
CANDS: Continuous Optimal Navigation via Distributed
Stream Processing ∗

Dingyu Yang†, Dongxiang Zhang‡, Kian-Lee Tan‡, Jian Cao†, Frédéric Le Mouël§
†Department of Computer Science&Engineering, Shanghai Jiao Tong University, China

‡School of Computing, National University of Singapore, Singapore
§University of Lyon, INSA Lyon, INRIA CITI Laboratory, France

†{yangdingyu8686, cao-jian}@sjtu.edu.cn, ‡{zhangdo, tankl}@comp.nus.edu.sg, §frederic.le-mouel@insa-lyon.fr

ABSTRACT
Shortest path query over a dynamic road network is a prominent
problem for the optimization of real-time traffic systems. Existing
solutions rely either on a centralized index system with tremen-
dous pre-computation overhead, or on a distributed graph process-
ing system such as Pregel that requires much synchronization ef-
fort. However, the performance of these systems degenerates with
frequent route path updates caused by continuous traffic condition
change.

In this paper, we build CANDS, a distributed stream processing
platform for continuous optimal shortest path queries. It provides
an asynchronous solution to answering a large quantity of shortest
path queries. It is able to efficiently detect affected paths and adjust
their paths in the face of traffic updates. Moreover, the affected
paths can be quickly updated to the optimal solutions through-
out the whole navigation process. Experimental results demon-
strate that the performance for answering shortest path queries by
CANDS is two orders of magnitude better than that of GPS, an
open-source implementation of Pregel. In addition, CANDS pro-
vides fast response to traffic updates to guarantee the optimality of
answering shortest path queries.

1. INTRODUCTION
For a modern society, transportation is a major supporting in-

frastructure that enables the movement of people and goods. With
accelerated urbanization worldwide, the number of vehicles on the
road and the need for transport are growing rapidly. However, the
current transportation systems, with their potential inadequacy at
handling fast changing traffic conditions and the optimal control
of flows of vehicles, must be rectified to accommodate increasing
transportation demands. We can make use of the large amounts of
GPS data to optimize the control of transportation systems. But
how to effectively and efficiently process the large volume data in
a timely fashion posts a substantial challenge for any modern road
network system [17].

∗The work was done in NUS. Dongxiang Zhang and Jian Cao are
contact authors.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 2
Copyright 2014 VLDB Endowment 2150-8097/14/10.

In recent years, numerous attempts have been made to address
these tough problems. For example, Mobile Millennium [18] was
proposed as a smart traffic estimation and prediction system. The
system processes millions of real-time GPS data using cloud com-
puting and the Spark cluster computing framework. In another
case, IBM InfoSphere Streams [11] demonstrates the capability of
tackling the challenges of scalability, extensibility and user interac-
tion in the domain of Intelligent Transportation Services [17]. Both
Mobile Millennium and IBM InfoSphere Streams provide traffic
estimation based on real-time GPS data.

In reality, however, stringent application requirements (such as
navigation) and road routing recommendations need to support var-
ious kinds of end-users including buses, taxis, ambulances, and
fire-engines among others. These users should be notified as soon
as possible when a traffic jam has happened on the route they will
likely take. They should also be warned and recommended alter-
native shortest paths. Unfortunately, current systems cannot pro-
vide services such as real-time shortest paths. To this end, we aim
to tackle two major challenges, by means of providing real-time
shortest path services for:

(a) Exact shortest path query processing in a dynamic graph.
Some existing shortest path approaches [28, 9] adopt a carefully
designed index to achieve good performance, but the index based
approach is not suited for real-time road networks due to the high
cost of index update when edges change. A distributed graph pro-
cessing system (e.g., Pregel [20], GPS [4] and GraphLab [16]) pro-
cesses machine learning algorithm on a large graph but does not
support a dynamic graph.

(b) Route adjustment in response to traffic updates. When an up-
date of road status occurs, e.g., from smooth traffic to congestion,
it is a demanding task to find all affected vehicles and update their
shortest paths in a real-time fashion. A recent work [21] proposes
two approximation techniques in the case of a traffic delay. How-
ever, it does not guarantee all the affected vehicles will be notified,
nor does it provide optimal shortest paths.

We design and implement CANDS 1, which provides a contin-
uous optimal shortest path service based on a distributed stream
processing model. CANDS proposes a distributed solution with
an asynchronous mechanism to answer shortest path queries in a
dynamic graph. It is a hybrid scheme between index maintenance
and distributed graph processing. It maintains shortcuts between
each pair of border vertices in a partition. A shortcut is the short-
est path between a pair of nonadjacent border vertices within the
same graph partition, which is lightweight and easy to maintain in
a dynamic environment.

In summary, the contributions of this paper are as follows:

1The letters come from the title Continuous Optimal Navigation
via Distributed Stream Processing.

1. We propose a distributed solution with an asynchronous
mechanism to answer shortest path queries in a dynamic
graph. Optimization mechanisms are also applied to im-
prove the query processing performance. For example, Mes-
sage Combine method can merge relevant messages into one
message to reduce network traffic; Message Broadcast strat-
egy can quickly limit the traversal region to improve the effi-
ciency. Furthermore, we develop an algorithm to determine
the termination of our query processing and prove its correct-
ness.

2. We propose an approach to quickly find affected queries and
update their shortest path answers when the road condition
changes. Two novel algorithms are designed to incremen-
tally update the affected routes instead of re-computing the
shortest path. We prove that the optimality of the shortest
path can be guaranteed throughout the whole navigation pro-
cess. Concurrency control is also discussed when multiple
roads are updated at the same time.

3. We develop CANDS on S4 [2], a distributed stream process-
ing system, and deploy CANDS on a cluster. Extensive ex-
periments have been conducted to show the efficiency and
robustness of CANDS. Our results show that CANDS pro-
cesses shortest path queries two orders of magnitude faster
than GPS [20].

The remainder of the paper is organized as follows. The problem
definition is stated in Section 2. In Section 3, we present the sys-
tem overview. Sections 4, 5 and 6 describe the details of Graph
Initialization, Query Processing and Query Update, respectively.
Extensive experiment results are reported in Section 7. In Section 8
existing work is reviewed, and Section 9 concludes the paper.

2. PROBLEM STATEMENT
Table 1: Notations and Symbols

G A road network.
V Vertices in the road network.
E Edges in the road network.
W The weights of the edges.
Q The shortest path queries.
GT The snapshot of G at timestamp T .
WT The snapshot of W at timestamp T .
QT All the active navigation queries at timestamp T
Qs→t|T The shortest path query from starting location s to target

location t and issued at timestamp T .
Ps→t|T The result of shortest path for Qs→t|T .

As a convention, we model a road network G = (V,E,W) as a
directed weighted graph. Each edge e ∈ E is a road segment with a
certain direction and is represented by e = (vi,v j,we), where vi ∈V
and v j ∈ V are road junctions, and we is the average travel time
to cross the edge. As real-time traffic is considered, we model G
as a time-dependent graph and use GT = (V,E,WT) to denote the
snapshot of G at timestamp T .

A vehicle in a road network plays two roles: as a consumer ser-
vice and as an information provider. It can send a navigation re-
quest at anytime from anywhere in the network. The request sent at
time T is considered a time-dependent single-source shortest path
query (SSSP) in GT :

DEFINITION 1. Time-dependent Shortest Path Query

Given a time-dependent road network GT and a pair of source
vertex s and target vertex t, a shortest path query Qs→t|T returns a
path Ps→t|T = v1→ v2→ . . .→ vk, where s = v1, t = vk, 1≤ i < k,
and ei = (vi,vi+1,wei) ∈ GT , such that ∑

k−1
i=1 wei is minimized.

A query Qs→t|T is considered active from the timestamp T .
When the vehicle reaches the destination t, the navigation process
terminates. We mark the query inactive and remove it from our
system.

As an information provider, a vehicle periodically sends its lat-
est context information, including the latitude, longitude, speed and
direction, to the back-end servers. There have been several existing
works [27, 18] proposed to estimate traffic conditions from vehicle
sensor data. In this paper, the estimation component is beyond the
focus and we assume that existing solutions are adopted in our sys-
tem. When a new estimation of a road segment e causes an update
on its weight, we need to find which active navigation queries are
affected and notify them with better shortest paths. We define this
update process as a reverse shortest path query processing for edge
update:

DEFINITION 2. Reverse Shortest Path (RSP) Query for Edge
Update

Suppose at timestamp T , the weight of e changes from we to w′e
and all the active navigation queries are included in QT . A reverse
shortest path query finds all the Qs→t|T1

∈QT (T1 ≤ T) which starts
from s at T1 and reaches a new location s′ at T such that

1. if w′e > we, e ∈ Ps→t|T1
and e /∈ Ps′→t|T .

2. if w′e < we, e /∈ Ps→t|T1
and e ∈ Ps′→t|T .

The first expression identifies queries for which the affected
edge, which was part of the shortest path, is no longer so at the
current time. The second expression finds queries for which the af-
fected edge, which was not part of the shortest path, is at the current
time part of the shortest path.

3. SYSTEM OVERVIEW
The system overview of CANDS deployed on a cluster is shown

in Figure 1. It consists of a collection of processing elements (PE)
that are customized with specific tasks and allowed to communicate
with each other via asynchronous messaging. It is worth noting that
this is a basic feature supported in existing distributed stream com-
puting platforms such as Yahoo S4 [2] and Twitter Storm [7] and
our system can naturally be implemented on top of these streaming
platforms.

CANDS handles two types of streaming inputs: vehicle naviga-
tion request and vehicle location update. When a navigation re-
quest arrives, CANDS needs to calculate the shortest path from the
vehicle’s location to its destination based on the real-time traffic
conditions. We propose an asynchronous query processing strategy
to reduce query latency and improve system throughput. The other
type of event is the periodic GPS reading of the vehicle. These GPS
data arrive at CANDS at a high rate, and are used for traffic esti-
mation. When the average travel time of a road segment changes,
existing navigation paths passing this road segment may not be op-
timal and need to be updated with new shortest paths accordingly.

To support optimal navigation, CANDS starts with some initial-
ization steps. It splits the road network into smaller partitions,
which are assigned to different nodes in the cluster. The weight
of the edge in the road network is the average travel time and some
shortcuts are maintained to facilitate query processing. These de-
tails of initialization are discussed in Section 4. The functionalities
of the PE are also illustrated in Figure 1. It consists of two ma-
jor components: 1) a query processing engine to handle the time-
dependent SSSP queries (details in Section 5) and 2) an incremental
update engine responsible for traffic status estimation and sending
notifications to affected vehicles(described in Section 6).

Traffic Update

Path Query

Shortest Path

Path Update

Cluster

Node A

Master

Query Processing Engine

Shortcut Update

Route Update

Concurrency

Control

Traffic Estimation

Incremental Update

Processing Element

T
C
P
C
o
m
m
u
n
ic
at
io
n

PE

PE

PE

PE PE

PE

PE

PE

Node B

Initialization

Map ConstructionGraph Partition Shortcut Maintain

EventHandler

Termination

Query Optimization

Failure Recovery

Figure 1: The system overview of CANDS

4. GRAPH INITIALIZATION
In CANDS, the road network is modeled as a time-dependent

graph. The edges are road segments and vertices are road junctions.
The weight of each graph edge is estimated as the average travel
time to cross the segment. In the following, we present some graph
initialization steps before query processing.

4.1 Graph Partitioning
In graph partitioning, the whole road network is first partitioned

into M sub-graphs using a METIS-balanced graph partitioning al-
gorithm [19] 2, where M is the number of machines in a cluster.
This step is critical to performance improvement. First, the query
processing time is normally determined by the slowest task and
a balanced partitioning can eliminate the performance bottleneck.
Second, communication between vertices in the same sub-graph is
done in the same machine and network I/O can be significantly re-
duced. In the second level, each sub-graph is further split into N
smaller partitions and each partition is assigned to one processing
element so that the computing resources in each machine can be
fully utilized. The number N is a user-defined parameter and will
be estimated in Section 7. The border edges crossing two partitions
are stored in both partitions because our query processing algorithm
requires communication among neighboring partitions.

EXAMPLE 1. Figure 2 shows an example of a graph split into
three partitions and assigned to different PEs. For one partition
Gi, we have a list of pairs Li = {〈vi,v j,Gi〉} to store the bor-
der vertex b from Gi to its neighboring partitions. For exam-
ple, the border vertices in partition G1 are {v1,v4} and we have
L1 = {〈v1,v6,G2〉,〈v1,v5,G2〉,〈v4,v8,G3〉,〈v4,v5,G2〉}.

2

2.2

1.5

2

2
2

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

1.5

Processing Element Processing Element

Processing Element

G1 G3

G2

2

3.5

2

1.5

1.8

2.5

Figure 2: An example graph with three partitions

2Other edge-balanced graph partitioning methods can also be ap-
plied

4.2 Graph Shortcut
We maintain a collection of shortcuts to ease query processing.

A shortcut is the shortest path of two border vertices within each
partition. For any two border vertices b1 and b2, we pre-compute
their shortest paths using Dijkstra algorithm and store the results.
In the above example, the shortest path v1→ v2→ v4 with distance
4.5 is maintained in G1. Note that this path only guarantees local
optimality instead of global one. A better result may be found to
contain vertices from other partitions. In this example, v1→ v5→
v4 with distance 4 is the real shortest path from v1 to v4. When an
update occurs in the road status in this partition, the shortcuts will
be refreshed to ensure the correctness of local optimality.

5. TIME-DEPENDENT SSSP QUERY PRO-
CESSING

Existing solutions on shortest path query processing form two
extremes in terms of the index maintenance cost. The index based
approaches [10, 12, 28] are very efficient. However, they are dif-
ficult to adapt in a dynamic graph due to their prohibitive pre-
computation costs. On the other hand, shortest path algorithm is
adopted in several distributed graph processing systems [20, 16, 4],
and it does not have any index construction cost. But these sys-
tems cannot efficiently support shortest path queries in a real-time
manner for a huge road network.

The solution proposed in this paper is a hybrid schema between
these two extremes. The road network is split into partitions that
are assigned to different nodes. In each node, a number of PEs are
deployed, each in charge of one partition. In each partition, we
maintain some shortcuts between border vertices to facilitate query
processing. The shortcuts can be used directly to pass through one
partition instead of traversing all the vertices in this partition.

The query processing engine shown in Figure 1 has the following
functionalities. EventHandler is responsible for receiving events,
emitting events to downstream PE. A termination algorithm (Termi-
nation) is designed to determine whether the resultant shortest path
is optimal. In each PE, query processing optimization algorithms
(Optimization) are further applied to improve the performance.

5.1 Query Processing Algorithm
The query processing strategy, depicted in Figure 3, relies on the

coordination of four types of PEs. QueryPE accepts all the nav-
igation requests from vehicles. It stores the graph partition infor-
mation and knows which partition contains the source vertex of the
query. A new RouteEvent is created and sent to ShortPathPE. The
event contains eight fields, as listed in Table 2. The qid, s and t are
derived from the navigation request. The border node b is initial-
ized to be the same as s and the neighboring partition is initialized

QueryPE

Name Value
qid 100000

source s

target t

Name Value

qid 100000

source s

target tRoute Event

Query Event
border b

nei P1

dist 11.8

MAP

ShortPathPE ShortPathPE

ShortPathPE ShortPathPE

s

t

P1

P2

P3

P4

P1

P2

P3

P4

StatPE

P3

Name Value

qid 100000

Gp P1

Gp’ P3

Stat Event

ack 006

OutputPE

match>0 && buf=Φ

path s→u→b

ack

Broadcast a better distance

found to all the other PEs

Figure 3: PEs handle a shortest path query

as the one containing the source vertex. The remaining fields are
left empty. When the ShortPathPE receives the message, it starts
cooperating with other ShortPathPEs (graph partitions) in an asyn-
chronous manner to find the shortest path. Meanwhile, acknowl-
edgements are sent from ShortPathPE to a StatPE. The StatPE col-
lects the information, determines the termination of the query and
sends the shortest path to OutputPE after the termination. The Out-
putPE then returns the result to the querying vehicle.

Table 2: The fields contained in a RouteEvent
qid a query id to uniquely identify the query.

s the source vertex of the query.
t the target vertex of the query.
b the border node receiving the message.

nei the neighboring partition which sends the message.
dist the partial best distance from s to b.

path the shortest path from s to b.
ack an acknowledgement sequence from the neighboring par-

tition.

ShortPathPE is the core PE. It cooperates with neighboring par-
titions to find the shortest path. The idea is similar to Dijkstra algo-
rithm, but without synchronization in each iteration to check which
is the best vertex to visit. Our algorithm starts from the graph parti-
tion containing the source vertex, denoted by Gs. The ShortPathPE
spreads the shortest path from s to all the border nodes in Gs to
its neighboring partitions. The neighbors receive the events, im-
prove the partial results and further disseminate them to neighbors.
Finally, all these partial results will arrive at the graph partition con-
taining the target vertex, denoted by Gt . When there is no message
propagating in the network, our algorithm can terminate with the
correct shortest path, which will be proved in the appendix.

The pseudo-code of event processing in a ShortPathPE with re-
gard to a graph partition Gp is illustrated in Algorithm 1. In the
following, we explicitly explain how a ShortPathPE handles an ar-
rival RouteEvent. When an event is received from a neighboring
partition, the ShortPathPE needs to check whether the source ver-
tex s or the target vertex t in this event is contained in Gp, which
leads to four cases:

• Case 1: s ∈ Gp ∧ t ∈ Gp (lines 4-12). If both nodes are
within Gp, we can directly calculate the shortest path from s
to t in the subgraph Gp. The resultant path is sent to StatPE.
However, the algorithm cannot be terminated at this point
because the true shortest path may be missed. For example,
as shown in Figure 2, the shortest path from v1 to v4 is v1→
v5→ v4 while the Dijkstra algorithm in partition G1 returns

v1 → v2 → v4. Therefore, we still need to send the query
and partial result to the neighboring partitions even though
we have obtained an initial candidate path.

• Case 2: s∈Gp ∧ t /∈Gp (lines 13-19). If only s is in Gp, we
call Dijkstra algorithm to calculate the shortest path from s
to all the border nodes. Then, all these partial results are sent
to neighboring partitions of Gp.

• Case 3: s /∈ Gp ∧ t /∈ Gp (lines 20-28). If the current parti-
tion is just a bridge between s and t, the message is updated
by taking account of the shortcut between border nodes and
then forwarded to the neighbors. Such a forwarding pro-
cess is efficient as the shortest path between border nodes
has been pre-computed and is available in the local mem-
ory. Meanwhile, the partial distance from s to the incom-
ing border node, denoted by δs→b(Gp), is cached for future
pruning. Another advantage is that it can be used to avoid
message looping between two neighboring partitions, which
generates partial results with loops.

• Case 4: s /∈Gp ∧ t ∈Gp (lines 29-39). If messages contain-
ing partial results arrive at the target graph partition, we call
Dijkstra algorithm to calculate the path and notify StatPE of
the result.

5.2 Query Processing Optimization
Algorithm 1 not only introduces four cases of processing an ar-

rival ShortPathPE, but also incorporates two optimization strate-
gies Message Combiner and Message Broadcast to improve the
processing performance.

5.2.1 Message Combiner
After traversing one partition, messages are sent to neighbor par-

titions through border edges. For each border edge, one message
will be generated and sent to the connecting neighbor partition. It
is possible that a partition has multiple border vertices connect-
ing to the same neighborhood. For example, in Figure 2 there
are two border vertices v1 and v4 in partition G1. v1 has to send
two messages to partition G2 and v4 sends one message to G2 and
one message to G3. This message dissemination mechanism incurs
too much communication cost in the network. To tackle this prob-
lem, we propose a Message Combiner technique to combine some
messages together. We add a message combiner before emitting
the messages to the neighboring ShortPathPE. If the messages in
one partition are sent to the same neighbor partition, they will be
merged together as one message (lines 19 and 28 in Algorithm 1).

Algorithm 1 RouteEvent handling algorithm in ShortPathPE
1. s← event.source; t← event.target; b← event.border;
2. dist(s,b)← event.dist;ack = nextAck(event.qid);
3. initialize a StatEvents sEvent; sEvent.rev[Gp]← 1;
4. if s ∈ Gp && t ∈ Gp then
5. dist(s,t)← Dijkstra(s,t)
6. if dist(s,t)< δs→t then
7. initialize a PathEvent pEvent
8. pEvent.path← path(s, t)
9. δs→t ← dist(s, t)

10. broadcast δs→t to all the other ShortPathPE
11. emit pEvent to StatPE
12. T ← T

⋃
〈qid,Gp,Gp,ack〉

13. else if s ∈ Gp && t /∈ Gp then
14. for each b′ ∈ Ln.keySet() do
15. run Dijkstra(s,b′)
16. initialize a rEvent
17. rEvent← 〈qid,dist(s,b′),b′,Gp, path(s,b′),ack〉
18. combiner[G′p][b]← rEvent
19. T ←CombineByPartition(combiner)
20. else if s /∈ Gp && t /∈ Gp then
21. if dist(s,b)< distCache(s,b) then
22. for each pair 〈b′,G′p〉 ∈ Ln do
23. dist(s,b′)← dist(s,b)+dist(b,b′)
24. if dist(s,b′)< δs→t then
25. initialize a rEvent
26. rEvent← 〈qid,dist(s,b′),b′,Gp, path(s,b′)〉
27. combiner[G′p][b]← rEvent
28. T ←CombineByPartition(combiner)
29. else if s /∈ Gp && t ∈ Gp then
30. if dist(s,b)< distCache(s,b) then
31. dist(b,t)← Dijkstra(b,t)
32. if dist(s,b)+dist(b,t)< δs→t then
33. initialize a PathEvent pEvent
34. pEvent.path← path(s,b)1 path(b, t)
35. δs→t ← dist(s,b)+dist(b, t)
36. broadcast δs→t to all the other ShortPathPE
37. emit pEvent to StatPE
38. T ← T

⋃
〈qid,Gp,Gp,ack〉

39. T ← T
⋃
〈qid,event.nei,Gp,event.ack〉

40. sEvent.tuples← T
41. emit sEvent to StatPE

In Figure 2, we combine the RouteEvents between G1 and G2 as
one message and then send it to G2.

5.2.2 Message Broadcast
Another optimization technique to avoid message flooding is to

broadcast the shortest path to all the ShortPathPEs whenever a bet-
ter result is found at the target partition Gt . In this way, each par-
tition Gp maintains a variable δs→t , indicating the current best dis-
tance. The purpose is that the partitions far away from s can learn
this information before receiving messages from neighbors. Then,
the message propagation process can stop earlier without involving
too many graph partitions. We define the distance from s to a graph
partition as follows:

d(s,Gp) = min
v∈Gp.border

d(s,v) (1)

If d(s,Gp) > δs→t , this propagation can stop. Although this con-
dition may not be satisfied as the message transmission in the net-
work is asynchronous, it can avoid spreading partial worse results

from the source partition Gs to every other partition. The partition
far away from s can dismiss the events if the partial result is found
to be worse than the broadcasted result (lines 10 and 36 in Algo-
rithm 1). Although the broadcast overhead is not cheap (the number
of messages is the same as that of graph partitions), it still gains an
advantage compared to the overhead caused by the communication
between any two neighboring ShortPathPEs far from s.

If a graph partition Gp does not receive any RouteEvent from its
neighbors, we have d(s,Gp) ≥ d(s, t). That means this partition is
far away from source vertex s and the shortest path between s and t
must not pass through this partition. The correctness and feasibility
are given in Appendix A.1, A.2, A.3. This property can facilitate
the pruning procedure in answering a RSP query in Section 6.

5.3 Algorithm Termination Mechanism
Algorithm termination is a critical issue in distributed query pro-

cessing. For example, Pregel terminates when every vertex votes
to halt in each superstep. In this paper, a solution is proposed
for CANDS to determine algorithm termination. We create a spe-
cial PE, named StatPE, to receive statistics of messages sent and
received (which are encapsulated in StatEvent) from ShortPathPE
and determine when query processing can be terminated. A Stat-
Event contains multiple tuples in the form of 〈qid,Gp,G′p,ack〉,
each acknowledges the communication with its neighboring parti-
tion. It means the message is sent from Gp to G′p with acknowl-
edgement sequence ack. Two tuples T1 and T2 match each other if
the following condition is satisfied:

T1.Gp = T2.Gp ∧ T1.G′p = T2.G′p ∧ T1.ack = T2.ack

In StatPE, we maintain a buffer and a match counter for each
query. When a StatEvent arrives, we scan the tuples in the event.
For each tuple, we scan the buffer to find if there is a match. If
a match is found, the tuple is removed from the buffer and the
match counter increases by 1. Otherwise, we insert the tuple into
the buffer. The algorithm is shown in Algorithm 2. It can be ter-
minated as long as the buffer is empty and match > 0. All PEs
can fully utilize the CPU resources without being idle. The algo-
rithm can be terminated immediately when the buffer is empty and
match > 0. There is no need to vote for halt. We prove the correct-
ness of our algorithm in Appendix A.4, A.5, A.6, A.7. Note that
when there is message loss, the termination condition will not be
satisfied. To avoid endless waiting, we set a threshold for maximum
waiting time for early termination of a failed query processing.

Algorithm 2 StatEvent handling algorithm in StatPE
1. for each tuple T in StatEvent do
2. for each tuple T ′ in bu f w.r.t to Qs→t do
3. if T matches T ′ then
4. remove T ′ from bu f
5. match← match+1
6. if bu f is empty and match > 0 then
7. emit result to OutputPE

6. REVERSE SHORTEST PATH QUERY
PROCESSING

In this section we present the incremental update component
shown in Figure 1. The traffic conditions are estimated in real-
time based on the sensor data from vehicles. Whenever the status
of a road changes, the shortcuts calculated previously in the corre-
sponding partition needs to be updated, and a RSP query process is

triggered to find affected vehicles. If a better shortest path is found,
the vehicles will be notified instantly. Since a shortest path can be
affected by multiple updates at the same time, concurrency control
is also required to avoid writing conflicts on the local caches that
may lead to a wrong result.

6.1 Shortcut Update Algorithm
When the state of a road segment e at partition Ge changes, we

need to update the shortcuts maintained for border nodes in Ge. A
naive solution is to re-calculate the shortest path for each pair of
border nodes, which is quite expensive. To reduce the maintenance
overhead of shortcuts, different strategies are adopted in terms of
the weight change and whether e appears in the original shortest
path between border nodes b and b′.

• Case 1: we ↑ ∧ e ∈ Pb→b′ (lines 4-6). The shortest path
between b and b′ may not be optimal and we call Dijkstra
algorithm to re-compute the shortest path.
• Case 2: we ↑ ∧ e /∈ Pb→b′ . The original shortcut is not

affected by the update and is still optimal. No action is re-
quired.
• Case 3: we ↓ ∧ e ∈ Pb→b′ (lines 8-9). The shortcut between

b and b′ is still optimal. We simply need to update its distance
because we decreases.
• Case 4: we ↓ ∧ e /∈ Pb→b′ (lines 10-11). In this case, it

is possible for border nodes b and b′ to find a better result
which passes edge e. Thus, Dijkstra algorithm is called to
guarantee the shortcut is optimal.

6.2 RSP Query Processing
When a RSP query is triggered, we know that the state of an

edge e changes. Our goal is to find which active queries are af-
fected. A baseline solution adopts a similar strategy to the shortcut
update algorithm that takes into account four cases. It re-computes
the shortest path for case 1 and case 4 by submitting new naviga-
tion requests. For case 2 and case 3, the shortest paths remain the
same and the vehicle is not affected. However, such a method is
not scalable because a state update may trigger a large number of
SSSP queries. We propose a more efficient method which takes ad-
vantage of intermediate partial routes produced in SSSP query pro-
cessing. Partial route information will be cached until the related
vehicle reaches its destination. When the state of a road segment
e changes, we first traverse all active queries and detect which of
them are affected. For each query Qs→t with current location at s′,
we know that the original shortest path from s′ to t is embedded
in s→ t. In other words, we can obtain Ps′→t directly from Ps→t .
Similar to the baseline algorithm, we check whether the weight of
e increases or decreases and whether it appears in the shortest path
from s′ to t. The query processing approach for case 2 and case 3 is
the same as that in Section 6.1. In the following, we focus on how
to efficiently handle cases 1 and 4.

6.2.1 Case 1: we ↑ ∧ e ∈ Ps′→t

To determine whether a navigation query Qs→t with current lo-
cation s′ is affected when we increases and e ∈ Ps′→t , we propose a
backward message propagation method. The purpose of this traver-
sal is to find a shortest path that does not pass through edge e
and is shorter than existing Ps′→t . If not, the existing path is still
the shortest path. An UpdateEvent, which augments the fields in
RouteEvent with updated edge e and current location s′, is sent
to the target partition Gt . The sketch of event processing is il-
lustrated in Algorithm 3. When Gt receives the update event, it
checks whether s′ is contained in Gt . If so, Dijkstra algorithm is

called to re-compute the shortest path (lines 3-7). Otherwise, the
reverse traversal can start at t and pass through border node b ∈ Gt
to other partitions. The distance dist(t,b) is calculated by Dijkstra
algorithm. If e /∈ Ps′→b

3, and dist(s′,b)+dist(t,b) is smaller than
δs′→t , this is a potential shortest path (lines 9-14). If e∈ path(s′,b),
the border b continues to traverse in a reverse order and propagates
it backward to its neighboring partitions (line 16).

In summary, our algorithm traverses in a reverse order from the
target partition Gt if the cached path contains edge e. This algo-
rithm only traverses the affected regions of edge e. The affected re-
gions of edge e are the areas containing the vertex, whose shortest
path passes through edge e from source vertex s. It stops propagat-
ing messages if it does not pass through edge e. We can find that
the message number is related to the number of affected regions of
this edge e. We take full advantage of cached paths and distances
in the border to reduce the message transmissions. Our algorithm
can quickly terminate when there is no message transmission in the
network, as proved in Appendix A.8. Therefore, compared to the
query processing algorithm that re-computes the shortest path, our
approach incurs much less communication overhead.

Algorithm 3 BackwardMsgPropagation(UpdateEvent event)
1. if t ∈ Gp then
2. if s ∈ Gp then
3. dist(s′, t)← Dijkstra(s′,t)
4. if dist(s′, t)< δs→t then
5. δs′→t ← dist(s′, t)
6. report δs′→t to StatPE
7. broadcast δs′→t to all the ShortPathPE
8. else
9. if path(s′,b) not pass e then

10. dist(s′, t)← path(s′,b)+dist(t,b)
11. if dist(s′, t)< δs′→t then
12. δs′→t ← dist(s′, t)
13. report δs′→t to StatPE
14. broadcast δs′→t to all the ShortPathPE
15. else
16. propagate event backward to the previous partition along

path(s′,b)

6.2.2 Case 4: we ↓ ∧ e /∈ Ps′→t

When the weight of edge e decreases and e does not appear in the
shortest path Ps′→t , we propose a different solution from case 1 to
detect the affected queries. The purpose of this traversal is to find a
shortest path that passes through edge e and is shorter than existing
Ps′→t . If not, the existing path is still the shortest path. The algo-
rithm handling case 4 is based on forward propagation and shown
in Algorithm 4. Initially, an UpdateEvent is initialized and sent to
the partition Ge containing e whose weight is updated. We traverse
all cached queries in Ge. If a query Qs→t (s is the initial source
vertex and current location of that vehicle is s′) is not cached in
Ge, according to Lemma A.3, we know that the dist(s,Ge)> δs→t .
Since dist(s,Ge) ≤ δs→s′ + dist(s′,Ge) and δs→t = δs→s′ + δs′→t ,
we have dist(s′,Ge) > δs′→t . Thus, it is impossible to find a bet-
ter result passing through e for Qs′→t . For each cached query, if
Ge is its destination partition, we re-calculate the distance from the
incoming border node b to t. Then, we notify StatPE and broad-
cast the new distance when a better result is found (lines 2-11).
If t is not contained in Ge, from the cache we can fetch all the

3The cache contains path Ps→b and we can derive path Ps′→b from
Ps→b.

Algorithm 4 ForwardMsgPropagation(UpdateEvent event)
1. for Querys′→t cached in Ge do
2. if t ∈ Ge then
3. if s ∈ Ge then
4. b← s′

5. else
6. b is the incoming border node
7. dist(b, t)← Dijkstra(s,t)
8. if dist(s′,b)+dist(b, t)< δs′→t then
9. δs′→t ← dist(s′, t)

10. report δs′→t to StatPE
11. broadcast δs′→t to all the ShortPathPE
12. else
13. for each outgoing border node b′ for query Qs→t do
14. if e is contained in the updated shortcut (b,b′) then
15. for Querys′→t which passes b and b′ do
16. dist(s′,b′)← dist(s′,b)+dist(b,b′)
17. emit a RouteEvent with partial result dist(s′,b′) to

neighboring partition through border node b′

outgoing border nodes b′ to the neighboring partition. If the up-
dated shortcut between b and b′ passes through e, we create a new
RouteEvent with the better distance dist(s,bi j) and emit the event
to ShortPathPE in the query processing. The following processing
of the new generated RouteEvent is the same as that in Section 5
and omitted here. The algorithm will terminate when there is no
message in transit. Finally, we prove that Algorithm 4 finds all the
affected queries in case 4 and can correctly update their shortest
paths in Appendix A.9.

6.3 Concurrency Control
In CANDS, when there is a weight update in an edge, a reverse

shortest path query is triggered and all the affected queries will be
updated. Since an active navigation query could be affected by
multiple edge update at the same time, concurrency control mech-
anism should be adopted to guarantee the correctness of the result.
Figure 4 shows a write conflict example. Suppose initially at times-
tamp T1, the shortest path from A to D is A→ B→ C→ D with
distance 12. At T2 (T2 > T1), the first edge update occurs and the
weight of AB increases from 3 to 5. Then, a reverse shortest path
query U1 is triggered to update all the affected navigation queries.
However, before U1 finishes, another edge update occurs and the
weight of BC decreases from 4 to 2 at timestamp T3 (T3 > T2). It
triggers another query processing U2 for edge update of BC. It is
possible that U2 finishes earlier than U1 and update the distance
δA→D maintained in each processing element to be 10. Finally, at
timestamp T4 (T4 > T3), U1 finishes. However, it does not take into
account the update of U2 and δA→D is updated to 14. But the real
shortest distance from A to D should be 12 at timestamp T4. To
solve the problem, we use a simple lock mechanism to guarantee
that the query processing for edge update is executed sequentially.
More specifically, when there is an edge update, we first check
whether the lock is occupied by other update events. If yes, the
event is pushed into a waiting queue. Otherwise, it gets the lock,
processes the edge update event and releases the lock. In this man-
ner, we can avoid a navigation query being affected by multiple
concurrent edge updates. It is worth noting that all our experiments
are conducted with such locking mechanism.

7. EXPERIMENTS

CA B D
3 4 5

T1: dist(A,D)=12

CA B D
5 4 5T2: update in edge (A,B).

Recompute Query Q.

CA B D
5 2 5T3: update in edge (B,C).

update dist(A,D)=10

CA B D
5 2 5T4: Q finishes.

update dist(A,D)=14

Figure 4: Write conflict when there is no concurrency control

We implement CANDS on S4 [2], which is a general-purpose
distributed stream processing system under Apache incubation.
S4 provides friendly programming interfaces and supports an un-
bounded stream. This system is event driven and query process-
ing in each PE can be triggered periodically or by an incoming
event. The version of Apache S4 is 0.6.0. It is worth noting that al-
though we have deployed CANDS on S4, CANDS can also be im-
plemented on other stream systems such as Twitter Storm [7]. All
of our experiments are run on a cluster with ten nodes. Each node
has one Xeon E5607 Quad Core CPU (2.27GHz), 32GB memory,
running CentOS 6.2. We select one node for Zookeeper and data
source adapter in the customization of S4.

We study the performance of SSSP and RSP query processing
in CANDS. For SSSP query, we report the results of our asyn-
chronous algorithms without optimization (Async), improved with
Message Broadcast only (Async+MB), improved with Message
Combiner only (Async+MC), and using both optimization tech-
niques (Aysnc+MB+MC). We compare performances of CANDS
and GPS (Graph Processing System), an open source implementa-
tion of Google’s Pregel. For RSP query processing, we compare
with a baseline algorithm which re-computes an SSSP query if the
query is detected to be affected by the status update of an edge. We
measure the performance of SSSP and RSP query processing from
the following four aspects:

Average query latency. The latency of an SSSP query is the time
interval between the time it arrives at the system and the time it
has been processed. For RSP query, the latency incorporates the
time waiting for the release of the lock of concurrency control and
the query processing time, which refers to the time for detecting
all the affected queries and updating them with better routes. If a
query fails, we do not count it when calculating the average query
latency.

Throughput. Throughput is measured by the number of queries
processed in a time unit. In our setting, the time unit is one minute.

Network I/O. The network I/O is measured by the amount of
bytes of messages transferred in the network, which is the same
metrics to measure the communication cost in GPS.

Success rate. Since messages may be lost when the message
arrival rate is too high, we use the query success rate as a measure-
ment of system availability. For SSSP query, it is the number of
successful queries divided by the total number of queries. For RSP
query, we consider it successful only if all the affected navigation
requests are updated with new correct results. Note that this mea-
sures the success rate for first time processing and we have fault
tolerance for failed query(e.g., re-submit the query).

In the following, we report performance evaluation using both
synthetic and real workloads, and all experiments are conducted
with concurrency control described in Section 6.3.

7.1 Experiments with Synthetic Workloads

7.1.1 Datasets and Experiment Setups
Our experiments use datasets derived from US road network [3].

We pick 5 representative road networks of different sizes and sum-
marize them in Table 3. The smallest dataset contains only 320K
vertices and the largest one contains more than 14 million vertices.
By default, we use the CAL dataset with moderate size to test the
performance.

Table 3: Road Network Datasets
Name Region Vertex Number Edge Number
BAY San Francisco Bay Area 321,270 800,172
FLA Florida 1,070,376 2,712,798
CAL California and Nevada 1,890,815 4,657,742

E Eastern USA 3,598,623 8,778,114
CTR Central USA 14,081,816 34,292,496

Table 4: Experiment Parameters
cluster nodes 1, 2, 3, 4, 5, 6, 7, 8, 9
length of shortest path [1,100], [100,200], [200,300], [300,400], [400,500], [500,600]
graph partition 10, 100, 500, 1000, 5000, 10000
update frequency 200, 400, 600, 800
active SSSP queries 10, 100, 500, 1000, 5000, 10000
ratio of RSP query 0.1, 0.3, 0.5, 0.7, 0.9

We evaluate the performance in terms of increasing numbers of
nodes in a cluster, length of path route, number of graph partitions,
frequency of edge updates and number of active queries. We also
test the hybrid case where SSSP and RSP queries arrive together
to indicate the ratio of RSP queries to the total number of query
events. The parameters are listed in Table 4, with the default setting
in bold format.

7.1.2 SSSP Query Processing
We first examine the performance of SSSP query in terms of in-

creasing number of nodes in a cluster. The query latency, through-
put, network I/O and success rate are reported in Figure 5. We com-
pare with GPS and report the performance with different optimiza-
tion techniques. When more nodes are used, it incurs more net-
work I/O cost to process SSSP queries. However, the query latency
and system throughput are both improved because we have more
memory and CPU resources for parallel computing. The message
combiner (MC) plays a more important role than message broad-
cast (MB) in the optimization of SSSP query processing. It is very
effective in reducing network I/O and query latency. It improves
system throughput by 5 times. MB method can reduce the commu-
nication cost, as shown in Figure 5(c), but the effect is limited.

GPS uses bulk synchronous parallel model and in each superstep,
a vertex handles messages coming from its neighboring vertices. If
there is no incoming message in the current iteration, it votes to
halt. Therefore, given a query with length L (meaning the route
has L edges), it requires at least L supersteps to finish a query. In
Figure 5(a), the length of SSSP query results is between 100 and
200 and we report the performance of 100 supersteps in GPS. When
deployed in 9 nodes, our system takes only 132ms to answer an
SSSP query and supports more than 1000 queries in one minute
without any failure. The query latency of our system is two orders
of magnitude better than GPS.

The performance of SSSP query processing is also sensitive to
the query result length. We increase the length from [1,100] to
[500,600] and show the performance in Figure 6. The query la-
tency grows with increasing path length. By comparing the query
latency between Async+MC and Async+MC+MB, we can see that
message combiner is more effective in performance improvement
when the length increases. Async+MB has 100% success rate if
the length is less than 200 and decreases when more than 200. The

2 3 4 5 6 7 8 9

Node Number

102

103

104

105

Q
u
e
ry

 L
a
te

n
cy

 (
m

s)

GPS
Async
Async+MB
Async+MC
Async+MB+MC

(a) Avg. query latency

2 3 4 5 6 7 8 9

Node Number

0

200

400

600

800

1000

1200

T
h
ro
u
g
h
p
u
t

GPS
Async
Async+MB
Async+MC
Async+MB+MC

(b) Throughput

2 3 4 5 6 7 8 9

Node Number

100

101

102

103

N
e
tw
o
rk
 I
/O
 (
M
B
)

GPS
Async
Async+MB
Async+MC
Async+MB+MC

(c) Network I/O

2 3 4 5 6 7 8 9

Node Number

0

20

40

60

80

100

S
u
cc

e
ss

 R
a
te

(%
)

Async
Async+MB
Async+MC
Async+MB+MC

(d) Success rate

Figure 5: Performance w.r.t. increasing nodes in a cluster

success rates of Async+MC and Async+MB+MC are still very high
even if the path length of SSSP query is very large (e.g., 500-600).
Async+MB is more affected than Async+MC and Async+MB+MC
by path length.

100 200 300 400 500 600

PathLength Number

101

102

103

104

105

Q
u
e
ry
 L
a
te
n
cy
 (
m
s)

GPS
Async
Async+MB
Async+MC
Async+MB+MC

(a) Avg. query latency

100 200 300 400 500 600

PathLength Number

0

20

40

60

80

100

S
u
cc

e
ss

 R
a
te

(%
)

Async
Async+MB
Async+MC
Async+MB+MC

(b) Success rate

Figure 6: Performance w.r.t. increasing length of query result

The query latency and network I/O of SSSP query processing
with increasing number of graph partitions are estimated in Fig-
ure 7. The communication I/O grows significantly when the num-
ber of partitions increases from 10 to 10,000. The query processing
time first drops when the graph is split into more partitions. When
the partition number is very small, Dijkstra algorithm is expensive
to find the distance from source vertex s to border vertices or from
border vertices to target vertex t. However, when the partition num-
ber grows to thousands, the performance degrades because it incurs
high communication cost and much effort is spent in sending and
receiving messages. Async+MB+MC always achieves the best per-
formance as the partition number grows.

In the final experiment of SSSP query processing, we report the
average query latency and success rate in different road networks
in Figure 8. When the graph size increases, the PEs need to take
charge of a larger graph partition and the performance of SSSP
query processing degrades. In CTR, which contains 14 million
vertices, the elapsed time for one query is more than 700ms. The
success rate also drops when the graph size increases dramatically.
But our system still achieves low query latency and high success
rate in a larger graph.

7.1.3 RSP Query Processing

10 100 500 1000 5000 10000

Partition Number

102

103

104

105
Q
u
e
ry
 L
a
te
n
cy
 (
m
s)

Async
Async+MB
Async+MC
Async+MB+MC

(a) Avg. query latency

10 100 500 1000 5000 10000

Partition Number

100

101

102

103

N
e
tw

o
rk
 I
/O
 (
M
B
)

Async
Async+MB
Async+MC
Async+MB+MC

(b) Network I/O

Figure 7: Performance w.r.t. increasing number of partitions

BAY FLA CAL E CTR

Road Network

0

100

200

300

400

500

600

700

800

Q
u
e
ry
 L
a
te
n
cy

 (
m
s)

Latency

(a) Avg. query latency

BAY FLA CAL E CTR

Road Network

0

20

40

60

80

100

S
u
cc
e
ss
 R
a
te
 (
%
)

Success Rate

(b) Success Rate

Figure 8: Performance in different road networks

We compare the efficiency of query update between RSP query
and re-computing query. Re-computing query represents a base-
line approach that resubmits the query to find the new shortest path
once the query is affected. The performance of RSP query process-
ing is shown in Figure 9. The default number of active queries is
1000. When the number of nodes increases, the query latency drops
slightly. The successful rate is always 100 percent. With 9 nodes,
the average time to run an RSP query is 273ms. Our method utiliz-
ing the cached partial results achieves two orders of magnitude of
performance improvement over the baseline algorithm which uses
re-computation to update the affected queries.

2 3 4 5 6 7 8 9

Node Number

102

103

104

105

106

Q
u
e
ry

 L
a
te

n
cy

 (
m

s)

re-Computing
RSP

(a) Avg. query latency

2 3 4 5 6 7 8 9

Node Number

0

20

40

60

80

100

S
u
cc

e
ss
 R
a
te
(%

)

re-Computing
RSP

(b) Success rate

Figure 9: Performance w.r.t. increasing nodes in a cluster

We report the average query latency and success rate with in-
creasing number of active SSSP queries in Figure 10. With more
active queries in the system, more of their shortest paths will be
affected by an update of the road state. Therefore, it takes more
time to complete an RSP query. When the number of active queries
increases to 5000, it takes 4 seconds to detect and update affected
queries and the success rate also drops significantly.

The update frequency is another aspect to estimate the perfor-
mance of our system. When the weights of many edges are updated
at same time, a lot of RSP queries may be affected. In Figure11 we
present the average query latency and success rate with increasing
update frequency. Our RSP queries can finish in one second when

10 100 500 1000 5000 10000

Query Number

102

103

104

105

106

107

108

109

Q
u
e
ry
 L
a
te
n
cy

 (
m
s)

re-Computing
RSP

(a) Avg. query latency

10 100 500 1000 5000 10000

Query Number

0

20

40

60

80

100

S
u
cc
e
ss
 R
a
te
(%

)

re-Computing
RSP

(b) Success rate

Figure 10: Performance of RSP query w.r.t. increasing active
queries

200 400 600 800 1000

Update Frequency

102

103

104

105

106

Q
u
e
ry
 L
a
te
n
cy

 (
m
s)

re-Computing
RSP

(a) Avg. query latency

200 400 600 800 1000

Update Frequency

0

20

40

60

80

100

S
u
cc
e
ss
 R
a
te
(%

)

re-Computing
RSP

(b) Success rate

Figure 11: Performance w.r.t. increasing update frequency

update frequency is less than 500 per minute. The result shows
that RSP processing can keep up with increasing number of edge
updates.

Since a traffic jam might affect many edges, the partition will be
very busy to process related edges. It will affect the performance
of our system. We apply three methods on choosing update edges.
Random randomly chooses some edges to update with random val-
ues. SmallPeak selects update edges based on Random method, but
the weights of some edges are updated with high values. Partition-
Peak means some partitions are very busy and the edges in these
partitions are peak. RSP queries can be finished in one second and
100 percent success rate when the number of partition is more than
500. In Figure 12, we estimate the performance of these three meth-
ods and our system can quickly process a series of weight update.

10 100 500 1000 5000 10000

Partition Number

101

102

103

104

105

Q
u
e
ry
 L
a
te
n
cy
 (
m
s)

Random
SmallPeak
PartitionPeak

(a) Avg. query latency

10 100 500 1000 5000 10000

Partition Number

0

20

40

60

80

100

S
u
cc
e
ss
 R
a
te
(%

)

Random
SmallPeak
PartitionPeak

(b) Avg. Success rate

Figure 12: Performance w.r.t. Sampling and Peak Methods

The performance of RSP query processing on all five datasets
is shown in Figure 13. If the size of road network is small, our
method is very efficient with 100 percent success rate. It takes
36ms to process an RSP query in the BAY dataset. Even in the
CTR road network which contains more than 14 million roads, the
average response time to an RSP event is around 700ms. There
is no query failure in these datasets except CTR. The result shows
that RSP query can finish the query update in a short time even in
a large road network.

BAY FLA CAL E CTR

Road Network

0

100

200

300

400

500

600

700

800

Q
u
e
ry
 L
a
te
n
cy

 (
m
s)

Latency

(a) Avg. query latency

BAY FLA CAL E CTR

Road Network

0

20

40

60

80

100

S
u
cc
e
ss
 R
a
te
 (
%
)

Success Rate

(b) Success rate

Figure 13: Performance in different road networks

7.2 Hybrid Query Event Processing
We control the ratio of RSP queries in a hybrid scenario where

SSSP and RSP queries arrive in a mixed way. The ratio of RSP
queries indicates the ratio of RSP queries among the total number
of query events. The total number of queries is 300 and the ra-
tio increases from 0.1 to 0.9. The average latency of SSSP query
processing improves when the ratio becomes larger. As we can
see from Figure 14, the query latency of RSP query processing in-
creases as the ratio becomes larger. The reason is the concurrency
control mechanism works when an SSSP query is affected by mul-
tiple road weight updates. Thus, it takes more waiting time when
there are more RSP queries in the event stream. The success rate of
query processing is nearly 100 percent when the ratio varies.

0.1 0.3 0.5 0.7 0.9

Ratio of RSP Queries

0

100

200

300

400

500

600

700

800

900

Q
u
e
ry
 L
a
te
n
cy

 (
m
s)

SSSP
RSP

(a) Avg. query latency

0.1 0.3 0.5 0.7 0.9

Ratio of RSP Queries

0

20

40

60

80

100

S
u
cc
e
ss
 R
a
te
(%

)

SSSP
RSP

(b) Success rate

Figure 14: Performance w.r.t. to ratio of RSP query

7.3 Experiments with Real Workloads
The real trace dataset contains the GPS trajectories of 10,357

taxis during the period of Feb. 2 to Feb. 8, 2008 within Bei-
jing [27]. There are 154,662 vertices and 337,662 road segments
in the Beijing road network. Each trajectory is a sequence of GPS
records with timestamp and status information. These GPS records
are mapped to the corresponding network edges and the original
travelling path is inferred [25]. We split a day into multiple time
intervals and for each interval, we estimate the weight of road net-
work by the average travel time of all the taxies passing through the
edge in that period. We extract the boarding and alighting points of
passengers as s and t in query Qs→t|T . In this way, we generated
200 queries. The trace of these queries has an average of 200 path
lengths.

The performance of SSSP query is evaluated with increasing par-
tition number and node number. The query latency and success
rate are reported in Figure 15. The best partition number is 100
and has higher success rate. The query latency of Async+MC and
Async+MB+MC decreases with more nodes in all query methods,
which is similar to that for Synthetic Workloads. The success rates
of Async and Async+MB are higher than those for Synthetic Work-
loads.

10 100 500 1000 5000 10000

Partition Number

102

103

104

105

Q
u
e
ry
 L
a
te
n
cy
 (
m
s)

Async
Async+MB
Async+MC
Async+MB+MC

(a) Avg. query latency

10 100 500 1000 5000 10000

Partition Number

0

20

40

60

80

100

S
u
cc
e
ss
 R
a
te
(%

)

Async
Async+MB
Async+MC
Async+MB+MC

(b) Success rate

2 3 4 5 6 7 8 9

Node Number

102

103

104

105

Q
u
e
ry
 L
a
te
n
cy
 (
m
s)

Async
Async+MB
Async+MC
Async+MB+MC

(c) Avg. query latency

2 3 4 5 6 7 8 9

Node Number

0

20

40

60

80

100

S
u
cc

e
ss

 R
a
te

(%
)

Async
Async+MB
Async+MC
Async+MB+MC

(d) Success rate

Figure 15: Performance Evaluation of SSSP query

We also evaluate the performance of RSP query on Beijing
road network. The weight of the road is changing with dif-
ferent traffic conditions. We define four types of road statuses
(green,blue,yellow,red) to denote traffic condition with increas-
ing congestion. The range of each status is based on the default
travel time ω of this road. We define four ranges: (0,1.25 ∗ω) as
green, [1.25∗ω,2∗ω) as blue, [2∗ω,3∗ω) as yellow, and [3∗ω,∞)
as red. If the status of one road changes, RSP query will be trig-
gered to find affected queries and recommend new shortest paths
for these queries. We estimate the query latency and success rate
between RSP query and re-computing method in Figure 16. RSP
query has a faster and higher success rate result than re-computing
method, which is similar to results in previous simulation.

10 100 500 1000 5000 10000

Partition Number

102

103

104

105

A
v
e
ra
g
e
 R
u
n
ti
m
e
 (
m
s)

re-Computing
RSP

(a) Avg. query latency

10 100 500 1000 5000 10000

Partition Number

0

20

40

60

80

100

S
u
cc
e
ss
 R
a
te
(%

)

re-Computing
RSP

(b) Success rate

2 3 4 5 6 7 8 9

Node Number

102

103

104

105

Q
u
e
ry

 L
a
te

n
cy

 (
m

s)

re-Computing
RSP

(c) Avg. query latency

2 3 4 5 6 7 8 9

Node Number

0

20

40

60

80

100

S
u
cc

e
ss
 R
a
te
(%

)

re-Computing
RSP

(d) Success rate

Figure 16: Performance Evaluation of RSP query

8. RELATED WORK
Shortest path query processing has been well studied [23, 14, 8,

12, 22, 28]. Most of the recent works focus on developing index

structures to support query processing in a huge road network. For
example, ALT [13] selects some vertices as landmarks and pre-
computes the distance to these landmarks to accelerate query pro-
cessing. RE [14] adds shortcuts between pairs of selected vertices
to help pruning. In TNR [10], grid network is adopted to reduce
the search space. In [8, 12, 22, 28], the vertices are organized in a
hierarchical structure and shortcuts between different levels of ver-
tices are added. Although these indexes are efficient in answering
shortest path queries, they require tremendous pre-computing cost
to build the index and are not suitable for a dynamic road network.

There are various mining algorithms proposed to predict travel
time across a road segment. For example, T-drive [26] mines smart
driving directions from the historical GPS trajectories of a large
number of taxis and constructs a time-dependent landmark graph
to recommend the best route. Another adaptive algorithm [15] is
proposed to estimate traffic condition from historical traffic data.
V Track [24] can estimate the travel time along the route based on
the noisy information from different sources such as WiFi. IBM
also implemented a real-time traffic estimation system based on
IBM InfoSphere Streams [11, 5]. MobileMillennium [18], devel-
oped in Spark [6], is another system supporting traffic estimation
and prediction. It infers traffic conditions using GPS measurements
from drivers running cell phone applications, taxicabs, and other
mobile and static data sources.

Distributed graph processing systems such as Pregel [20],
GPS [4] and Giraph [1] are developed to efficiently process large-
scale web graphs and various social networks. These systems re-
quire much effort in synchronization and are designed for general
graph processing algorithms. Therefore, our customized method
can achieve two orders of magnitude improved performance. Al-
though GraphLab [16] also adopts asynchronous methods to sup-
port scalable graph mining in an asynchronous manner, its current
implementation only works in a static graph.

In response to traffic delay update, Malviya [21] proposed two
approximate techniques, K-paths and proximity measure, to moni-
tor a set of designated travel routes. Our system has two advantages
compared to this work. We return exact results and notify all the
affected vehicles when there is a traffic update.

9. CONCLUSION
In this paper, we studied the problem of the shortest path over a

dynamic road network and implemented the service on a distributed
stream processing platform S4. More specifically, we proposed an
asynchronous and optimized method to efficiently compute short-
est path over a dynamic graph. To guarantee the optimality in the
navigation process, we monitor the traffic updates in real-time and
notify affected vehicles if a better route is found. Experiments on
real road networks with synthetic traffic loads and real trajectory
trace verified the efficiency of our system. It takes less than 150ms
to respond to a navigation request in a network with millions of
vertices if the route length is moderate. It also supports 10,000
active navigation queries without failure when identifying affected
queries by a status update of any road segment. Our system can
achieve low query latency asynchronous query processing and fast
response time on query updates.

10. ACKNOWLEDGEMENTS
The work of Kian-Lee Tan and Dongxiang Zhang are funded

by the NExT Search Centre (grant R-252-300-001-490), supported
by the Singapore National Research Foundation under its Interna-
tional Research Centre @ Singapore Funding Initiative and admin-
istered by the IDM Programme Office. This work is also partially

supported by China NSF(Grant No. 61272438), Research Funds
of Science and Technology Commission of Shanghai Municipal-
ity (Grant No. 14511107702, 12511502704). Frédéric Le Mouël’s
work is funded by a grant from Rhone-Alpes Region, France.

11. REFERENCES
[1] Apache Giraph. http://giraph.apache.org/.
[2] Apache S4. http://incubator.apache.org/s4/.
[3] DIMACS. http://www.dis.uniroma1.it/challenge9/download.shtml/.
[4] GPS. http://infolab.stanford.edu/gps/.
[5] Infosphere Streams.

http://www-01.ibm.com/software/data/infosphere/streams/.
[6] Spark. http://spark.incubator.apache.org/.
[7] Twitter Storm. https://github.com/nathanmarz/storm.
[8] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck. Highway

dimension, shortest paths, and provably efficient algorithms. In
SODA, pages 782–793, 2010.

[9] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance
queries on large networks by pruned landmark labeling. In SIGMOD,
pages 349–360, 2013.

[10] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast routing in road
networks with transit nodes. Science, 316(5824):566–566, 2007.

[11] A. Biem, E. Bouillet, H. Feng, A. Ranganathan, A. Riabov,
O. Verscheure, H. Koutsopoulos, and C. Moran. Ibm infosphere
streams for scalable, real-time, intelligent transportation services. In
SIGMOD, pages 1093–1104. ACM, 2010.

[12] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction
hierarchies: Faster and simpler hierarchical routing in road networks.
In Experimental Algorithms, pages 319–333. Springer, 2008.

[13] A. V. Goldberg and C. Harrelson. Computing the shortest path: A
search meets graph theory. In SODA, pages 156–165, 2005.

[14] A. V. Goldberg, H. Kaplan, and R. F. Werneck. Reach for a*:
Efficient point-to-point shortest path algorithms. In ALENEX,
volume 6, pages 129–143, 2006.

[15] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. P. Sondag. Adaptive
fastest path computation on a road network: a traffic mining
approach. In VLDB, pages 794–805. VLDB Endowment, 2007.

[16] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on natural
graphs. In OSDI, pages 17–30, 2012.

[17] A. Guerrero-Ibáñez, C. Flores-Cortés, P. Damián-Reyes,
M. Andrade-Aréchiga, and J. Pulido. Emerging technologies for
urban traffic management. Technical report, 2012.

[18] T. Hunter, T. M. Moldovan, M. Zaharia, S. Merzgui, J. Ma, M. J.
Franklin, P. Abbeel, and A. M. Bayen. Scaling the mobile
millennium system in the cloud. In SOCC, page 28, 2011.

[19] G. Karypis and V. Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on Scientific
Computing, 20(1):359–392, 1998.

[20] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In SIGMOD, pages 135–146. ACM, 2010.

[21] N. Malviya, S. Madden, and A. Bhattacharya. A continuous query
system for dynamic route planning. In ICDE, pages 792–803, 2011.

[22] M. Rice and V. J. Tsotras. Graph indexing of road networks for
shortest path queries with label restrictions. VLDB, 4(2):69–80, 2010.

[23] P. Sanders and D. Schultes. Highway hierarchies hasten exact
shortest path queries. In ESA, pages 568–579. Springer, 2005.

[24] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden,
H. Balakrishnan, S. Toledo, and J. Eriksson. Vtrack: accurate,
energy-aware road traffic delay estimation using mobile phones. In
SenSys, pages 85–98. ACM, 2009.

[25] H. Wei, Y. Wang, G. Forman, Y. Zhu, and H. Guan. Fast viterbi map
matching with tunable weight functions. In SIGSPATIAL GIS, pages
613–616. ACM, 2012.

[26] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang.
T-drive: driving directions based on taxi trajectories. In SIGSPATIAL
GIS, pages 99–108. ACM, 2010.

[27] Y. Zheng, Y. Liu, J. Yuan, and X. Xie. Urban computing with
taxicabs. In Ubicomp, pages 89–98, 2011.

[28] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou. Shortest
path and distance queries on road networks: towards bridging theory
and practice. In SIGMOD, pages 857–868, 2013.

APPENDIX
A. THE PROOF OF LEMMA

Here we prove that the cached distance in any partition Gp is
more than the shortest path d(s, t) if this partition does not receive
any RouteEvent.

LEMMA A.1. For any partition Gp, its cached δs→t ≥ d(s, t).

PROOF. If the partition does not receive a broadcast message
from the destination PE, δs→t is initialized to ∞ and thus δs→t ≥
d(s, t). Otherwise, we have found a path from s to t with dis-
tance δs→t . Since d(s, t) is the distance of the shortest path,
δs→t ≥ d(s, t).

LEMMA A.2. For any partition Gp, if d(s,Gp) < d(s, t), Gp
receives at least one RouteEvent from its neighbors.

PROOF. Assume that the shortest path from s to Gp is s →
. . .u→ v where u ∈ G′p, u /∈ Gp and v ∈ Gp. In other words, G′p
is the neighboring partition of Gp with a connecting edge (u,v).
We know that in G′p, we have dist(s,u)+dist(u,v) = dist(s,Gp)<
d(s, t). From Lemma A.1, we have d(s, t) ≤ δs→t . Therefore,
dist(s,u) + dist(u,v) < δs→t and a RouteEvent will be sent from
G′p to Gp based on Algorithm 1.

LEMMA A.3. If a graph partition Gp does not receive a mes-
sage w.r.t. to Qs→t from its neighbor, we have d(s,Gp)≥ d(s, t).

PROOF. It is easy to prove from LemmaA.2.

Now we prove that if match > 0 and bu f = /0, the algorithm can
be terminated with correct shortest path.

LEMMA A.4. Given a message propagation chain from G1 →
G2 → . . .→ Gn, if a set of acknowledgements from {G j1 ,G j2 , . . .}
arrives earlier than Gi where jk > i, we can find at least one ac-
knowledgement from G jk (j > i) pending in the buffer.

PROOF. Let ju = min{G j1 ,G j2 , . . .}. Since the acknowledge-
ment of G ju−1 has not arrived, the acknowledgement from G ju ,
〈qid,G ju−1 ,G ju ,ack〉 cannot find a match and will be inserted into
the buffer as in Algorithm 2.

LEMMA A.5. If match > 0 and bu f = /0, all the RouteEvents
have been processed.

PROOF. Suppose at timepoint t, we have match> 0 and bu f = /0

in StatPE and there still exists one RouteEvent sending from Gp to
G′p that has not been processed. The event could be either under
transmission in the network or queuing in the event buffer in G′p.
We assume that the partial result from s to G′p in this message is
s→ v1→ v2→ . . .→ u→ v and this path crosses a set of partitions
G1 → G2 → . . .→ Gn. If there exists no partition Gi from which
StatPE has received a tuple 〈qid,Gi,Gi+1,ack〉 used to acknowl-
edge its sending a RouteEvent to the neighbor Gi+1 in this path.
According to Lemma A.4, the buffer will not be empty; If StatPE
has received an acknowledgement from Gi. Suppose Gi is closest
to Gn in this chain and the acknowledgement Gi has been sent to
StatPE. Since the acknowledgement from Gi+1 has not arrived, the
one from Gi cannot be matched and it will be pending in the buffer.
This contradicts the fact that the buffer is empty.

LEMMA A.6. If match > 0 and bu f = /0 in StatPE, the algo-
rithm can terminate with the correct shortest path from s to t.

PROOF. From Lemma A.5, we know that when match > 0
and the message buffer in StatPE is empty, all the RouteEvents
have been processed and acknowledged and there is no need for
the StatPE to continue waiting for messages coming from Short-
PathPE. The algorithm can terminate.

Let P be the real shortest path and P = (s→ vs1 . . .)→ (v11 →
v12 . . .)→ (v21→ v22 . . .)→ . . .→ (vm1→ . . .→ vt) which passes
a sequence of m graph partitions (G1)→ (G2)→ . . .→ (Gm). Sup-
port a node vi j on the shortest path, that is d(s, t) = d(s,vi j) +
d(vi j, t), if there exists a new path from s to vi j, d′(s,vi j)< d(s,vi j).
It will send the new path with the partial result to neighbor parti-
tions which leads to a contradiction as there is no message in the
network. Therefore, our algorithm finds the optimal shortest path
from s to t.

Similar to Lemma A.6, we can prove the correctness of the fol-
lowing lemma:

LEMMA A.7. When the algorithm terminates, for any border
node b, if dist(s,b) < δs→t , then dist(s,b) is the shortest distance
from s to b.

Here we prove Algorithm 3 and Algorithm 4 can efficiently han-
dle the edge update on Case 1 (we ↑ ∧ e ∈ Ps′→t) and Case 4
(we ↓ ∧ e /∈ Ps′→t) respectively.

LEMMA A.8. Algorithm 3 on Case 1 is correct.

PROOF. Suppose P = s′→ u1→ . . .→ ui→ ui+1→ . . . t is the
old shortest path passing the update edge e = (ui,ui+1) and P′ =
s′ → v1 → v2 → . . .→ t is a new shortest path with a smaller dis-
tance. It is obvious that e does not appear in the new path P′. If s′,
vi and t are in the same partition, the shortest path will be returned
by calling Dijkstra algorithm (lines 3-7 in Algorithm 3). Otherwise,
we split P′ into two segments P′ = (s′ → . . .vi)→ (vi+1 . . .→ t),
where vi is the first node in the backward direction of path P′ such
that Ps′→vi in the cache of ShortPathPE does not contain edge e.
Otherwise, all the vi in path P′ whose cached path Ps′→v contains
edge e. It means e ∈ P′, which is a contradiction. According to
Lemma A.7, since the cached dist(s′,b) < δs′→t , we know that
dist(s′,b) is the shortest distance from s′ to b. Since the cached
partial results from s′ to vi+1,vi+2, . . . , t contain edge e, the parti-
tion containing vi will receive a backward propagation (line 16 in
our algorithm). Thus, it will find a better result by merging the
cached shortest path from s′ to vi and the propagated partial result
from neighboring partition (lines 9-14).

LEMMA A.9. Algorithm 4 on Case 4 is correct.

PROOF. Suppose P′ = s′→ v1→ . . .(v j → . . .vi→ vi+1 . . .)→
. . .→ t is a new shortest path and {v j, . . . ,vi,vi+1} ∈ Ge where v j
is the incoming border node and (vi,vi+1) is the edge with weight
update. If Ge = G′s, we consider v j = s′. According to Lemma A.7,
the cached distance dist(s′,v j) in Ge is the shortest distance from
s′ to v j in P′. If t ∈ Ge, we call Dijkstra algorithm to calculate the
shortest path between v j and t. It is easy to show that the distance
of path(v j, t) is the same as that of v j → . . .→ t in P′. Thus, a
shortest path with the same distance as P′ will be reported by Al-
gorithm 4. If t /∈ Ge, suppose v′j is the outgoing border node of Ge

in path P′. Since the shortcut (v j,v′j) passes the update edge e, we
create a RouteEvent which contains the partial result path(s′,v′j)
and propagate it to the neighboring partitions. Similar to the proof
in Lemma A.6, we can show that P′ will be found by our query
processing algorithm.

