoS properties. In the 
rest of this section, we define our interface equivalence relations and our non-functional 
QoS equivalence degree. 

We define the interface equivalence ≡sem upon the operation equivalence which itself 
is defined upon a concept matching MCpt with concepts belonging to a defined ontology. 
We begin by defining the concept matching of a given ontology. 

3.2.1 Concept matching 

The matching of two concepts belonging to the same ontology has been widely studied. 
We define our matching relation MCpt between concepts belonging to the same ontology. 
A concept n belonging to an ontology o (Figure 3), can provide all its immediate  
sub-concepts n1 and n2 or one of its sub-concepts n1 or n2. This distinction depends 
strongly on the ontology definitions and providers. Some research such as Paolucci et al. 
(2002) made the assumption that by selecting a concept n, we implicitly suppose that it 
provides all its immediate sub-concepts, others made the other assumption that by 
selecting a concept n, it provides at least one of its immediate sub-concepts, but not 
necessarily all of them. Consider the set {n1, n2, …, nn} of all the sub-concepts of a 
concept n in an ontology o, the assumption of Paolucci et al. (2002) is formalised as 
follows: n ≡provide (n1 ∧ n2 ∧ … ∧ nn) which means that n can replace n1, n2, etc. 
Others, do not make strong assumptions as this and suppose that a concept n provides one 
or more of its sub-concepts but not necessarily all of them, n ≡provide (n1 ∨ n2 ∨ ... ∨ nn). 
We fall into the first category, stipulating that a super-concept offers what its  
sub-concepts offer, and hence can replace them. 
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Figure 3 An ontology example (see online version for colours) 

 

Defining n and m, two concepts belonging to the same ontology o. We define the four 
values of concept matching MCpt inspired from Paolucci et al. (2002) as follows: 

Definition 1: MCpt(n, m) = Exact 

If n and m are equivalent concept. 

Definition 2: MCpt(n, m) = PlugIn 

If n is a super-concept of m. 

Definition 3: MCpt(n, m) = Subsume 

If n is a sub-concept of m. 

Definition 4: MCpt(n, m) = Fail 

If n and m do not verify the above conditions. 

Example 2: Using our ontology example Figure 4, we give an example of MCpt. 

( , )

( , )

( , )

( , )

Cpt

Cpt

Cpt

Cpt

M content electronic PlugIn

M document URL PlugIn
Example

M paper document Subsume

M content path Fail

′′ ′′ ′′ ′′ =

′′ ′′ ′′ ′′ =

′′ ′′ ′′ ′′ =

′′ ′′ ′′ ′′ =

 

Figure 4 A document ontology example (see online version for colours) 
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These concept matching values are the metrics employed to match operations and 
interfaces of services. We first define the values that the matching of operations can take, 
and based on these values we define when two operations are equivalent or almost 
equivalent. 

3.2.2 Semantic operation equivalence 
Definition 5: Comparable operations .∝  

We define two operations opi and opj to be comparable ( ( , ) )opi opj true∝ =  if they have 
the same number of inputs and the same number of outputs and if it exists a bijection f 
over their inputs allowing to compare the inputs parameters two by two. 

{ }, 1 opik I In∀ ∈ …  

( )
( )( ): , , ! ,

opi opj opi opj

opi opj opj opi k l

In In Out Out

f n In n ink In f in in

= ∧ =

∧ ∃ → ∀ ∃ ∈ =
 

{ , , , } ,i j l k∀ ∈`  we define the semantic matching, Msem(opi, opj), of two comparable 
operations opi and opj ( ( , ) ),i jop op true∝ =  considering the semantic matching of their 
concepts, inputs and outputs. 

We can quickly realise that the semantic matching of these three items – inputs, 
outputs, and concepts – can be different, as the concept matching can take multiple 
values. In a semantic matching, the three items can range from Exact matching to Fail 
passing by the PlugIn and Subsume values. 

We define the different values a semantic matching Msem between two operations opi 
and opj can take as follows: 

Definition 6: Msem(opi, opj) = Exact 

Two operations opi and opj verifying ( ( , ) )i jop op true∝ =  are Exact semantic matching 
if all the matching values between concept, inputs and output are Exact. 

( )( )
( )( )( )

( )( )

: ,

, ,

,

op opi j

i k k

op opi j

Cpt cpt cpt

k op Cpt in in

Cpt out out

k M sem sem Exact

in In M sem f sem Exact

M sem sem Exact

∀ ∈ =

∧ ∀ ∈ =

∧ =

`

 

Definition 7: Msem(opi, opj) = PlugIn 

They are PlugIn semantic matching if they are not Exact matching and all the matching 
between concept, inputs or output values are Exact or PlugIn. 
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( )
( ) { }( )

( )( ) { }( )
( ) { }( )

:
,

,

, ,

,

op opi j

i k k

op opi j

sem i j

Cpt cpt cpt

k op Cpt in in

Cpt out out

k
M op op Exact

M sem sem Exact PlugIn

in In M sem f sem in Exact PlugIn

M sem sem Exact PlugIn

∀ ∈

≠

∧ ∈ ∨

∧ ∀ ∈ ∨

∧ ∈ ∨

`

 

Definition 8: Msem(opi, opj) = Subsume 

They are Subsume semantic matching if they are no Exact or PlugIn matching and at least 
one matching value between concept, inputs or output is Subsume and no Fail matching 
value is found between outputs, concepts, and the corresponding comparable inputs. 

( )
( )( )
( )( )

( )( )( )
( )( )

:
,

,

, ( )

, , ( )

, ( )

op opi j

i k k

op opi j

sem i j

sem i j

Cpt cpt cpt

k op Cpt in in

Cpt out out

k
M op op Exact

M op op PlugIn

M sem sem Fail

in In M sem f sem Fail

M sem sem Fail

∀ ∈

≠

∧ ≠

∧ = ¬

∧ ∀ ∈ = ¬

∧ = ¬

`

 

Definition 9: Msem(opi, opj) = Fail 

They are Fail semantic matching if they have different inputs or outputs numbers or at 
least one semantic matching value between concepts, inputs or outputs is Fail. 

( )
( )

( )( )
( )( )

( )( )

{ , } :

,

, , ,

,

i j

i j

op opi j

i j k l

op opi j

op op

op op

Cpt cpt cpt

k op l op Cpt in in

Cpt out out

k l

In In

Out Out

M sem sem Fail

in In in In M sem sem Fail

M sem sem Fail

∀ ∈

≠

∨ ≠

∨ =

∨ ∃ ∈ ∀ ∈ =

∨ =

`

 

Example 3: Considering the three operations defined in Figure 1. 

The semantic matching between these operations give the following values: 



   

 

   

   
 

   

   

 

   

    Semantic service substitution in pervasive environments 293    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

( , )

( , )

( , )

( , )

( , )

( , )

Cpt

Cpt

Cpt

Cpt

Cpt

Cpt

M Printing Impression PlugIn

M Printing Printer PlugIn

M Impression Printer Subsume

M Impression Printing Subsume

M Printer Printing Subsume

M Printer Impression PlugIn

= =

= =

= =

= =

= =

= =

 

The semantic operation matching provides the tools to define when operations are 
equivalent or almost equivalent. 

Definition 10: Operation equivalence. 

We define two operations opi and opj to be semantically equivalent ≡sem if: 

( )( ) ( )( ), ,sem i j semop op true M opi opj Exact≡ = ⇔ =  

The operation equivalence ≡sem is reflexive, symmetric, and transitive. We notify that the 
semantic equivalence satisfies the conditions an equivalence relation ℜ  needs to fulfil. 

Definition 11: Operation almost equivalence. 

We define two operations opi and opj to be semantically almost equivalent sem�  if: 

( ) ( )( )( , ) ,sem i j sem i jop op true M op op PlugIn= ⇔ −�  

The almost equivalence is non-reflexive, asymmetric, and transitive. This relation of 
almost equivalence specifies that opi is equivalent to opj and can replace it but that the 
contrary is not true. opj can not always replace opi. 

Example 4: Coming back to our example in Figure 1, where we had these matching 
values between the three operations Printing, Impression, and Printer: 

( , )

( , )

( , )

( , )

( , )

( , )

Cpt

Cpt

Cpt

Cpt

Cpt

Cpt

M Printing Impression PlugIn

M Printing Printer PlugIn

M Impression Printer Subsume

M Impression Printing Subsume

M Printer Printing Subsume

M Printer Impression PlugIn

= =

= =

= =

= =

= =

= =

 

We can conclude the following almost equivalent relations: 

( , )
( , )
( , )

Printing Impression true
Printing Printer true
Printer Impression true

=
=
=

�
�
�
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Now, that we have defined the operation equivalence relations, we define the interface 
equivalence relations and by that we define when two services are equivalent or almost 
equivalent. 

3.2.3 Interface equivalence 

We define two interfaces to be comparable ( ( , ) )i jifc ifc true∝ =  if they have the same 
number of operations and if it exists a bijection f over their operations allowing to 
compare them two by two: 

Definition 12: Comparable interfaces ∝  

We define two interfaces ifci and ifcj to be comparable ( ( , ) )i jifc ifc true∝ =  if: 

( )( ): , , ! ,
i j

i j j i

ifc ifc

ifc ifc l ifc k ifc k l

Op Op

f Op Op op Op op Op f op op

=

∧ ∃ → ∀ ∈ ∃ ∈ =
 

As for operations we define the semantic matching between two interfaces ifci and ifcj: 

Definition 13: Msem(ifci, ifcj) = Exact 

Two interfaces ifci and ifcj are Exact semantic match if ( , )i jifc ifc true∝ =  and: 

( )( ), ,
ii ifc sem i iop Op M op f op Exact∀ ∈ =  

Definition 14: Msem(ifci, ifcj) = PlugIn 

They are PlugIn semantic match if ( , ) ,i jifc ifc true∝ =  and: 

( )
( )( ) { }( )

,

, ,
i

sem i j

i ifc sem i i

M ifc ifc Exact

op Op M op f op Exact PlugIn

≠

∧ ∀ ∈ ∈ ∨
 

Definition 15: Msem(ifci, ifcj) = Subsume 

They are Subsume semantic match if ( , ) ,i jifc ifc true∝ =  ifci and ifcj are not Exact nor 
PlugIn semantic match and: 

( )
( )( )

( )( ) )

,

,

, , { }
i

sem i j

sem i j

i ifc sem i j

M ifc ifc Exact

M ifc ifc PlugIn

op Op M ifc ifc Exact PlugIn Subsume

≠

∧ ≠

∧ ∀ ∈ ∈ ∨ ∨

 

Definition 16: Msem(ifci, ifcj) = Fail 

They are Fail semantic match if: 

( )
( )( )

,

, , ,
i j

i j

i ifc j ifc sem i j

ifc ifc false

op Op op Op M op op Fail

∝ =

∨ ∃ ∈ ∀ ∈ =
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It is sufficient to have only one operation opi of ifci that do Fail match with any operation 
opj of ifcj to declare that the two services matching fails. 

Based on these interface semantic matching definitions, we define the interface 
equivalence and almost equivalence. 

Definition 17: Interface equivalence. 

We define two interfaces ifci and ifcj to be semantically equivalent ≡sem if: 

( )( ) ( )( ), ,sem i j sem i jifc ifc true M ifc ifc Exact≡ = ⇔ =  

The equivalence ≡sem is reflexive, symmetric, and transitive. 

Definition 18: Interface almost equivalence. 

We define two services ifci and ifcj to be semantically almost equivalent sem�  if: 

( )( ) ( )( ), ,i j sem i jsem ifc ifc true M ifc ifc PlugIn= ⇔ =�  

As for operations, the almost equivalence is non-reflexive, non-symmetric, and transitive. 
This relation of almost equivalence specifies that ifci is equivalent to ifcj and can replace 
it but that the contrary is not true. ifcj cannot always replace ifci. 

Example 5: Considering the three interfaces and their semantic descriptions in Figure 2: 

The semantic matching between their different operations gives the following values: 

( )
( )( )
( )( )

( )( )

1 3

1 3

1, 3

1 , 1

2 , 2

1, 3

sem ifc ifc

sem ifc ifc

sem

ifc ifc true

M op op PlugIn

M op op PlugIn

We can implies ifc ifc true

∝ =

∧ =

∧ =

⇒ =�

 

The two interfaces ifc1 and ifc2 are not comparable as they do not have the same number 
of operations. Nevertheless, some of their operations are PlugIn semantic. 

Many services do not have the same number of operations per interface as depicted in 
Example 5. To resolve this issue brought by the example. We define the matching over a 
set of operations for two interfaces ifci and ifcj. 

Definition 19: ( , )Op
sem i jM ifc ifc Exact=  

Two interfaces ifci and ifcj are Exact semantic matching over a subset of operations 
Op, if: 

( )
( )( )( )

,

, , ,
i

Op
i j

ifc sem i i

ifc ifc true

Op Op opi Op M op f op Exact

∝ =

∧ ⊂ ∀ ∈ =
 

Definition 20: ( ),Op
sem i jM ifc ifc PlugIn=  

Two services ifci and ifcj are PlugIn semantic matching over a subset of operations Op, if: 
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( )
( )

( )( )( )

,

,

, , , { }
i

Op
i j

Op
sem i j

ifc sem i i

ifc ifc true

M ifc ifc Exact

Op Op opi Op M op f op Exact PlugIn

∝ =

≠

∧ ⊂ ∀ ∈ ∈ ∨

 

We thus define interface equivalence and almost equivalence between interfaces over a 
subset of operations: 

Definition 21: Interface equivalence over a subset of operations, Op
sem≡  

We define two interfaces ifci and ifcj to be semantically equivalent over a subset of 
operations Op: 

( )( ) ( )( ), ,Op Op
sem i j sem i jifc ifc true M ifc ifc Exact≡ = ⇔ =  

Definition 22: Interface almost equivalence over a subset of operations, Op
sem�  

We define two services ifci and ifcj to be semantically almost equivalent over a subset of 
equivalence Op: 

( )( ) ( )( ), ,Op Op
swm i j sem i jifc ifc true M ifc ifc PlugIn= ⇔ =�  

Example 6: Coming back to our example in Figure 2. The semantic matching between the 
different operations of ifc1 and ifc2 gives the following values: 

( )
( )( )
( )( )

1 11 , 2

1 2

1 2

1, 2

1 , 1

2 , 3

ifc ifcop op

sem ifc ifc

sem ifc ifc

ifc ifc true

M op op PlugIn

M op op PlugIn

∝ =

∧ =

∧ =

 

From these matching values, we can implies 1 1{ 1} , 2 }( ( 1, 2) )fc ifcop i op
sem ifc ifc true⇒ =�  

The two interfaces ifc1 and ifc2 are almost equivalent upon the two operations of ifc1. 

This equivalence and almost equivalence over subsets of operations is useful for service 
substitution issues, as a service can be replaced by another one if certain operations are 
specified to be required by applications at a given time. Many services can be almost 
equivalent and we need to be able to rank between these almost equivalence relations. A 
ranking of the semantic matching values need to be introduced. This ranking will help 
ordering services that have semantic almost equivalence with different concept values for 
the respective operations’ inputs, outputs and concepts. It is also used to rank interfaces 
and operations that have Subsume semantic matching. This operations’ ordering allows 
users and applications to choose services that best suit their requirements at a given time, 
and re-adapt their choice if other services that have a closer semantic equivalence appear. 
We introduce a semantic distance Dsem between two interfaces. It calculates the distance 
between two interfaces semantic descriptions. The more this value is closer to zero the 
more these two services are equivalent. 
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3.2.4 Semantic distance 

Definition 23: Concept semantic distance. 

We first define a normalised concept distance DCpt between two concepts n and m: 

( , ) : 0 ( , )

0.2 ( , )

0.8 ( , )

1 ( , )

Cpt Cpt

Cpt

Cpt

Cpt

D n m if M n m Exact

if M n m PlugIn

if M n m Subsume

if M n m Fail

=

=

=

=

 

The closer the distance is to zero, the best is the semantic value matching between two 
concepts. An Exact value is preferred to a PlugIn one, which is preferred to a Subsume 
one. The choice of values can vary. The idea is to assign different values and especially 
values that reflect the importance of the matching result. In this definition we chose to 
distinguish to Exact and PlugIn from Subsume and Fail. Other values more ponderated 
can be chosen. 

Definition 24: Operation semantic distance. 

We define the semantic distance between two comparable operations opi and opj 
( ( , ) ) : ( ( , ), , ).semopi opj true D opi opj i j∝ = ∈`  This semantic distance is the sum of the 
ponderated concept distance of the operation concept, inputs and output semantic 
description: 

( ) ( )

( )( )( )
1 2

1

* , * ,

* ,

opi opj

opi

opi opi

Cpt cptopi cptopj Cpt out out

In
k Cpt ink f inkk

w D sem sem w D sem sem

w D sem sem
=

+

+∑
 

where ( ) 1
i

wi
∈

=∑ `
 

wi corresponds to the weight we wish to give to the concept, inputs and output. When 
matching two operations, the focus may be put on inputs, outputs parameters or on the 
concept. wi allows to ponderate the ranking of operations. 

Definition 25: Interface semantic distance. 

The semantic distance between two comparable interfaces ( ( , ) , )sem i iD ifc ifc i j∈`  is the 
sum of all the semantic distance between their comparable operations, ponderated by a 
weight allowing to focus on some operations rather than others. 

( )( )( )1
* ,ifci

i i

Op
k sem ifc ifck

w D opk f opk
=∑  

Example 7: We come back to our example and calculate the semantic distance Dsem of our 
three operations: 
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( , ) 0

( , ) 0.2

( , ) 0

( , ) 2*0.2

Cpt

Cpt

Cpt

sem

D printer printer

D document URI

D state state

D printing printer w

′′ ′′ ′′ ′′ =

′′ ′′ ′′ ′′ =

′′ ′′ ′′ ′′ =

=> =

 

( , ) 0

( , ) 0.2

( , ) 0

( , ) 2*0.2

Cpt

Cpt

Cpt

sem

D printer printer

D document path

D state state

D printing impression w

′′ ′′ ′′ ′′ =

′′ ′′ ′′ ′′ =

′′ ′′ ′′ ′′ =

=> =

 

The operations Printing is PlugIn matching with Impression and Printer and has the 
same semantic distance value to both operations. 

( , ) 0

( , ) 0.8

( , ) 0

( , ) 2*0.8

Cpt

Cpt

Cpt

sem

D printer printer

D pat document

D state state

D impression printing w

′′ ′′ ′′ ′′ =

′′ ′′ ′′ ′′ =

′′ ′′ ′′ ′′ =

=> =

 

The overall value of DCpt(printing, impression) < DCpt(impression, printing) and is normal 
as printing is PlugIn of Impression and Impression Subsume of Printing (see Example 3). 

Example 8: We come back to our example and calculate the semantic distance Dsem of our 
interfaces: 

( )
( )

1 3

1 3

1 , 1 0.2

2 , 2 0.2

( 1, 3) 1*0.2 2*0.2

Cpt ifc ifc

Cpt ifc ifc

sem

D op op

D op i op

D ifc ifc w w

=

=

=> = +

 

( )
( )

1 2

1 2

1 , 1 0.2

2 , 3 0.2

( 1, 2) 1*0.2 2*0.2

Cpt ifc ifc

Cpt ifc ifc

sem

D op op

D op i op

D ifc ifc w w

=

=

=> = +

 

The overall values of DCpt(ifc1, ifc3) and DCpt(ifc1, ifc2) depends on the values assigned 
to the weights (w1 and w2). 

In our semantic distance calculation example, we gave the three items of an operation – 
inputs, output, and concept – the same importance. We can ponderate the semantic 
distance by introducing weights to each of the operation items. 

The equivalences introduced so far concern the interfaces of services. If two services 
can publish the same interface, they can provide different non-functional properties. If we 
are able to distinguish services by their functionalities, it is interesting to evaluate how 
equivalent services are in terms of non-functional QoS properties. In the following 
section, we define a metric to calculate the non-functional QoS equivalence degree for 
the services that are equivalent and almost equivalent. 
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3.3 Non-functional QoS equivalence degree 

Services can be semantically equivalent, almost equivalent, or having Subsume matching 
relations. These equivalence are based on the functional aspect of services. Services can 
offer the same functionalities but with different non-functional QoS properties. We will 
define a metric that measures the non-functional QoS degree of equivalence. This metric 
allows to assign a normalised degree that measures the degree of non-functional QoS 
similarities between two equivalent, almost equivalent, or Subsume matching services. 
These degrees are used to choose between diverse services providing different  
non-functional QoS properties, but offering similar functionalities. 

The non-functional QoS of an operation is defined as follows: 

Definition 26: Non-functional QoS properties. 

Consider a finite set of grammatical alphabet Σ, ontologies O, concepts N belongings to 
these ontologies O, non-functional QoS properties Np, quantitative non-functional 
properties NpQN, and qualitative non-functional properties NpQL. Considering an operation 
op we define its non-functional QoS as follows: 

{ }
{ }
{ }

* *: ,

1 , 2 , ,

1 , 2 , ,

, , , Σ*&

, , ,

QL QN

QL QL QL QL QL

QN QN QN QN QN

QL

Np Np Np

Np np np npk k NP

Np np np npk k NP

np name numericValue operator name numericValue

operator o n o O n N

= =

= =

=< > ∈ ∈

=< > ∈ ∈

…

…

\

 

operator specifies the order applied to numericValue. For {>, ≥} the greater the 
numericValue is, the best is the QoS property for the service runtime execution. For  
{<, ≤} the smaller the numericValue is, the best is the QoS property for the service 
runtime execution. 

The non-functional equivalence degree QoSDegree(opi, opj) between two functional 
equivalent operations is evaluated upon their quantitative and qualitative properties 
similarities. Two functional equivalent operations offer the same functionality but not 
necessarily the same non-functional QoS properties. The QoSDegree(opi, opj) evaluates the 
degree of similarities of two operations opi and opj concerning their non-functional QoS 
properties. We suppose that: 

( ): , ! , .opi opj opj opj opi opi opi opjf Np Np where npk Np npk Np f npk npk∃ → ∀ ∈ ∃ ∈ =  

,k∀ ∈`  npkopi and npkopj deals with the same non-functional QoS property. If npkopi is a 
quantitative non-functional QoS we have npkopj also a quantitative non-functional QoS 
and .

opi opjnpk npkname name=  If npkopi is a qualitative non-functional QoS we have npkopj 

also a qualitative non-functional QoS and .
opi opjnpk npkname name=  

Definition 27: QoSDegree(opi, opj) 

Considering two operations opi and opj, we define the degree of equivalence between the 
two operations QoSDegree(opi, opj) as a function that measures how close is opj from opi 
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in terms of non-functional QoS. We consider the non-functional properties of opi, NPopi 
and calculate as follows the degree of equivalence opj has upon these properties: 

( )1
( , ) *deg ,opiNp

Degree k opi opjk
QoS opi opj w npk npk

=
=∑  

where wk is the assigned weight for a particular non-functional QoS property with the 

following conditions 
1

( ) 1.opiNp
kk

w
⏐ ⏐

=
=∑  The more wk is closer to zero, the more important 

is the property Npk. This ponderation allows to decide when searching for equivalent 
services if certain non-functional QoS properties are more important than other for the 
required service replacement. deg(npkopi, npkopj) are normalised values between 0 and 1 
corresponding to the equivalence degree between npkopi and npkopj. These values are 
calculated using the z-score or standardisation of the npk values for quantitative 
properties and semantic distance for qualitative properties. 

We define deg(npkopi, npkopj) as follows: 

• deg( , ) deg( , )
opi opjopi opj QN QNnpk npk npk npk=  for the quantitative properties 

• deg( , ) deg( , )
opi opjopi opj QL QLnpk npk npk npk=  for the qualitative ones. 

We define next how we calculate these two degrees. 

Definition 28: deg( , )
opi opjQN QNnpk npk  

( ) ( ) ( )deg ,
opi opj opi opjQN QN QN QNnpk npk η npk η npk= −  

We define η(npkQN) as the normalisation of z-score value of npkQN for quantitative  
non-functional QoS. 

Definition 29: η(npQN) 

Considering npQN =<name, numericValue, operator> we define η(npQN) as follows: 

( )
( )

( )( ) ( )

: 0 - 2

1 - 2

- 4 0.5 2 - 2

QNnp QN

QN

QN QN

if operator is if z score np

if z score np

z score np if z score np

′ ′< < −

>

+ > > −

 

( )
( )
( )( ) ( )

:1 - 2

0 - 2

0.5 - 4 2 - 2

QNnp QN

QN

QN QN

if operator is if z score np

if z score np

z score np if z score np

′ ′> < −

>

− > > −

 

For < the numericValue is the best when it is the smallest. η(npQN) is closer to zero for the 
smallest value of numericValue and closer to one for the bigger value of numericValue, 
and vice versa for >. 
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The z-score of a quantitative property npQN, indicates how far and in what direction, 
the property deviates from its distribution’s mean, expressed in units of its distribution’s 
standard deviation. We use the z-score standardisation in order to provide a way of 
comparing all the different non-functional QoS by including consideration of their 
respective distributions. 

Definition 30: z-score(npQN) 

Considering the quantitative npQN, its corresponding z-score is: 

( ) (
( )) ( )

-

QN QN

QN npQN

np np

z score np numericValue

μ numericValue numericValue

=

− σ
 

where ( )
QNnpμ numericValue  is the mean of the values of npQN, and 

( )
QNnpnumericValueσ  is the standard deviation of npQN. 

In normal distribution we can distinguish that the 95% of z-score(npQN) values are 
comprises between −2 and 2. Based on this, η(npQN) calculates a value between 0 and 1 
taking into account the nature of quantitative non-functional QoS properties. Indeed the 

QNnpoperator  indicates whether the properties are stronger with greater values, or with 

smaller values. 
If for the quantitative non-functional QoS properties, we used z-score and 

normalisation to calculate the degree of similarities between two properties, for 
qualitative non-functional QoS we use the semantic distance to compare the concepts of 
the qualitative properties npQL. The semantic distance returns a normalised value between 
0 and 1. 

Definition 31: deg( , )
opi opjQL QLnpk npk  

Considering 
opiQLnpk  the qualitative non-functional QoS of the operation. We seek to 

find the best equivalence for it from a set of equivalent operations. Considering 
,

opjQLnpk name semantic=< >  the qualitative non-functional QoS of the other operations. 

We define deg( , )
opi opjQL QLnpk npk  as follows: 

( ) ( )deg , ,
opi opj npkQL npkQLopi opiQL QL sem semantic semanticnpk npk D n n=  

Example 9: Considering the three operations defined in Figure 1. Considering the 
Printing operation, it is almost equivalent to Printer and almost equivalent to Impression. 
We calculate the non-functional QoS degree of equivalence to determine which of 
Printer or Impression replace the best Printing. 

First, we calculate the values that we need for our degree computing. We detail the 
computing for nbpage. 
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( )
( )
( )
( )

2 2 2

( ) 56.66

( ) (60 56.66) (100 56.66) (10 56.66) 3 36.84

- (60 56.66) 36.84 0.09

- (100 56.66) 36.84 1.176

- (10 56.66) 36.84 1.

printing

impression

printer

μ nbpage

nbpage

z score nbpage

z score nbpage

z score nbpage

=

= − + − + − ÷ =

= − ÷ =

= − ÷ =

= − ÷ = −

σ

( )
( )
( )

26

0.477

0.206

0.816

printing

impression

printer

η nbpage

η nbpage

η nbpage

=

=

=

 

( )
( )
( )

0.515

0.867

0.186

printing

impression

printer

η nbpage

η nbpage

η nbpage

=

=

=

 

( )
( )
( )

, 0, ( , )

, 0.2 ( , )

, 1 ( , )

sem printing printing Cpt

sem printing impression Cpt

sem printing printer Cpt

D access access M wifi wifi Exact

D access access M wireless wifi PlugIn

D access access M bluetooth wifi Fail

′ ′ ′ ′= =

′ ′ ′ ′= =

′ ′ ′ ′= =

 

The QoSDegree of the three operations are: 

( ) ( )( )
( ) ( )( )

( )( )

( , ) 1*

2*

3* ,

Degree printing impression

printing impression

sem printing impression

QoS Printing Impression w η nbpage η nbpage

w η price η price

w D access access

= −

+ −

+

 

( , ) 1*0.27 2*0.35 3*0.2DegreeQoS Printing Impression w w w= + +  

( , ) 1*0.33 2*0.33 3*1DegreeQoS Printing Printer w w w= + +  

If we suppose the three non-functional QoS properties of the same importance  
w1 + w2 + w3 = 1, we obtain: QoSDegree(Printing, Impression) = 0.27, and 
QoSDegree(Printing, Printer) = 0.55. The Impression operation offers non-functional QoS 
that are closer to Printing than Printer if we assign the same weight to the three  
non-functional properties. 

4 Semantic service substitution in pervasive environments 

An application executing a service in pervasive environments would like to benefit from 
all the available services. Service substitution based on semantic interface matching and 
non-functional QoS properties is something the pervasive environment can provide to 
applications. We use the equivalence and almost equivalence relations to compare 
services together to know if one service can substitute another one. And we use the QoS 
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degree equivalence to be sure that the services we provide to applications fit their needs. 
When a service appears in the environment, it can be functionally equivalent to another 
service being executed by an application and with better QoS parameters. The 
environment will spontaneously substitute the service of the application with this new 
service. On the other hand, when a service disappear, the environment will look for 
equivalent or almost equivalent services with QoS properties similar to the vanishing 
services and redirect the application calls to this new service. These two actions of 
spontaneously substituting services to applications allow these latter to execute properly 
despite the environment dynamicity. 

4.1 Service appearance 

Considering a set S of finite services in the environment, we denote si the service that 
appears. As a first step, the pervasive environment searches for functionally equivalent or 
almost equivalent services interfaces in the environment. Indeed, these services are 
services that provide the same functionality – the same functional interfaces – as the 
service si, and can be replaced in the application clients execution by the service si. 

We consider the new service si. We suppose that the service si is equivalent or almost 
equivalent to other services in the environment: 

( ) ( ), ( , ) ( , )sem semsj S si sj true si sj true∃ ∈ ≡ = ∨ =�  

The spontaneous service si substitution succeeds if si can replace sj for the application 
execution and that by providing better non-functional QoS properties than sj for the 
applications. By checking the profile of applications, the pervasive environment knows 
the values and the priorities (wi) that the applications would like to assign to the  
non-functional QoS properties. The environment can simulate a service sk, with these 
values, and calculates the QoSdegree using the wi specified by the applications. If no wi are 
assigned, the pervasive environment applies the following values: 1.

i
wi

∈
=∑ `

 The 

service substitution succeeds if: 

( , ) ( , )degree degreeQoS si sk QoS sj sk<  

Which means that the new service si is closer to sk than sj is to sk in terms of  
non-functional QoS properties, sk reflecting the applications needs and preferences for 
the non-functional QoS properties of the service they execute. 

Example 10: Considering the three operations defined in Figure 1. 

The Printing service is a new service appearing in the environment and is semantic 
almost equivalent to the Impression service. The environment considers applications 
using the Impression service, and verifies which non-functional QoS properties are the 
required by the applications. For example, if the price is important, the wprice would be 
much more important than the waccess and wnbPage, and the new Printing service fits better 
for the application. The environment simulates a new service by assigning it the adequate 
values of the non-functional QoS properties required by applications. As an example, we 
can give the following application required non-functional QoS properties depicted under 
service sk: 
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{ }
{ }

, “

,50, , ,12,
QL

QN

NP access wireless

NP nbPage price

′′= < >

′ ′ ′ ′= < > > < < >
 

And wprice = 0.6, waccess = 0.2, wnbPage = 0.2. 
First, we calculate the values that we need for our degree calculations: 

( )
( )
( )
( )

: ( ) 55
: ( ) 32

- : 0.46

0.149

0.85

0.54

printing

impression

printer

sk

The mean for nbpage property μ nbpage
The standard deviation for nbpage property nbpage
The normalised z score values are η nbpage

η nbpage

η nbpage

η nbpage

=
=

=

=

=

=

σ

 

( )
( )
( )
( )

: ( ) 11
: ( ) 6, 4

- : 0.46

0.85

0.15

0.539

printing

impression

printer

sk

The mean for price property μ price
The standard deviation for price property price
The normalised z score values are η price

η price

η price

η price

=
=

=

=

=

=

σ

 

The semantic distance for the non-functional properties are: 

( )
( )
( )

, 0.8, ( , )

, 0 ( , )

, 1 ( , )

sem printing sk Cpt

sem printing sk Cpt

sem printer printer Cpt

D access access M wifi wireless Subsume

D access access M wireless wireless PlugIn

D access access M bluetooth wireless Fail

′ ′ ′ ′= =

′ ′ ′ ′= =

′ ′ ′ ′= =

 

Using these values we calculate: 

( , ) 0.6*0.08 0.2*0.8 0.2*0.078 0.22

( , ) 0.6*0.391 0.2*0 0.2*0.311 0.29
degree

degree

QoS Printing sk

QoS Impression sk

= + + =

= + + =
 

We have QoSdegree(Printing, sk) < QoSdegree(Impression, sk), which means that the new 
printing service fits better the application requirements. 

4.2 Service disappearance 

Another major issue requiring service substitution is the disappearance of services form 
the environment. If a service disappears, the service registry of the environment is 
notified. This one asks the environment to come back with all the services that are 
equivalent or almost equivalent to this service. If many services are found, the 
environment creates sets of services. A set for the services equivalent and another one for 
the almost equivalence. The equivalence is considered better than the almost equivalence, 
as services can be interchanged in an equivalence relation (symmetric relation). 
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We denote si the service that disappears and for this service the environment finds the 
equivalent or almost equivalent services: 

( ) ( ), ( , ) ( , )sem semsj S sj si true sj si true∃ ∈ ≡ = ∨ =�  

We define the following: 

( )
( )

: , ( , )

: , ( , )
sem

sem

S set of sj sj si true

S set of sj sj si true
≡ ≡ =

=� �
 

In every set, services are ordered following the QoSdegree function that returns for every 
equivalent services with the service that disappeared their degree of equivalence 
concerning the non-functional QoS properties related to the service that the environment 
would like to replace. 

By checking the values on the non-functional QoS properties for each service of 
every set, the environment calculates the QoSdegree(sj, si), *,sj S∀ ∈  of each service of a 
set with the service si. If no ponderation is given by the applications upon the priority of 
the properties the environment employs the same value for : 1.

i
wi wi

∈
=∑ `

 The 

services within each set are ordered from the best one [service sj that minimises 
QoSdegree(sj, si)) to the worst one [service sk that maximise QoSdegree(sj, si)): 

( )( )
( )( )

1

1

: , ( , ) , , 1 1

: , ( , ) , , 1 1

degree degree j

degree degree j

T set of ordered sj QoS sj si QoS s si j S

T set of ordered sj QoS sj si QoS s si j S

≡ + ≡

+

< ∈ ⎡ − ⎤⎣ ⎦

< ∈ ⎡ − ⎤⎣ ⎦� �

…

…
 

When a service si disappears, the environment chooses the best replacement for the 
service si by beginning from the most suitable set with the most suitable non-functional 
QoS properties. 

Example 11: Returning to our example of the Printing, Impression, and Printer services 
(c.f., Figure 1). 

If we search to replace the Printing service because of a sudden disappearance and 
need to choose between the Impression or the Printer services, the calculated QoSdegree 
between these services are different depending on the values assigned to wi. 

( ) ( )( )
( ) ( )( )

( )( )

( , ) 1*

2*

3* ,

Degree printing impression

printing impression

sem printing impression

QoS Printing Impression w η nbpage η nbpage

w η price η price

w D access access

= −

+ −

+

 

( , ) 1*0.27 2*0.35 3*0.2DegreeQoS Printing Impression w w w= + +  

( ) ( )( )
( ) ( )( )

( )( )

( , ) 1*

2*

3* ,

Degree printing impression

printing printer

sem printing printer

QoS Printing Printer w η nbpage η nbpage

w η price η price

w D access access

= −

+ −

+
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( , ) 1*0.33 2*0.33 3*1DegreeQoS Printing Printer w w w= + +  

If the service Printing is no longer available, the environment finds the services 
Impression and Printer as almost equivalent to Printing. For their non-functional 
properties, it is clear that if the environment assigns the same value to the three wi, the 
Impression service would have a closer degree to Printing. Nevertheless, if the 
application using Printing gives more importance to the price of the printing service, the 
environment will assign to w2 a greater importance, and we can notice the Printer service 
has a closer degree to Printing than the Impression service. 

It can occurs that no equivalent or almost equivalent services are found, in that case 
the search may be refined over a set of operations. If the users and applications of the 
services that disappeared used a particular operation or set of operations, the search may 
be specified over these operations using the equivalence and almost equivalence service 
relations defined upon particular operations ( , ).Op Op

sem sem≡ �  
The spontaneous service si substitution over a predefined set of operations Op 

succeeds if: 

( ) ( ), ( , ) ( , )Op Op
sem semsj S sj si true sj si ture∃ ∈ ≡ = ∨ =�  

Example 12: Considering the three services interfaces and their semantic descriptions in 
Figure 2: 

We have { 1 1, 2 1}( ( 1, 2) ),op ifc op ifc
sem ifc ifc true=�  which means that the services proposing the 

interface ifc1 with the operations op1ifc1 and op2ifc1 can replace the operations op1ifc2 and 
op3ifc2 of service ifc2. 

As for the service as a whole, the environment requires to create the sets of equivalent 
and almost equivalent services over the predefined set of operations. It also orders the 
services within these sets depending on the non-functional QoS properties of the 
concerned operations and not the non-functional QoS properties of all the service. 

If no services are found, the environment may consider the services that are Subsume 
matching with the service that disappeared. If this replacement can fail to provide the 
required functionality as a Subsume matching between services does not guarantee that 
the new service can provide all what the other service provided, it can allows the 
environment to provide something to the applications even if not exactly what is required, 
while awaiting the appearance of the desired services. The environment proposes these 
services to the applications, specifying that the services they seek are no longer available. 

In case of complete failure of finding an appropriate service, the service registry of 
the environment redirects all the calls to the functional interface of the disappearing 
service to a proxy. Once a service registers a functional interface responding to the 
applications needs, the calls of the proxy can be redirected to this new service. 

5 Evaluation of the semantic service substitution 

We implemented, as a proof of concept, all the major functionalities of the service 
substitution under an OSGi service platform implementation, the Apache Felix. The 
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service semantic matching is done using online reasoner OWL-S ontologies (The OWL 
Services Coalition, 2005) and the matching relations of Paolucci et al. (2002). The  
non-functional QoS properties are for now defined in the service description and we do 
not yet consider the dynamic changes affecting these properties while service execution. 
For the evaluations we developed a use case composed of 100 OSGi services in a small 
environment deployed on three laptops (Dell Latitude D410, 1.73 GHz, and 0.99 Go of 
memory). 

Figure 5 Time execution for semantic service matching (see online version for colours) 

 

The semantic matching is quite heavy (c.f., Figure 5). The OWL-S API takes about 12 
seconds to compare and matches 8 services owl-s descriptions (MyStudio) and 55 seconds 
for about 100 services. The pellet matching engine that reads all the OWL-S files by 
adding them to the reasoner and extracts the inputs, outputs and concepts fields is much 
slower and much more memory consumer than as simple syntactic matching based for 
example on introspection methods provided by the Java language. We conclude that the 
semantic matching using online semantic reasoning is a very heavy process. We can 
improve the matching time and memory consuming by employing techniques as in 
PERSE (Mokhtar, 2007) that propose efficient semantic service matching using encoding 
classified ontologies. 

Figure 6 gives the time execution and memory consumption for quantitative  
non-functional properties QoSdegree function computing. We suppose that each service has 
one quantitative non-functional property. When a service leaves the environment, the 
time to adapt to these changes is the time required to compute and sort the QoS degree of 
available services publishing the same interfaces (47 milliseconds for 100 services). 
When a service appears in the environment, the environment computes the QoS degree of 
these services to find if it better suits the applications using equivalent services. If so, the 
service registry will propose to applications the new service and the adaptation would be 
done in no time for the application, as it is showed Figure 6. 
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Figure 6 Time and memory consumption for QoS degree computing (see online version  
for colours) 

 

6 Conclusions 

Service substitution is used in runtime reconfiguration in SOA systems in order to 
tolerate runtime variations and ensure continuity in service provisioning for the users. 
Providing functionally equivalent services to the applications with better quality of 
services when services appear and disappear is a challenging problem as services are 
provided with different technologies and different characteristics. If many middleware 
proposed to semantically compare services and to adapt them to the application 
execution, few formalised and defined the service relations and especially the  
non-functional QoS properties degree metrics between services. We proposed a metric to 
compare services, based on semantic interface matching and a metric for computing the 
non-functional QoS property similarities between services. We implemented a prototype 
under Java OSGi framework as a proof of concept and evaluated the efficiency of our 
proposal. 

One of the aspects that are not yet tackled by our middleware prototype is the state of 
a service (Preuveneers and Berbers, 2008) that disappears while executing. If a service 
disappears while executing an application needs, to replace it in a transparent way, the 
environment needs not only to find equivalent services in terms of functional and  
non-functional QoS properties but to know from which state to start the execution of the 
new service, so that the application does not loose what has been already executed by the 
previous service. Mechanisms of logging and checkpoints need to be introduced at the 
service execution time level to save the state of a service at runtime. These mechanisms 
allow the environment to keep a trace over the state of services and to know when they 
disappear at which state of execution they were. Another important issue would be to test 
our prototype in large pervasive environments, such as university campus, were 
thousands of services may meet and where a real end user experience could be tested to 
evaluate the interest of our spontaneous service substitution approach vis à vis to users. 
Our approach would surely have problem to scale to these service numbers and a more 
smart selection, based not only on semantic ontologies but also on user profiles, would be 
appropriate to choose a subset of services to substitute. 
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