

 Int. J. Services, Economics and Management, Vol. 6, No. 4, 2014 283

 Copyright © 2014 Inderscience Enterprises Ltd.

Semantic service substitution in pervasive
environments

Noha Ibrahim
University of Grenoble,
LIG – Grenoble Informatics Laboratory,
F-38402 St. Martin d’Heres, Grenoble, France
Email: noha.ibrahim@imag.fr

Frédéric Le Mouël* and Stéphane Frénot
University of Lyon,
INSA-Lyon, INRIA CITI Lab,
F-69621 Villeurbanne, France
Email: frederic.le-mouel@insa-lyon.fr
Email: stephane.frenot@insa-lyon.fr
*Corresponding author

Abstract: A computing infrastructure where ‘everything is a service’ offers
many new system and application possibilities. Among the main challenges,
however, is the issue of service substitution for the application execution in
such heterogeneous environments. An application would like to continue to
execute even when a service disappears, or it would like to benefit from the
environment by using better services with better QoS when possible. In this
article, we define a generic service model and describe the equivalence
relations between services considering the functionalities they propose and
their non-functional QoS properties. We define semantic equivalence relations
between services and equivalence degree between non-functional QoS
properties. Using these relations we propose semantic substitution mechanisms
upon the appearance and disappearance of services that fit the application needs
in a pervasive environment. We developed a prototype as a proof of concept
and evaluated its efficiency over a real use case.

Keywords: service-oriented architecture; service substitution; semantic
matching; semantic distance; quality of service; z-score; equivalence relations.

Reference to this paper should be made as follows: Ibrahim, N., Le Mouël, F.
and Frénot, S. (2014) ‘Semantic service substitution in pervasive
environments’, Int. J. Services, Economics and Management, Vol. 6, No. 4,
pp.283–309.

Biographical notes: Noha Ibrahim holds a 'Diplôme d’Ingénieur’ from the
Ecole Nationale Supérieure d’Informatique et de Mathématique Appliquée de
Grenoble (ENSIMAG), and a PhD from National Institute for Applied Sciences
(INSA Lyon). Her dissertation focused on providing a spontaneous service
integration middleware adapted for pervasive environments. She is currently
Associate Professor in the Grenoble Informatics Laboratory (LIG) where she
works on service composition framework for optimising queries and data
mining for multimedia applications.

 284 N. Ibrahim et al.

Frédéric Le Mouël is currently Associate Professor in the National Institute for
Applied Sciences of Lyon (INSA Lyon), Telecommunications Department –
high-ranked school in France, part of the University of Lyon. He conducts his
research in the Center for Innovation in Telecommunication and Integration of
Services (INRIA CITI Lab.) where he is leading the Dynamic Software and
Distributed Systems for the Internet of Things research group (DynaMid
Team). He joined Shanghai Jiao Tong University (SJTU) as Visiting Professor
in 2013. His main interests are distributed systems, operating systems,
middleware, virtual machines, programming languages, especially in dynamic
and autonomic environments.

Stéphane Frénot holds a ‘Diplôme d’Ingénieur’ from INSA Lyon, and a PhD
from University Lyon I about distributed information systems in hospitals. He
is currently Professor at the Center for Innovation in Telecommunication and
Integration of Services (INRIA CITI Lab.), Telecommunications Department of
the National Institute for Applied Sciences of Lyon (INSA Lyon) and in the
Rhône-Alpes Complex Systems Institute (IXXI). He is co-heading the INRIA
Dice team and is particularly interested in data, web, programming and
geopolitics.

1 Introduction

A computing infrastructure (Erl, 2005) where ‘everything is a service’ offers many new
system and application possibilities. Among the main challenges, however, is the issue of
service substitution for the application execution in such heterogeneous environments.
An application would like to continue to execute even when a service disappears, or it
would like to benefit from the services in the environment by using better services with
better quality of service when possible.

A service publishes a functional interface, describing all the operations that the
service can execute. This description is based on semantics and ontologies (Bittner et al.,
2005) as pervasive environments (Weiser, 1991; Satyanarayanan, 2001) are populated
with services from different providers and technologies. Besides the semantic interface
description, the interface operations have non-functional properties corresponding to their
quality of service. Many middleware and architectures proposed solutions for service
substitution (Fredj et al., 2008) or service adaptation (Floch, 2006), but very few
described by models, definitions and metrics semantic service substitution adapted for
pervasive environments and based on functional interface matching and quality of service
computing.

The major contributions of the article are in defining and formalising:

• The equivalence relations between services considering the functionalities they
propose via their functional interfaces. We define and formalise the service model
and the service equivalence relations based on the semantic description of their
interfaces and operations. Theses relations allow to define if two services are
functionally equivalent or not.

• The QoS degree equivalence functions between the operations and the services.
Services can be functionally equivalent but offer and/or require different parameters

 Semantic service substitution in pervasive environments 285

for quality of service. The QoS equivalence degree gives a metric that indicates how
close two services are in terms of their quality of services.

• Service substitution mechanisms for applications executing in pervasive
environments. Based on service equivalence relations and QoS equivalence degree,
the pervasive environment can decide to substitute services by functionally
equivalent ones, with better QoS computed via the QoS equivalence degree. These
service substitution are done transparently and spontaneously as services appear and
disappear in the environment with the users coming and leaving.

To define, formalise and explain our relations and metrics we adopted the following
model. The ‘DEFINITION’ paragraphs define the relations and functions between
concepts, operations and services using simple grammar and language, whereas the
‘EXAMPLE’ paragraphs illustrate and explain these definitions via a use case.

We begin in Section 2 by exposing the state of the art. We define in Section 3 the
service equivalence relations and the non-functional QoS degree equivalence metrics. We
then explain in Section 4 the semantic service substitution in pervasive environments.
Section 5 details the developed proof-of-concept prototype and its results. Finally,
Section 6 concludes and gives perspectives for this work.

2 State of the art

In pervasive environments, service substitution (Fredj et al., 2008; Santhanam et al.,
2009) and service similarity problems (Kokash, 2006; Mokhtar, 2007; Aït-Bachir and
Fauvet, 2009) have become the new trends in the service-oriented community after the
service discovery and service composition problems. Once services are deployed,
accessed, executed and composed, the pervasiveness of the environment imposes
researchers to find solutions for the service unavailability problem. Indeed, in a pervasive
environment, services can come and go without prior notification and finding the right
substitute for a given service is very often a hard task to achieve. In the literature, we
distinguish three types of service similarity: those concerning the structural part or
functional property of services, those concerning the behavioural part of services and
those that deal with the non-functional properties of services.

Structural similarity between services (Kokash, 2006) is a functional matching
algorithm between the interface WSDL descriptions of web services. The algorithm takes
the description of web services and is able to tell if the two services are similar using a
semantic similarity metric. But this work need to be optimised and especially the
non-functional parts of services need to be taken into account. Perse (Mokhtar, 2007)
proposes a QoS metric for web services based on normalisation functions but this metric
is used to dynamically compose services together. Perse does not consider service
substitution as a separate problem from service composition. Finally, EurekaBESERIAL
(Aït-Bachir and Fauvet, 2009) proposes an algorithm that is capable of detecting all the
incompatibilities between two interface behaviour for web services and based on these
incompatibilities it introduces a similarity function to compare two web services
behaviour but it does not take into account the non-functional properties of services.

Some works deal with service substitution (Fredj et al., 2008; Santhanam et al.,
2009). Siroco (Fredj et al., 2008) proposes a framework that substitutes stateful web

 286 N. Ibrahim et al.

services, taking into account the state of a service when executing and ensuring to
applications a service continuity when substituting the service. But Siroco does not deal
for now with non-functional properties. Santhanam et al. (2009) propose a web service
substitution based on preferences over non-functional attributes but their description of
non-functional properties is not general enough to take all types of non-functional
properties into consideration. In this article, we do not limit our model to web services as
all major systems do but propose a general model of a service, describing its functional
and non-functional properties (quantitative or qualitative) and based on this model we
propose different metrics for computing non-functional service similarities. Than, we
propose a mechanism for service substitution that substitute services not only upon their
unavailability as the major systems do, but also when a new service fits better an
application.

3 Service functional and non-functional QoS equivalence relations

3.1 Service model

We define a generic service model as composed of a functional interface and
non-functional QoS properties. A functional interface specifies operations that can be
performed on the service. An operation is described by a concept, a set of inputs and an
output. The QoS non-functional properties describe the operation capabilities. These
capabilities reflect the quality of the functionality expected from the service, such as
dependability (including availability, reliability, security and safety), accuracy of the
operation, speed of the operation, and so on. The service is also semantically described.
The semantic description is upon the operations and QoS properties and is based upon
common ontology concepts.

Consider finite sets of grammatical alphabet Σ, ontologies O, concepts N belongings
to these ontologies O, operations Op, inputs In, outputs Out, concepts Cpt, non-functional
properties Np, quantitative and qualitative non-functional properties NpQN, NpQL.
Consider the following operators: * (repetition zero or more times), + (repetition one or
more times), | | (the number of occurrences) and 0..1 (repetition zero or one time).

We define an operation op belonging to Op ⊂ Op as follows:

(
)

In, Out, Cpt,

Np , , :QN QN QL QL

op Op In Out cpt Np

Np Np Np Np

∈ ⇔ ∃ ⊂ ∃ ⊂ ∃ ∈ ∃

⊂ ⊂ ∃ ⊂ ∃ ⊂

0..1: *, , , *op In Out cpt Np< >

: , , , Σ*in name type semantic name< > ∈

: , , Σ*cpt name semantic name< > ∈

: , , { , } Σ*type language name name language< > ∈

: , , O, Nsemantic o n o O n N< > ∈ ⊂ ∈ ⊂

* *: ,QL QNnp Np Np< >

 Semantic service substitution in pervasive environments 287

: , , Σ*QLnp name semantic name< > ∈

: , , , Σ*QNnp name numericValue operator name< > ∈

numericValue∈\

: { , , , }operator < > ≤ ≥

where

• In is the set of the operation op inputs. in is defined as a tuple where name is the
chosen input syntactic name, type is the syntactic input type, and semantic the input
semantic description.

• out Out∈ is the operation op output. out is defined as a tuple where type is the
output syntactic type, and semantic its semantic description.

• cpt is the concept the operation op defines. The operation op concept cpt is defined
as a tuple, where name is the syntactic name through which the operation is called
and semantic its semantic description.

• Np is the set of non-functional properties characterising op. Np can be qualitative or
quantitative. QN QLnp Np∈ is the qualitative non-functional properties defined as a
tuple <name, semantic>. QN QNnp Np∈ is the quantitative non-functional properties
defined as a tuple, where numeriValue∈\ and { , , , }.operator∈ > < ≤ ≥ operator
specifies the order applied to numericValue. For {>, ≥} the greater the numericValue
is, the best is the QoS property for the service runtime execution. For {<, ≤} the
smaller the numericValue is, the best is the QoS property for the service runtime
execution.

The type depends strongly on the programming language the op is defined in, whereas the
semantic is independent of the technology and more related to the set of defined
ontologies O.

Our service model is general enough to respect the SOA specifications, and to offer a
common model to the heterogeneous technologies usually available in pervasive
environments. The model proposes semantic descriptions relying on common ontologies,
and by that it allows to abstract from the programming languages.

Example 1: We consider three operations (c.f., Figure 1) and three interfaces (c.f.,
Figure 2) described under the generic service model. Each operation has a set of inputs
described by a name, a type, and a semantic description, an output described by a type
and a semantic description, and a concept described by a name and a semantic concept.
Each operation can have one or several non-functional properties, qualitative or
quantitative. These three operations (c.f., Figure 1) and three interfaces (c.f., Figure 2) are
used in the following examples to illustrate the upcoming definitions.

 288 N. Ibrahim et al.

Figure 1 Three operation specifications (see online version for colours)

Figure 2 Three interface specifications (see online version for colours)

 Semantic service substitution in pervasive environments 289

3.2 Service equivalence relations

Service equivalence relations determine whether two services offer the same functionality
or not. A service is considered equivalent to another one if it can offer the same
functionality (same interface) even with different non-functional QoS properties. The aim
of this section is to provide definitions of possible relations between services in order to
identify and decide when a service can be replaced by another one. Two relations are
introduced: the equivalence (≡) and the almost equivalence ()� relations. In an
equivalence relation, the two equivalent entities can interchange and be replaced one by
the other. The equivalence relation is reflexive, symmetric, and transitive. In an almost
equivalence relation only one entity can replace the other one. This relation is
non-reflexive, asymmetric, and transitive. It is based on sub-concept relations in the
ontologies used to describe services of the environments. The relations tackle two main
parts of a service: its functional interface and its non-functional QoS properties. In the
rest of this section, we define our interface equivalence relations and our non-functional
QoS equivalence degree.

We define the interface equivalence ≡sem upon the operation equivalence which itself
is defined upon a concept matching MCpt with concepts belonging to a defined ontology.
We begin by defining the concept matching of a given ontology.

3.2.1 Concept matching

The matching of two concepts belonging to the same ontology has been widely studied.
We define our matching relation MCpt between concepts belonging to the same ontology.
A concept n belonging to an ontology o (Figure 3), can provide all its immediate
sub-concepts n1 and n2 or one of its sub-concepts n1 or n2. This distinction depends
strongly on the ontology definitions and providers. Some research such as Paolucci et al.
(2002) made the assumption that by selecting a concept n, we implicitly suppose that it
provides all its immediate sub-concepts, others made the other assumption that by
selecting a concept n, it provides at least one of its immediate sub-concepts, but not
necessarily all of them. Consider the set {n1, n2, …, nn} of all the sub-concepts of a
concept n in an ontology o, the assumption of Paolucci et al. (2002) is formalised as
follows: n ≡provide (n1 ∧ n2 ∧ … ∧ nn) which means that n can replace n1, n2, etc.
Others, do not make strong assumptions as this and suppose that a concept n provides one
or more of its sub-concepts but not necessarily all of them, n ≡provide (n1 ∨ n2 ∨ ... ∨ nn).
We fall into the first category, stipulating that a super-concept offers what its
sub-concepts offer, and hence can replace them.

 290 N. Ibrahim et al.

Figure 3 An ontology example (see online version for colours)

Defining n and m, two concepts belonging to the same ontology o. We define the four
values of concept matching MCpt inspired from Paolucci et al. (2002) as follows:

Definition 1: MCpt(n, m) = Exact

If n and m are equivalent concept.

Definition 2: MCpt(n, m) = PlugIn

If n is a super-concept of m.

Definition 3: MCpt(n, m) = Subsume

If n is a sub-concept of m.

Definition 4: MCpt(n, m) = Fail

If n and m do not verify the above conditions.

Example 2: Using our ontology example Figure 4, we give an example of MCpt.

(,)

(,)

(,)

(,)

Cpt

Cpt

Cpt

Cpt

M content electronic PlugIn

M document URL PlugIn
Example

M paper document Subsume

M content path Fail

′′ ′′ ′′ ′′ =

′′ ′′ ′′ ′′ =

′′ ′′ ′′ ′′ =

′′ ′′ ′′ ′′ =

Figure 4 A document ontology example (see online version for colours)

 Semantic service substitution in pervasive environments 291

These concept matching values are the metrics employed to match operations and
interfaces of services. We first define the values that the matching of operations can take,
and based on these values we define when two operations are equivalent or almost
equivalent.

3.2.2 Semantic operation equivalence
Definition 5: Comparable operations .∝

We define two operations opi and opj to be comparable ((,))opi opj true∝ = if they have
the same number of inputs and the same number of outputs and if it exists a bijection f
over their inputs allowing to compare the inputs parameters two by two.

{ }, 1 opik I In∀ ∈ …

()
()(): , , ! ,

opi opj opi opj

opi opj opj opi k l

In In Out Out

f n In n ink In f in in

= ∧ =

∧ ∃ → ∀ ∃ ∈ =

{ , , , } ,i j l k∀ ∈` we define the semantic matching, Msem(opi, opj), of two comparable
operations opi and opj ((,)),i jop op true∝ = considering the semantic matching of their
concepts, inputs and outputs.

We can quickly realise that the semantic matching of these three items – inputs,
outputs, and concepts – can be different, as the concept matching can take multiple
values. In a semantic matching, the three items can range from Exact matching to Fail
passing by the PlugIn and Subsume values.

We define the different values a semantic matching Msem between two operations opi
and opj can take as follows:

Definition 6: Msem(opi, opj) = Exact

Two operations opi and opj verifying ((,))i jop op true∝ = are Exact semantic matching
if all the matching values between concept, inputs and output are Exact.

()()
()()()

()()

: ,

, ,

,

op opi j

i k k

op opi j

Cpt cpt cpt

k op Cpt in in

Cpt out out

k M sem sem Exact

in In M sem f sem Exact

M sem sem Exact

∀ ∈ =

∧ ∀ ∈ =

∧ =

`

Definition 7: Msem(opi, opj) = PlugIn

They are PlugIn semantic matching if they are not Exact matching and all the matching
between concept, inputs or output values are Exact or PlugIn.

 292 N. Ibrahim et al.

()
() { }()

()() { }()
() { }()

:
,

,

, ,

,

op opi j

i k k

op opi j

sem i j

Cpt cpt cpt

k op Cpt in in

Cpt out out

k
M op op Exact

M sem sem Exact PlugIn

in In M sem f sem in Exact PlugIn

M sem sem Exact PlugIn

∀ ∈

≠

∧ ∈ ∨

∧ ∀ ∈ ∨

∧ ∈ ∨

`

Definition 8: Msem(opi, opj) = Subsume

They are Subsume semantic matching if they are no Exact or PlugIn matching and at least
one matching value between concept, inputs or output is Subsume and no Fail matching
value is found between outputs, concepts, and the corresponding comparable inputs.

()
()()
()()

()()()
()()

:
,

,

, ()

, , ()

, ()

op opi j

i k k

op opi j

sem i j

sem i j

Cpt cpt cpt

k op Cpt in in

Cpt out out

k
M op op Exact

M op op PlugIn

M sem sem Fail

in In M sem f sem Fail

M sem sem Fail

∀ ∈

≠

∧ ≠

∧ = ¬

∧ ∀ ∈ = ¬

∧ = ¬

`

Definition 9: Msem(opi, opj) = Fail

They are Fail semantic matching if they have different inputs or outputs numbers or at
least one semantic matching value between concepts, inputs or outputs is Fail.

()
()

()()
()()

()()

{ , } :

,

, , ,

,

i j

i j

op opi j

i j k l

op opi j

op op

op op

Cpt cpt cpt

k op l op Cpt in in

Cpt out out

k l

In In

Out Out

M sem sem Fail

in In in In M sem sem Fail

M sem sem Fail

∀ ∈

≠

∨ ≠

∨ =

∨ ∃ ∈ ∀ ∈ =

∨ =

`

Example 3: Considering the three operations defined in Figure 1.

The semantic matching between these operations give the following values:

 Semantic service substitution in pervasive environments 293

(,)

(,)

(,)

(,)

(,)

(,)

Cpt

Cpt

Cpt

Cpt

Cpt

Cpt

M Printing Impression PlugIn

M Printing Printer PlugIn

M Impression Printer Subsume

M Impression Printing Subsume

M Printer Printing Subsume

M Printer Impression PlugIn

= =

= =

= =

= =

= =

= =

The semantic operation matching provides the tools to define when operations are
equivalent or almost equivalent.

Definition 10: Operation equivalence.

We define two operations opi and opj to be semantically equivalent ≡sem if:

()() ()(), ,sem i j semop op true M opi opj Exact≡ = ⇔ =

The operation equivalence ≡sem is reflexive, symmetric, and transitive. We notify that the
semantic equivalence satisfies the conditions an equivalence relation ℜ needs to fulfil.

Definition 11: Operation almost equivalence.

We define two operations opi and opj to be semantically almost equivalent sem� if:

() ()()(,) ,sem i j sem i jop op true M op op PlugIn= ⇔ −�

The almost equivalence is non-reflexive, asymmetric, and transitive. This relation of
almost equivalence specifies that opi is equivalent to opj and can replace it but that the
contrary is not true. opj can not always replace opi.

Example 4: Coming back to our example in Figure 1, where we had these matching
values between the three operations Printing, Impression, and Printer:

(,)

(,)

(,)

(,)

(,)

(,)

Cpt

Cpt

Cpt

Cpt

Cpt

Cpt

M Printing Impression PlugIn

M Printing Printer PlugIn

M Impression Printer Subsume

M Impression Printing Subsume

M Printer Printing Subsume

M Printer Impression PlugIn

= =

= =

= =

= =

= =

= =

We can conclude the following almost equivalent relations:

(,)
(,)
(,)

Printing Impression true
Printing Printer true
Printer Impression true

=
=
=

�
�
�

 294 N. Ibrahim et al.

Now, that we have defined the operation equivalence relations, we define the interface
equivalence relations and by that we define when two services are equivalent or almost
equivalent.

3.2.3 Interface equivalence

We define two interfaces to be comparable ((,))i jifc ifc true∝ = if they have the same
number of operations and if it exists a bijection f over their operations allowing to
compare them two by two:

Definition 12: Comparable interfaces ∝

We define two interfaces ifci and ifcj to be comparable ((,))i jifc ifc true∝ = if:

()(): , , ! ,
i j

i j j i

ifc ifc

ifc ifc l ifc k ifc k l

Op Op

f Op Op op Op op Op f op op

=

∧ ∃ → ∀ ∈ ∃ ∈ =

As for operations we define the semantic matching between two interfaces ifci and ifcj:

Definition 13: Msem(ifci, ifcj) = Exact

Two interfaces ifci and ifcj are Exact semantic match if (,)i jifc ifc true∝ = and:

()(), ,
ii ifc sem i iop Op M op f op Exact∀ ∈ =

Definition 14: Msem(ifci, ifcj) = PlugIn

They are PlugIn semantic match if (,) ,i jifc ifc true∝ = and:

()
()() { }()

,

, ,
i

sem i j

i ifc sem i i

M ifc ifc Exact

op Op M op f op Exact PlugIn

≠

∧ ∀ ∈ ∈ ∨

Definition 15: Msem(ifci, ifcj) = Subsume

They are Subsume semantic match if (,) ,i jifc ifc true∝ = ifci and ifcj are not Exact nor
PlugIn semantic match and:

()
()()

()())

,

,

, , { }
i

sem i j

sem i j

i ifc sem i j

M ifc ifc Exact

M ifc ifc PlugIn

op Op M ifc ifc Exact PlugIn Subsume

≠

∧ ≠

∧ ∀ ∈ ∈ ∨ ∨

Definition 16: Msem(ifci, ifcj) = Fail

They are Fail semantic match if:

()
()()

,

, , ,
i j

i j

i ifc j ifc sem i j

ifc ifc false

op Op op Op M op op Fail

∝ =

∨ ∃ ∈ ∀ ∈ =

 Semantic service substitution in pervasive environments 295

It is sufficient to have only one operation opi of ifci that do Fail match with any operation
opj of ifcj to declare that the two services matching fails.

Based on these interface semantic matching definitions, we define the interface
equivalence and almost equivalence.

Definition 17: Interface equivalence.

We define two interfaces ifci and ifcj to be semantically equivalent ≡sem if:

()() ()(), ,sem i j sem i jifc ifc true M ifc ifc Exact≡ = ⇔ =

The equivalence ≡sem is reflexive, symmetric, and transitive.

Definition 18: Interface almost equivalence.

We define two services ifci and ifcj to be semantically almost equivalent sem� if:

()() ()(), ,i j sem i jsem ifc ifc true M ifc ifc PlugIn= ⇔ =�

As for operations, the almost equivalence is non-reflexive, non-symmetric, and transitive.
This relation of almost equivalence specifies that ifci is equivalent to ifcj and can replace
it but that the contrary is not true. ifcj cannot always replace ifci.

Example 5: Considering the three interfaces and their semantic descriptions in Figure 2:

The semantic matching between their different operations gives the following values:

()
()()
()()

()()

1 3

1 3

1, 3

1 , 1

2 , 2

1, 3

sem ifc ifc

sem ifc ifc

sem

ifc ifc true

M op op PlugIn

M op op PlugIn

We can implies ifc ifc true

∝ =

∧ =

∧ =

⇒ =�

The two interfaces ifc1 and ifc2 are not comparable as they do not have the same number
of operations. Nevertheless, some of their operations are PlugIn semantic.

Many services do not have the same number of operations per interface as depicted in
Example 5. To resolve this issue brought by the example. We define the matching over a
set of operations for two interfaces ifci and ifcj.

Definition 19: (,)Op
sem i jM ifc ifc Exact=

Two interfaces ifci and ifcj are Exact semantic matching over a subset of operations
Op, if:

()
()()()

,

, , ,
i

Op
i j

ifc sem i i

ifc ifc true

Op Op opi Op M op f op Exact

∝ =

∧ ⊂ ∀ ∈ =

Definition 20: (),Op
sem i jM ifc ifc PlugIn=

Two services ifci and ifcj are PlugIn semantic matching over a subset of operations Op, if:

 296 N. Ibrahim et al.

()
()

()()()

,

,

, , , { }
i

Op
i j

Op
sem i j

ifc sem i i

ifc ifc true

M ifc ifc Exact

Op Op opi Op M op f op Exact PlugIn

∝ =

≠

∧ ⊂ ∀ ∈ ∈ ∨

We thus define interface equivalence and almost equivalence between interfaces over a
subset of operations:

Definition 21: Interface equivalence over a subset of operations, Op
sem≡

We define two interfaces ifci and ifcj to be semantically equivalent over a subset of
operations Op:

()() ()(), ,Op Op
sem i j sem i jifc ifc true M ifc ifc Exact≡ = ⇔ =

Definition 22: Interface almost equivalence over a subset of operations, Op
sem�

We define two services ifci and ifcj to be semantically almost equivalent over a subset of
equivalence Op:

()() ()(), ,Op Op
swm i j sem i jifc ifc true M ifc ifc PlugIn= ⇔ =�

Example 6: Coming back to our example in Figure 2. The semantic matching between the
different operations of ifc1 and ifc2 gives the following values:

()
()()
()()

1 11 , 2

1 2

1 2

1, 2

1 , 1

2 , 3

ifc ifcop op

sem ifc ifc

sem ifc ifc

ifc ifc true

M op op PlugIn

M op op PlugIn

∝ =

∧ =

∧ =

From these matching values, we can implies 1 1{ 1} , 2 }((1, 2))fc ifcop i op
sem ifc ifc true⇒ =�

The two interfaces ifc1 and ifc2 are almost equivalent upon the two operations of ifc1.

This equivalence and almost equivalence over subsets of operations is useful for service
substitution issues, as a service can be replaced by another one if certain operations are
specified to be required by applications at a given time. Many services can be almost
equivalent and we need to be able to rank between these almost equivalence relations. A
ranking of the semantic matching values need to be introduced. This ranking will help
ordering services that have semantic almost equivalence with different concept values for
the respective operations’ inputs, outputs and concepts. It is also used to rank interfaces
and operations that have Subsume semantic matching. This operations’ ordering allows
users and applications to choose services that best suit their requirements at a given time,
and re-adapt their choice if other services that have a closer semantic equivalence appear.
We introduce a semantic distance Dsem between two interfaces. It calculates the distance
between two interfaces semantic descriptions. The more this value is closer to zero the
more these two services are equivalent.

 Semantic service substitution in pervasive environments 297

3.2.4 Semantic distance

Definition 23: Concept semantic distance.

We first define a normalised concept distance DCpt between two concepts n and m:

(,) : 0 (,)

0.2 (,)

0.8 (,)

1 (,)

Cpt Cpt

Cpt

Cpt

Cpt

D n m if M n m Exact

if M n m PlugIn

if M n m Subsume

if M n m Fail

=

=

=

=

The closer the distance is to zero, the best is the semantic value matching between two
concepts. An Exact value is preferred to a PlugIn one, which is preferred to a Subsume
one. The choice of values can vary. The idea is to assign different values and especially
values that reflect the importance of the matching result. In this definition we chose to
distinguish to Exact and PlugIn from Subsume and Fail. Other values more ponderated
can be chosen.

Definition 24: Operation semantic distance.

We define the semantic distance between two comparable operations opi and opj
((,)) : ((,), ,).semopi opj true D opi opj i j∝ = ∈` This semantic distance is the sum of the
ponderated concept distance of the operation concept, inputs and output semantic
description:

() ()

()()()
1 2

1

* , * ,

* ,

opi opj

opi

opi opi

Cpt cptopi cptopj Cpt out out

In
k Cpt ink f inkk

w D sem sem w D sem sem

w D sem sem
=

+

+∑

where () 1
i

wi
∈

=∑ `

wi corresponds to the weight we wish to give to the concept, inputs and output. When
matching two operations, the focus may be put on inputs, outputs parameters or on the
concept. wi allows to ponderate the ranking of operations.

Definition 25: Interface semantic distance.

The semantic distance between two comparable interfaces ((,) ,)sem i iD ifc ifc i j∈` is the
sum of all the semantic distance between their comparable operations, ponderated by a
weight allowing to focus on some operations rather than others.

()()()1
* ,ifci

i i

Op
k sem ifc ifck

w D opk f opk
=∑

Example 7: We come back to our example and calculate the semantic distance Dsem of our
three operations:

 298 N. Ibrahim et al.

(,) 0

(,) 0.2

(,) 0

(,) 2*0.2

Cpt

Cpt

Cpt

sem

D printer printer

D document URI

D state state

D printing printer w

′′ ′′ ′′ ′′ =

′′ ′′ ′′ ′′ =

′′ ′′ ′′ ′′ =

=> =

(,) 0

(,) 0.2

(,) 0

(,) 2*0.2

Cpt

Cpt

Cpt

sem

D printer printer

D document path

D state state

D printing impression w

′′ ′′ ′′ ′′ =

′′ ′′ ′′ ′′ =

′′ ′′ ′′ ′′ =

=> =

The operations Printing is PlugIn matching with Impression and Printer and has the
same semantic distance value to both operations.

(,) 0

(,) 0.8

(,) 0

(,) 2*0.8

Cpt

Cpt

Cpt

sem

D printer printer

D pat document

D state state

D impression printing w

′′ ′′ ′′ ′′ =

′′ ′′ ′′ ′′ =

′′ ′′ ′′ ′′ =

=> =

The overall value of DCpt(printing, impression) < DCpt(impression, printing) and is normal
as printing is PlugIn of Impression and Impression Subsume of Printing (see Example 3).

Example 8: We come back to our example and calculate the semantic distance Dsem of our
interfaces:

()
()

1 3

1 3

1 , 1 0.2

2 , 2 0.2

(1, 3) 1*0.2 2*0.2

Cpt ifc ifc

Cpt ifc ifc

sem

D op op

D op i op

D ifc ifc w w

=

=

=> = +

()
()

1 2

1 2

1 , 1 0.2

2 , 3 0.2

(1, 2) 1*0.2 2*0.2

Cpt ifc ifc

Cpt ifc ifc

sem

D op op

D op i op

D ifc ifc w w

=

=

=> = +

The overall values of DCpt(ifc1, ifc3) and DCpt(ifc1, ifc2) depends on the values assigned
to the weights (w1 and w2).

In our semantic distance calculation example, we gave the three items of an operation –
inputs, output, and concept – the same importance. We can ponderate the semantic
distance by introducing weights to each of the operation items.

The equivalences introduced so far concern the interfaces of services. If two services
can publish the same interface, they can provide different non-functional properties. If we
are able to distinguish services by their functionalities, it is interesting to evaluate how
equivalent services are in terms of non-functional QoS properties. In the following
section, we define a metric to calculate the non-functional QoS equivalence degree for
the services that are equivalent and almost equivalent.

 Semantic service substitution in pervasive environments 299

3.3 Non-functional QoS equivalence degree

Services can be semantically equivalent, almost equivalent, or having Subsume matching
relations. These equivalence are based on the functional aspect of services. Services can
offer the same functionalities but with different non-functional QoS properties. We will
define a metric that measures the non-functional QoS degree of equivalence. This metric
allows to assign a normalised degree that measures the degree of non-functional QoS
similarities between two equivalent, almost equivalent, or Subsume matching services.
These degrees are used to choose between diverse services providing different
non-functional QoS properties, but offering similar functionalities.

The non-functional QoS of an operation is defined as follows:

Definition 26: Non-functional QoS properties.

Consider a finite set of grammatical alphabet Σ, ontologies O, concepts N belongings to
these ontologies O, non-functional QoS properties Np, quantitative non-functional
properties NpQN, and qualitative non-functional properties NpQL. Considering an operation
op we define its non-functional QoS as follows:

{ }
{ }
{ }

* *: ,

1 , 2 , ,

1 , 2 , ,

, , , Σ*&

, , ,

QL QN

QL QL QL QL QL

QN QN QN QN QN

QL

Np Np Np

Np np np npk k NP

Np np np npk k NP

np name numericValue operator name numericValue

operator o n o O n N

= =

= =

=< > ∈ ∈

=< > ∈ ∈

…

…

\

operator specifies the order applied to numericValue. For {>, ≥} the greater the
numericValue is, the best is the QoS property for the service runtime execution. For
{<, ≤} the smaller the numericValue is, the best is the QoS property for the service
runtime execution.

The non-functional equivalence degree QoSDegree(opi, opj) between two functional
equivalent operations is evaluated upon their quantitative and qualitative properties
similarities. Two functional equivalent operations offer the same functionality but not
necessarily the same non-functional QoS properties. The QoSDegree(opi, opj) evaluates the
degree of similarities of two operations opi and opj concerning their non-functional QoS
properties. We suppose that:

(): , ! , .opi opj opj opj opi opi opi opjf Np Np where npk Np npk Np f npk npk∃ → ∀ ∈ ∃ ∈ =

,k∀ ∈` npkopi and npkopj deals with the same non-functional QoS property. If npkopi is a
quantitative non-functional QoS we have npkopj also a quantitative non-functional QoS
and .

opi opjnpk npkname name= If npkopi is a qualitative non-functional QoS we have npkopj

also a qualitative non-functional QoS and .
opi opjnpk npkname name=

Definition 27: QoSDegree(opi, opj)

Considering two operations opi and opj, we define the degree of equivalence between the
two operations QoSDegree(opi, opj) as a function that measures how close is opj from opi

 300 N. Ibrahim et al.

in terms of non-functional QoS. We consider the non-functional properties of opi, NPopi
and calculate as follows the degree of equivalence opj has upon these properties:

()1
(,) *deg ,opiNp

Degree k opi opjk
QoS opi opj w npk npk

=
=∑

where wk is the assigned weight for a particular non-functional QoS property with the

following conditions
1

() 1.opiNp
kk

w
⏐ ⏐

=
=∑ The more wk is closer to zero, the more important

is the property Npk. This ponderation allows to decide when searching for equivalent
services if certain non-functional QoS properties are more important than other for the
required service replacement. deg(npkopi, npkopj) are normalised values between 0 and 1
corresponding to the equivalence degree between npkopi and npkopj. These values are
calculated using the z-score or standardisation of the npk values for quantitative
properties and semantic distance for qualitative properties.

We define deg(npkopi, npkopj) as follows:

• deg(,) deg(,)
opi opjopi opj QN QNnpk npk npk npk= for the quantitative properties

• deg(,) deg(,)
opi opjopi opj QL QLnpk npk npk npk= for the qualitative ones.

We define next how we calculate these two degrees.

Definition 28: deg(,)
opi opjQN QNnpk npk

() () ()deg ,
opi opj opi opjQN QN QN QNnpk npk η npk η npk= −

We define η(npkQN) as the normalisation of z-score value of npkQN for quantitative
non-functional QoS.

Definition 29: η(npQN)

Considering npQN =<name, numericValue, operator> we define η(npQN) as follows:

()
()

()() ()

: 0 - 2

1 - 2

- 4 0.5 2 - 2

QNnp QN

QN

QN QN

if operator is if z score np

if z score np

z score np if z score np

′ ′< < −

>

+ > > −

()
()
()() ()

:1 - 2

0 - 2

0.5 - 4 2 - 2

QNnp QN

QN

QN QN

if operator is if z score np

if z score np

z score np if z score np

′ ′> < −

>

− > > −

For < the numericValue is the best when it is the smallest. η(npQN) is closer to zero for the
smallest value of numericValue and closer to one for the bigger value of numericValue,
and vice versa for >.

 Semantic service substitution in pervasive environments 301

The z-score of a quantitative property npQN, indicates how far and in what direction,
the property deviates from its distribution’s mean, expressed in units of its distribution’s
standard deviation. We use the z-score standardisation in order to provide a way of
comparing all the different non-functional QoS by including consideration of their
respective distributions.

Definition 30: z-score(npQN)

Considering the quantitative npQN, its corresponding z-score is:

() (
()) ()

-

QN QN

QN npQN

np np

z score np numericValue

μ numericValue numericValue

=

− σ

where ()
QNnpμ numericValue is the mean of the values of npQN, and

()
QNnpnumericValueσ is the standard deviation of npQN.

In normal distribution we can distinguish that the 95% of z-score(npQN) values are
comprises between −2 and 2. Based on this, η(npQN) calculates a value between 0 and 1
taking into account the nature of quantitative non-functional QoS properties. Indeed the

QNnpoperator indicates whether the properties are stronger with greater values, or with

smaller values.
If for the quantitative non-functional QoS properties, we used z-score and

normalisation to calculate the degree of similarities between two properties, for
qualitative non-functional QoS we use the semantic distance to compare the concepts of
the qualitative properties npQL. The semantic distance returns a normalised value between
0 and 1.

Definition 31: deg(,)
opi opjQL QLnpk npk

Considering
opiQLnpk the qualitative non-functional QoS of the operation. We seek to

find the best equivalence for it from a set of equivalent operations. Considering
,

opjQLnpk name semantic=< > the qualitative non-functional QoS of the other operations.

We define deg(,)
opi opjQL QLnpk npk as follows:

() ()deg , ,
opi opj npkQL npkQLopi opiQL QL sem semantic semanticnpk npk D n n=

Example 9: Considering the three operations defined in Figure 1. Considering the
Printing operation, it is almost equivalent to Printer and almost equivalent to Impression.
We calculate the non-functional QoS degree of equivalence to determine which of
Printer or Impression replace the best Printing.

First, we calculate the values that we need for our degree computing. We detail the
computing for nbpage.

 302 N. Ibrahim et al.

()
()
()
()

2 2 2

() 56.66

() (60 56.66) (100 56.66) (10 56.66) 3 36.84

- (60 56.66) 36.84 0.09

- (100 56.66) 36.84 1.176

- (10 56.66) 36.84 1.

printing

impression

printer

μ nbpage

nbpage

z score nbpage

z score nbpage

z score nbpage

=

= − + − + − ÷ =

= − ÷ =

= − ÷ =

= − ÷ = −

σ

()
()
()

26

0.477

0.206

0.816

printing

impression

printer

η nbpage

η nbpage

η nbpage

=

=

=

()
()
()

0.515

0.867

0.186

printing

impression

printer

η nbpage

η nbpage

η nbpage

=

=

=

()
()
()

, 0, (,)

, 0.2 (,)

, 1 (,)

sem printing printing Cpt

sem printing impression Cpt

sem printing printer Cpt

D access access M wifi wifi Exact

D access access M wireless wifi PlugIn

D access access M bluetooth wifi Fail

′ ′ ′ ′= =

′ ′ ′ ′= =

′ ′ ′ ′= =

The QoSDegree of the three operations are:

() ()()
() ()()

()()

(,) 1*

2*

3* ,

Degree printing impression

printing impression

sem printing impression

QoS Printing Impression w η nbpage η nbpage

w η price η price

w D access access

= −

+ −

+

(,) 1*0.27 2*0.35 3*0.2DegreeQoS Printing Impression w w w= + +

(,) 1*0.33 2*0.33 3*1DegreeQoS Printing Printer w w w= + +

If we suppose the three non-functional QoS properties of the same importance
w1 + w2 + w3 = 1, we obtain: QoSDegree(Printing, Impression) = 0.27, and
QoSDegree(Printing, Printer) = 0.55. The Impression operation offers non-functional QoS
that are closer to Printing than Printer if we assign the same weight to the three
non-functional properties.

4 Semantic service substitution in pervasive environments

An application executing a service in pervasive environments would like to benefit from
all the available services. Service substitution based on semantic interface matching and
non-functional QoS properties is something the pervasive environment can provide to
applications. We use the equivalence and almost equivalence relations to compare
services together to know if one service can substitute another one. And we use the QoS

 Semantic service substitution in pervasive environments 303

degree equivalence to be sure that the services we provide to applications fit their needs.
When a service appears in the environment, it can be functionally equivalent to another
service being executed by an application and with better QoS parameters. The
environment will spontaneously substitute the service of the application with this new
service. On the other hand, when a service disappear, the environment will look for
equivalent or almost equivalent services with QoS properties similar to the vanishing
services and redirect the application calls to this new service. These two actions of
spontaneously substituting services to applications allow these latter to execute properly
despite the environment dynamicity.

4.1 Service appearance

Considering a set S of finite services in the environment, we denote si the service that
appears. As a first step, the pervasive environment searches for functionally equivalent or
almost equivalent services interfaces in the environment. Indeed, these services are
services that provide the same functionality – the same functional interfaces – as the
service si, and can be replaced in the application clients execution by the service si.

We consider the new service si. We suppose that the service si is equivalent or almost
equivalent to other services in the environment:

() (), (,) (,)sem semsj S si sj true si sj true∃ ∈ ≡ = ∨ =�

The spontaneous service si substitution succeeds if si can replace sj for the application
execution and that by providing better non-functional QoS properties than sj for the
applications. By checking the profile of applications, the pervasive environment knows
the values and the priorities (wi) that the applications would like to assign to the
non-functional QoS properties. The environment can simulate a service sk, with these
values, and calculates the QoSdegree using the wi specified by the applications. If no wi are
assigned, the pervasive environment applies the following values: 1.

i
wi

∈
=∑ `

 The

service substitution succeeds if:

(,) (,)degree degreeQoS si sk QoS sj sk<

Which means that the new service si is closer to sk than sj is to sk in terms of
non-functional QoS properties, sk reflecting the applications needs and preferences for
the non-functional QoS properties of the service they execute.

Example 10: Considering the three operations defined in Figure 1.

The Printing service is a new service appearing in the environment and is semantic
almost equivalent to the Impression service. The environment considers applications
using the Impression service, and verifies which non-functional QoS properties are the
required by the applications. For example, if the price is important, the wprice would be
much more important than the waccess and wnbPage, and the new Printing service fits better
for the application. The environment simulates a new service by assigning it the adequate
values of the non-functional QoS properties required by applications. As an example, we
can give the following application required non-functional QoS properties depicted under
service sk:

 304 N. Ibrahim et al.

{ }
{ }

, “

,50, , ,12,
QL

QN

NP access wireless

NP nbPage price

′′= < >

′ ′ ′ ′= < > > < < >

And wprice = 0.6, waccess = 0.2, wnbPage = 0.2.
First, we calculate the values that we need for our degree calculations:

()
()
()
()

: () 55
: () 32

- : 0.46

0.149

0.85

0.54

printing

impression

printer

sk

The mean for nbpage property μ nbpage
The standard deviation for nbpage property nbpage
The normalised z score values are η nbpage

η nbpage

η nbpage

η nbpage

=
=

=

=

=

=

σ

()
()
()
()

: () 11
: () 6, 4

- : 0.46

0.85

0.15

0.539

printing

impression

printer

sk

The mean for price property μ price
The standard deviation for price property price
The normalised z score values are η price

η price

η price

η price

=
=

=

=

=

=

σ

The semantic distance for the non-functional properties are:

()
()
()

, 0.8, (,)

, 0 (,)

, 1 (,)

sem printing sk Cpt

sem printing sk Cpt

sem printer printer Cpt

D access access M wifi wireless Subsume

D access access M wireless wireless PlugIn

D access access M bluetooth wireless Fail

′ ′ ′ ′= =

′ ′ ′ ′= =

′ ′ ′ ′= =

Using these values we calculate:

(,) 0.6*0.08 0.2*0.8 0.2*0.078 0.22

(,) 0.6*0.391 0.2*0 0.2*0.311 0.29
degree

degree

QoS Printing sk

QoS Impression sk

= + + =

= + + =

We have QoSdegree(Printing, sk) < QoSdegree(Impression, sk), which means that the new
printing service fits better the application requirements.

4.2 Service disappearance

Another major issue requiring service substitution is the disappearance of services form
the environment. If a service disappears, the service registry of the environment is
notified. This one asks the environment to come back with all the services that are
equivalent or almost equivalent to this service. If many services are found, the
environment creates sets of services. A set for the services equivalent and another one for
the almost equivalence. The equivalence is considered better than the almost equivalence,
as services can be interchanged in an equivalence relation (symmetric relation).

 Semantic service substitution in pervasive environments 305

We denote si the service that disappears and for this service the environment finds the
equivalent or almost equivalent services:

() (), (,) (,)sem semsj S sj si true sj si true∃ ∈ ≡ = ∨ =�

We define the following:

()
()

: , (,)

: , (,)
sem

sem

S set of sj sj si true

S set of sj sj si true
≡ ≡ =

=� �

In every set, services are ordered following the QoSdegree function that returns for every
equivalent services with the service that disappeared their degree of equivalence
concerning the non-functional QoS properties related to the service that the environment
would like to replace.

By checking the values on the non-functional QoS properties for each service of
every set, the environment calculates the QoSdegree(sj, si), *,sj S∀ ∈ of each service of a
set with the service si. If no ponderation is given by the applications upon the priority of
the properties the environment employs the same value for : 1.

i
wi wi

∈
=∑ `

 The

services within each set are ordered from the best one [service sj that minimises
QoSdegree(sj, si)) to the worst one [service sk that maximise QoSdegree(sj, si)):

()()
()()

1

1

: , (,) , , 1 1

: , (,) , , 1 1

degree degree j

degree degree j

T set of ordered sj QoS sj si QoS s si j S

T set of ordered sj QoS sj si QoS s si j S

≡ + ≡

+

< ∈ ⎡ − ⎤⎣ ⎦

< ∈ ⎡ − ⎤⎣ ⎦� �

…

…

When a service si disappears, the environment chooses the best replacement for the
service si by beginning from the most suitable set with the most suitable non-functional
QoS properties.

Example 11: Returning to our example of the Printing, Impression, and Printer services
(c.f., Figure 1).

If we search to replace the Printing service because of a sudden disappearance and
need to choose between the Impression or the Printer services, the calculated QoSdegree
between these services are different depending on the values assigned to wi.

() ()()
() ()()

()()

(,) 1*

2*

3* ,

Degree printing impression

printing impression

sem printing impression

QoS Printing Impression w η nbpage η nbpage

w η price η price

w D access access

= −

+ −

+

(,) 1*0.27 2*0.35 3*0.2DegreeQoS Printing Impression w w w= + +

() ()()
() ()()

()()

(,) 1*

2*

3* ,

Degree printing impression

printing printer

sem printing printer

QoS Printing Printer w η nbpage η nbpage

w η price η price

w D access access

= −

+ −

+

 306 N. Ibrahim et al.

(,) 1*0.33 2*0.33 3*1DegreeQoS Printing Printer w w w= + +

If the service Printing is no longer available, the environment finds the services
Impression and Printer as almost equivalent to Printing. For their non-functional
properties, it is clear that if the environment assigns the same value to the three wi, the
Impression service would have a closer degree to Printing. Nevertheless, if the
application using Printing gives more importance to the price of the printing service, the
environment will assign to w2 a greater importance, and we can notice the Printer service
has a closer degree to Printing than the Impression service.

It can occurs that no equivalent or almost equivalent services are found, in that case
the search may be refined over a set of operations. If the users and applications of the
services that disappeared used a particular operation or set of operations, the search may
be specified over these operations using the equivalence and almost equivalence service
relations defined upon particular operations (,).Op Op

sem sem≡ �
The spontaneous service si substitution over a predefined set of operations Op

succeeds if:

() (), (,) (,)Op Op
sem semsj S sj si true sj si ture∃ ∈ ≡ = ∨ =�

Example 12: Considering the three services interfaces and their semantic descriptions in
Figure 2:

We have { 1 1, 2 1}((1, 2)),op ifc op ifc
sem ifc ifc true=� which means that the services proposing the

interface ifc1 with the operations op1ifc1 and op2ifc1 can replace the operations op1ifc2 and
op3ifc2 of service ifc2.

As for the service as a whole, the environment requires to create the sets of equivalent
and almost equivalent services over the predefined set of operations. It also orders the
services within these sets depending on the non-functional QoS properties of the
concerned operations and not the non-functional QoS properties of all the service.

If no services are found, the environment may consider the services that are Subsume
matching with the service that disappeared. If this replacement can fail to provide the
required functionality as a Subsume matching between services does not guarantee that
the new service can provide all what the other service provided, it can allows the
environment to provide something to the applications even if not exactly what is required,
while awaiting the appearance of the desired services. The environment proposes these
services to the applications, specifying that the services they seek are no longer available.

In case of complete failure of finding an appropriate service, the service registry of
the environment redirects all the calls to the functional interface of the disappearing
service to a proxy. Once a service registers a functional interface responding to the
applications needs, the calls of the proxy can be redirected to this new service.

5 Evaluation of the semantic service substitution

We implemented, as a proof of concept, all the major functionalities of the service
substitution under an OSGi service platform implementation, the Apache Felix. The

 Semantic service substitution in pervasive environments 307

service semantic matching is done using online reasoner OWL-S ontologies (The OWL
Services Coalition, 2005) and the matching relations of Paolucci et al. (2002). The
non-functional QoS properties are for now defined in the service description and we do
not yet consider the dynamic changes affecting these properties while service execution.
For the evaluations we developed a use case composed of 100 OSGi services in a small
environment deployed on three laptops (Dell Latitude D410, 1.73 GHz, and 0.99 Go of
memory).

Figure 5 Time execution for semantic service matching (see online version for colours)

The semantic matching is quite heavy (c.f., Figure 5). The OWL-S API takes about 12
seconds to compare and matches 8 services owl-s descriptions (MyStudio) and 55 seconds
for about 100 services. The pellet matching engine that reads all the OWL-S files by
adding them to the reasoner and extracts the inputs, outputs and concepts fields is much
slower and much more memory consumer than as simple syntactic matching based for
example on introspection methods provided by the Java language. We conclude that the
semantic matching using online semantic reasoning is a very heavy process. We can
improve the matching time and memory consuming by employing techniques as in
PERSE (Mokhtar, 2007) that propose efficient semantic service matching using encoding
classified ontologies.

Figure 6 gives the time execution and memory consumption for quantitative
non-functional properties QoSdegree function computing. We suppose that each service has
one quantitative non-functional property. When a service leaves the environment, the
time to adapt to these changes is the time required to compute and sort the QoS degree of
available services publishing the same interfaces (47 milliseconds for 100 services).
When a service appears in the environment, the environment computes the QoS degree of
these services to find if it better suits the applications using equivalent services. If so, the
service registry will propose to applications the new service and the adaptation would be
done in no time for the application, as it is showed Figure 6.

 308 N. Ibrahim et al.

Figure 6 Time and memory consumption for QoS degree computing (see online version
for colours)

6 Conclusions

Service substitution is used in runtime reconfiguration in SOA systems in order to
tolerate runtime variations and ensure continuity in service provisioning for the users.
Providing functionally equivalent services to the applications with better quality of
services when services appear and disappear is a challenging problem as services are
provided with different technologies and different characteristics. If many middleware
proposed to semantically compare services and to adapt them to the application
execution, few formalised and defined the service relations and especially the
non-functional QoS properties degree metrics between services. We proposed a metric to
compare services, based on semantic interface matching and a metric for computing the
non-functional QoS property similarities between services. We implemented a prototype
under Java OSGi framework as a proof of concept and evaluated the efficiency of our
proposal.

One of the aspects that are not yet tackled by our middleware prototype is the state of
a service (Preuveneers and Berbers, 2008) that disappears while executing. If a service
disappears while executing an application needs, to replace it in a transparent way, the
environment needs not only to find equivalent services in terms of functional and
non-functional QoS properties but to know from which state to start the execution of the
new service, so that the application does not loose what has been already executed by the
previous service. Mechanisms of logging and checkpoints need to be introduced at the
service execution time level to save the state of a service at runtime. These mechanisms
allow the environment to keep a trace over the state of services and to know when they
disappear at which state of execution they were. Another important issue would be to test
our prototype in large pervasive environments, such as university campus, were
thousands of services may meet and where a real end user experience could be tested to
evaluate the interest of our spontaneous service substitution approach vis à vis to users.
Our approach would surely have problem to scale to these service numbers and a more
smart selection, based not only on semantic ontologies but also on user profiles, would be
appropriate to choose a subset of services to substitute.

 Semantic service substitution in pervasive environments 309

References
Aït-Bachir, A. and Fauvet, M-C. (2009) ‘Diagnosing and measuring incompatibilities between

pairs of services’, DEXA ‘09: Proceedings of the 20th International Conference on Database
and Expert Systems Applications, pp.229–243, Linz, Austria.

Bittner, T., Donnelly, M. and Winter, S. (2005) ‘Ontology and semantic interoperability’, in
Prosperi, D. and Zlatanova, S. (Eds.): Large-Scale 3D Data Integration: Challenges and
Opportunities, pp.139–160, CRC Press, Tailor & Francis.

Erl, T. (2005) Service-Oriented Architecture (SOA): Concepts, Technology, and Design, Prentice
Hall PTR, Upper Saddle River, NJ, USA.

Floch, J. (Ed.) (2006) Theory of Adaptation, Delivrable D2.2, Mobility and ADaptation enAbling
Middleware (MADAM).

Fredj, M., Georgantas, N. and Issarny, V. (2008) ‘Dynamic service substitution in service-oriented
architectures’, SCC ‘08: Proceedings of the IEEE Conference on Services Computing,
pp.101–104, Honolulu, Hawaii, USA.

Kokash, N. (2006) ‘A comparison of web service interface similarity measures’, Proceeding of the
2006 Conference on STAIRS 2006, pp.230–231, Amsterdam, The Netherlands.

Mokhtar, S.B. (2007) Semantic Middleware for Service-Oriented Pervasive Computing, PHD
thesis, University of Paris 6.

Paolucci, M., Kawamura, T., Payne, T.R. and Sycara, K. (2002) ‘Semantic matching of web
services capabilities’, ISWC ‘02: Proceedings of the First International Semantic Web
Conference on The Semantic Web, pp.333–347, London, UK.

Preuveneers, D. and Berbers, Y. (2008) ‘Pervasive services on the move: smart service diffusion on
the OSGi framework’, UIC ‘08: Proceedings of the 5th International Conference on
Ubiquitous Intelligence and Computing, pp.46–60, Oslo, Norway.

Santhanam, G.R., Basu, S. and Honavar, V. (2009) ‘Web service substitution based on preferences
over non-functional attributes’, SCC ’09: Proceedings of the IEEE International Conference
on Services Computing, pp.210–217, Bangalore, India.

Satyanarayanan, M. (2001) ‘Pervasive computing: vision and challenges’, IEEE Personal
Communication, August, Vol. 8, No. 4, pp.10–17.

The OWL Services Coalition (2003) OWL-S: Semantic Markup for Web Services, White paper,
OWL Services Coalition.

Weiser, M. (1991) ‘The computer for the 21st century’, Scientific American, Vol. 265, No. 3,
pp.94–104.

