

IST Amigo Project

Deliverable D3.1b

Detailed Design of the Amigo
Middleware Core

Service Specification, Interoperable Middleware Core

Public

September 2005 Consortium Confidential

Amigo IST-2004-004182 1/128

Project Number : IST-004182

Project Title : Amigo

Deliverable Type : Report

Deliverable Number : D3.1b

Title of Deliverable : Detailed Design of the Amigo Middleware Core – Service
Specification, Interoperable Middleware Core

Nature of Deliverable : Public

Internal Document Number : Amigo_WP31b_v1.0.doc

Contractual Delivery Date : 31 August 2005

Actual Delivery Date : 12 September 2005

Contributing WPs : WP3

Editor : INRIA: Nikolaos Georgantas

Author(s) : INRIA: Sonia Ben Mokhtar, Yérom-David Bromberg,
Nikolaos Georgantas, Noha Ibrahim, Valérie Issarny,
Frédéric Le Mouël, Daniele Sacchetti

 FT: Anne Gerodolle

 ICCS-NTUA: Miltiades Anagnostou, Ioannis Papaioannou,
Ioanna Roussaki, Dimitris Tsesmetzis

 IKER: Jorge Parra

 TELIN: Henk Eertink, Remco Poortinga, Andrew Tokmakoff

 TID: Sara Carro Martinez, José María Miranda, Alvaro
Ramos, Johan Zuidweg

 VTT: Marko Karjalainen

Abstract
This report presents a refinement of the Amigo abstract middleware architecture focusing on
the Amigo Interoperable Middleware Core and on Amigo-aware Service Specification.
Regarding the middleware core, we provide design and first prototype implementation of
service discovery interoperability and service interaction interoperability; we introduce a design
for a programming and deployment framework for Amigo services; we provide an early design
and implementation of domotic interoperability mechanisms; and we introduce a refined
architecture for CE QoS interoperability. These advances in the middleware core have made
part of an integrated prototype. Regarding Amigo-aware services, we define a declarative
language for semantic service specification and outline a comprehensive conformance relation
between services. Finally, we identify classes of networked services and related
interoperability levels in the Amigo networked home environment.

September 2005 Consortium Confidential

Amigo IST-2004-004182 2/128

Keyword list
ambient intelligence, networked home system, mobile/personal computing/consumer
electronics/home automation domain, interoperability, semantic service specification, semantic
reasoning, middleware, service discovery protocols, service interaction protocols,
programming and deployment framework, context, quality of service, multimedia streaming

September 2005 Consortium Confidential

Amigo IST-2004-004182 3/128

Table of Contents

Table of Contents... 3

Figures .. 6

Tables.. 9

1 Introduction ... 10

2 Amigo-aware service specification and matching...................................... 11
2.1 Declarative language for semantic service specification ...11

2.1.1 General properties of the language...12
2.1.2 Specification of service functional properties ..13

2.1.2.1 Service capabilities ..13
2.1.2.2 Service conversations ..15
2.1.2.3 Underlying middleware ...16

2.1.3 Specification of service context..17
2.1.3.1 Service context-awareness...18
2.1.3.2 Service context specification ...21
2.1.3.3 Context parameter ontology ..22

2.1.4 Specification of service QoS ..24
2.1.4.1 QoS parameter ontology ..25

2.2 Conformance relations on service specification...28
2.3 Tools for on-line semantic reasoning on conformance..29

2.3.1 Terminology ...29
2.3.2 Semantic reasoning tools..30
2.3.3 Discussion ..32

3 Service discovery and access in the Amigo networked home environment
 ... 33

3.1 The heterogeneous service-based Amigo networked home ..33
3.1.1 The Amigo interoperable middleware core ..33
3.1.2 The Amigo base middleware..35
3.1.3 Networked services integrated in the Amigo home environment35
3.1.4 Interoperability levels in the Amigo networked home environment36

3.2 Networked middleware-layer interoperable services..37
3.2.1 Interfacing with the middleware core...38
3.2.2 Achieving syntactic interoperability...39

3.3 Networked Amigo-aware services...41
3.3.1 Interfacing with the Amigo base middleware...41
3.3.2 Achieving semantic interoperability...41

3.4 Discussion ..43

September 2005 Consortium Confidential

Amigo IST-2004-004182 4/128

4 Amigo interoperable middleware core.. 44
4.1 Service discovery interoperability (SDI) ..44

4.1.1 Design principles ..44
4.1.2 Detailed design and implementation ..47

4.1.2.1 Overview..47
4.1.2.2 Detailed description ...48

4.1.3 Evaluation of implementation and performance ..63
4.2 Service interaction interoperability (SII) ...67

4.2.1 Design principles .. 67
4.2.2 Early design and implementation ...69

4.2.2.1 Overview..69
4.2.2.2 Detailed description ...72

4.3 Programming and deployment framework for Amigo services ...77
4.3.1 Overview ..77
4.3.2 Early programming interfaces design...78

4.3.2.1 Basic concepts: AmigoService, AmigoServiceDescription, AmigoAction ...78
4.3.2.2 The Amigo enhanced lookup...79

4.3.3 Early OSGi-based deployment framework design ...79
4.3.3.1 Amigo conformant bundles ...81
4.3.3.2 Using OSGi-based Amigo middleware ...82
4.3.3.3 Implementing drivers and publishers ..85

4.4 Domotic interoperability..87
4.4.1 Design principles .. 87
4.4.2 Early design and implementation ...88

4.4.2.1 Overview..89
4.4.2.2 Detailed description ...91

4.5 Consumer Electronics interoperability ..97
4.5.1 Overview ..97
4.5.2 Refined Architecture ..100

4.5.2.1 Background ..101
4.5.2.2 QoS interoperable middleware architecture ..107

5 Integrated Prototype... 112
5.1 Scenario and integrated prototype infrastructure ..112
5.2 Integrated prototype realization using the Amigo interoperable middleware core115

5.2.1 Integration of SDI and SII ..115
5.2.2 Integration of the OSGi-based framework ...117
5.2.3 Integration of domotic interoperability ..121

5.3 Integrated prototype visualization..122

6 Conclusion.. 124

Acronyms ... 125

References .. 127

September 2005 Consortium Confidential

Amigo IST-2004-004182 5/128

September 2005 Consortium Confidential

Amigo IST-2004-004182 6/128

Figures
Figure 2-1: OWL-S top level ontology ...13

Figure 2-2: Specification of service capabilities ...14

Figure 2-3: Specification of service conversation...16

Figure 2-4: Specification of underlying middleware ..17

Figure 2-5: A general model for Context Aware Service Discovery ..20

Figure 2-6: Specification of service context ...21

Figure 2-7: The Context Parameter Ontology..24

Figure 2-8: Specification of service QoS ..25

Figure 2-9: The QoS Parameter Ontology. ...27

Figure 3-1: Key functions of the Amigo interoperable middleware core33

Figure 3-2: The Amigo interoperable middleware core and legacy APIs...................................34

Figure 3-3: Services networked in the Amigo home environment and related interoperability
levels..36

Figure 4-1: SDP detection and interoperability mechanisms..45

Figure 4-2: SDP Unit configuration ..46

Figure 4-3: SDP interoperability mechanisms ..46

Figure 4-4: Detailed design of service discovery interoperability ..48

Figure 4-5: Detailed design of event and message communication..48

Figure 4-6: SdpUnit composition configuration decided by Monitor for service discovery
interoperability ..49

Figure 4-7: SDP Units, SDP Unit Factories and Monitor class diagram50

Figure 4-8: UML sequence diagram of the initialization process ...51

Figure 4-9: SDPMsg, SDPEvent and list of Event types ..53

Figure 4-10: Event and message connectors class diagram ..54

Figure 4-11: Event publish/subscribe sequence diagram..55

Figure 4-12: Class diagram of the sockets provided by the middleware56

Figure 4-13: Class diagram of the parsers provided by the middleware.....................................58

Figure 4-14: Class diagram of the composers provided by the middleware60

Figure 4-15: Unit class diagram..61

Figure 4-16: Extract from UPnP unit state machine ...63

Figure 4-17: Native clients & services ...65

Figure 4-18: Performance with Amigo located on the service side ..65

Figure 4-19: Performance with Amigo located on the client side...66

Figure 4-20: Interaction protocol interoperability relying on event-based parsing68

September 2005 Consortium Confidential

Amigo IST-2004-004182 7/128

Figure 4-21: Interaction protocol interoperability with dynamic stub generation68

Figure 4-22: Early design of service interaction interoperability components70

Figure 4-23: Early design of service interaction interoperability ...70

Figure 4-24: Diagram of classes used for interaction between service discovery and service
interaction interoperability systems ..73

Figure 4-25: Diagram of classes used for proxy generation ...75

Figure 4-26: Example of generated classes for interfaces, service and proxy75

Figure 4-27: Diagram of classes used by proxy provider ...76

Figure 4-28: Class diagram of Amigo basic concepts: AmigoService, etc.................................79

Figure 4-29: Class diagram of AmigoServiceLookup ..80

Figure 4-30: Sequence diagram showing an OSGi discovery example82

Figure 4-31: An Amigo-aware client uses the OSGi lookup and active discovery to retrieve a
Translation Service..83

Figure 4-32: An Amigo-aware client uses the OSGi lookup and passive discovery to retrieve a
Translation Service..83

Figure 4-33: An Amigo-aware client using the Amigo enhanced lookup84

Figure 4-34: Publication of a translation service according to a specific protocol84

Figure 4-35: Example of implementing an AmigoService as an UPnPAmigoService...............85

Figure 4-36: Registering UPnPServices of an UPnPDevice as AmigoUPnPServices................86

Figure 4-37: Lookup and access to the UPnPDevice through the AmigoUPnPService86

Figure 4-38: Mapping of AmigoUPnPDevice and AmigoUPnPService with UPnPDevice and
UPnPService..87

Figure 4-39 : Amigo domotic architecture..88

Figure 4-40: Amigo Legacy Device Architecture...89

Figure 4-41: BDF infrastructure..90

Figure 4-42: Amigo Base Device Architecture...90

Figure 4-43: RS232 Lamp...91

Figure 4-44: RS232 Lamp Class Diagram ..91

Figure 4-45: Lamp discovery sequence diagram ..92

Figure 4-46: Lamp removal sequence diagram...92

Figure 4-47: Action invocation sequence diagram ...93

Figure 4-48: BDF Plug..93

Figure 4-49: Schuko receptacle...94

Figure 4-50: Class diagram for BDF support..94

Figure 4-51: Device presentation sequence diagram ..96

Figure 4-52: Device removal sequence diagram...96

September 2005 Consortium Confidential

Amigo IST-2004-004182 8/128

Figure 4-53: Action invocation sequence diagram ...97

Figure 4-54: Amigo abstract Multimedia Streaming Architecture ...101

Figure 4-55: UPnP QoS scenario (see [UPnPQoS]) ...102

Figure 4-56: RAPI Interaction...106

Figure 4-57: QoS interoperability: UPnP QoS and RSVP interoperability.108

Figure 4-58: QoS interoperable middleware architecture refined for UPnP QoS and RSVP...109

Figure 4-59: Multiple QoS interoperability based on unit pairs. ..109

Figure 4-60: Abstract QoS Unit Architecture ...110

Figure 5-1: Integrated prototype infrastructure...112

Figure 5-2: SDI and SII integration into the prototype ...115

Figure 5-3: First OSGi-based deployment architecture ..118

Figure 5-4: Second OSGi-based deployment architecture ..118

Figure 5-5: Sequence for discovery of a UPnP device..120

Figure 5-6: Preliminary version of the Amigo integrated prototype visualisation.122

September 2005 Consortium Confidential

Amigo IST-2004-004182 9/128

Tables
Table 2-1: Tools for semantic reasoning...32

Table 3-1: Legacy middleware cores experimented with in the Amigo project38

Table 3-2: Legacy middleware cores and related Web sites for developers39

Table 4-1: Footprint requirements in KBytes for known libraries and the Amigo middleware
core ..64

Table 4-2: Identified common quality of service events...110

September 2005 Consortium Confidential

Amigo IST-2004-004182 10/128

1 Introduction
Ensuring interoperability between devices and applications in the networked home
environment has been identified as the principal objective of the Amigo middleware elaborated
in work package WP3 of the Amigo project. These devices and applications relate to the four
application domains of the Amigo home, i.e., Personal Computing, Mobile, Consumer
Electronics and Home Automation domains.

In Deliverable D2.1 [Amigo-D2.1], it was pointed out that interoperability shall be supported
both at middleware- and at application service-level. In the present document D3.1b, which
constitutes part of Deliverable D3.1 complemented by D3.1a and D3.1c, we address these two
levels by focusing on the Amigo Interoperable Middleware Core and on Amigo-aware Service
Specification. The middleware core supports interoperability between diverse service
discovery and interaction protocols, while service technology-independent, semantic service
specification enables integration of heterogeneous services.

More specifically, Deliverable D3.1b provides a considerable advance in the elaboration of the
Amigo Interoperable Middleware Core (Chapter 4). We provide design and first prototype
implementation of service discovery interoperability and service interaction interoperability. For
the former, our design is detailed and covers the generic case, while, for the latter, we provide
an early design covering some specific cases. Further, we introduce a design for a
programming and deployment framework for Amigo services that aims at guiding and
facilitating service development and at enabling dynamic configuration of the Amigo system.
Our early design is based on the OSGi framework technology. In addition, we provide an early
design and implementation of domotic interoperability mechanisms that enable integration of
domotic devices (these are inherently based on low-level discovery and access mechanisms)
in the Amigo service architecture. Finally, we introduce a refined architecture for CE
interoperability, where we focus on QoS interoperability between the Amigo multimedia
streaming architecture inside the home and multimedia streaming infrastructures outside the
home. These advances in the middleware core have made part of an integrated prototype
(Chapter 5).

We complement this work on the middleware core with work on Amigo-aware service
specification and matching (Chapter 2). We elaborate a – informal at this stage – definition of a
declarative language for semantic service specification covering both service functional
properties and non-functional ones, specifically, context and QoS. Based on this language, we
outline a comprehensive conformance relation between services that enables identifying the
capacity of services to integrate and interoperate. We intend to realize at a later stage this
conformance relation within an online tool reasoning on conformance; for the moment, we
have surveyed related literature on available tools for semantic reasoning.

Finally, bridging our two efforts on middleware core and Amigo-aware services, we elaborate a
study of service discovery and access in the Amigo networked home environment, identifying
classes of networked services and related interoperability levels (Chapter 3). Interoperability
may be based solely on middleware-level interoperability mechanisms, where it is syntactic, or
both middleware-level and application-level interoperability mechanisms, where the enhanced
service characteristics enabled by our declarative language are exploited.

September 2005 Consortium Confidential

Amigo IST-2004-004182 11/128

2 Amigo-aware service specification and
matching

Interoperability between heterogeneous services in the Amigo home will be realized based on
the semantic specification of services. Semantic specification allows a common description of
services at a higher, technology-independent, level, thus, enabling integration of service
architectures that differ in the ways that services are natively specified and interact, and in the
employed communication protocols supporting their interaction. We call ‘Amigo-aware
services’ services that are provided with such semantic specification in addition to their native
specification, as opposed to ‘legacy services’ that are only natively specified.

There are two tasks in WP3, Task 3.1 and Task 3.2, contributing to Amigo-aware service
specification. Principal objective of Task 3.1 is to develop a set of ontologies modeling
concepts/domains of interest, which can be used as a general-use vocabulary for describing
services. Key objective of Task 3.2 is to develop a language (a set of ontologies, too) for
semantically specifying services as a set of abstract attributes. The description of a service
using this language will refer to the vocabulary of Task 3.1 for giving concrete values to the
attributes of the service. Certainly, language and vocabulary shall be in accordance, e.g.,
addressing the same service attributes. Further, as both ‘vocabulary’ and ‘language’ – as we
have defined them – are ontologies aimed at describing services, we need to specify the
boundary between them. Targeting diverse, heterogeneous services and service architectures,
we have opted to make the language as generic as possible, not taking any design decisions
that would restrict its range of application. Then, the vocabulary may be seen as a
complement to the language, not only for giving concrete values to the attributes of the
language, but also for extending the language with new attributes that are appropriate for each
specific case. The first results of the work being carried out in Task 3.1 are presented in
Deliverable D3.1a [Amigo-D3.1a], while corresponding results of Task 3.2 are presented in this
chapter.

More specifically, we introduce in this chapter a declarative language for semantic service
specification using as starting point OWL-S, which is currently the most complete effort on
semantic specification of services that follow the Web Services architecture (Section 2.1). Our
language considerably generalizes OWL-S towards supporting diverse service architectures,
as well as non-functional service properties. Then, based on this language, we outline a set of
conformance relations on service specification, which aim at checking conformance (matching)
between services for assessing their capacity to interoperate (Section 2.2). We finally carry out
an initial survey on the state of the art of existing tools for semantic reasoning (Section 2.3).
We plan to integrate such tools into an Amigo tool that will realize on-line the identified
conformance relations towards dynamic service discovery and matching in the networked
home.

2.1 Declarative language for semantic service specification
In Deliverable D2.1, we carried out initial work on the semantic specification of services. Thus,
in Chapter 2 of D2.1, a generic ontology was elaborated for modeling services. Targeting
interoperability between heterogeneous service architectures, we modeled both services as
components and their underlying connectors over which they interact. Our focus was the
functional attributes of services, while we identified the need to further model non-functional
attributes. Then, in Chapter 3 of D2.1, we indicated a set of non-functional attributes of Amigo
services, which shall make part of the specification of a service, collectively identified as
quality of service (QoS) and context of the service. Finally, in Chapter 4 of D2.1, we presented
initial work on the composition of multiple services based on their semantic specification, and
particularly on the specification of their supported conversations.

September 2005 Consortium Confidential

Amigo IST-2004-004182 12/128

Building on the base results of Deliverable D2.1, we introduce in this section a declarative
language for the semantic specification of Amigo-aware services or simply Amigo services.
Our language will use OWL-S as basis. The Ontology Web Language (OWL) is a recent
recommendation by W3C supporting formal description of ontologies and reasoning on them.
An ontology can represent concepts of any knowledge domain and relations between them.
OWL-Services (OWL-S) is an OWL-based ontology for semantically specifying Web services,
recently submitted to W3C for adoption. A more detailed report on OWL and OWL-S is
provided in Chapter 2 of D2.1. In the same chapter, we identified a number of inadequacies of
OWL-S for describing Amigo services, which we tried to cover in our generic modeling
approach. Nevertheless, we pointed out that semantic Web services and OWL-S is an
important paradigm for Amigo, and we actually employed it in Chapter 4 of D2.1 for composing
multiple services. Thus, we have opted to elaborate our declarative language for semantic
service specification building on OWL-S. OWL-S, as enabled by its specification, is extensible.
A number of our elaborated extensions are authorized by OWL-S, which makes them
acceptable as part of a semantic Web service specification. However, certain of our
extensions are not authorized by OWL-S. Since we target any service architecture, our
language is more general than OWL-S and not any more specifically tied to the Web services
architecture. Thus, we have designed our language as a superset of OWL-S.

In our elaboration of the language, we take the following approach. Based on the initial results
of Deliverable D2.1, we identify a set of required features for the language. Then, for each
required feature, we discuss the solution provided or not provided by OWL-S, and present our
extension towards specification of Amigo services. At this stage, we define our language in an
informal manner, identifying included classes and properties between them. We reuse OWL-S
classes and describe extensions to them in a free manner, without specifying the exact way in
which we are going to incorporate them into our language. We will provide a formal
specification of our language at a later stage. Finally, we illustrate our presentation of the
language with a number of ontology diagrams elaborated using the Protégé open source
ontology editor along with the OntoViz visualization plug-in (the latter employs AT&T’s
Graphviz open source graph visualization software). Our definition of the language comprises
setting its general properties (Section 2.1.1), and addressing the specification of service
functional properties (Section 2.1.2), service context (Section 2.1.3) and service QoS (Section
2.1.4).

2.1.1 General properties of the language
In this section, we establish a set of general properties for our language, which affect several
design choices in the following sections, and we indicate how these properties shall be
realized. The specific realization for each one of these properties is then detailed in the
following sections.

A key property of the language is that it shall be technology-independent, i.e., it shall support
any service-oriented architecture, e.g., Web services, RMI, etc. As already discussed, OWL-S
is specific to Web services. Thus, we will extend OWL-S by removing its features that are
specific to Web services. Reviewing the specification of OWL-S (see Figure 2-1), we observe
that the OWL-S Service Profile constitutes a generic ontology class enabling the semantic
description of high-level capabilities of a service by reference to general, possibly existing,
ontologies that may represent concepts from a number of knowledge domains. Further, the
OWL-S Service Model is also a generic class enabling the semantic description of the
conversation of a service by employing general workflow structures and by – this one, too –
referring to external ontologies. Hence, both the OWL-S Service Profile and Service Model are
independent of the Web services architecture and can very well be used to describe services
from different service architectures. What makes OWL-S Web services-specific is the OWL-S
Service Grounding, which maps the Service Profile and Service Model onto concrete Web
service interfaces and interaction protocols (these two constitute the underlying middleware)
as represented by the WSDL and SOAP specifications, respectively. Thus, our intervention on

September 2005 Consortium Confidential

Amigo IST-2004-004182 13/128

OWL-S will be to remove the uniqueness of the Web services-specific grounding and enable
different groundings, towards supporting different service-oriented architectures. This is a non-
authorized extension to OWL-S, as OWL-S allows different groundings for Web services,
however, it does not allow another service architecture.

Figure 2-1: OWL-S top level ontology

Supporting the specification of any service-oriented architecture aims at realizing
interoperability between these heterogeneous service architectures. Since, each one of these
architectures employs native application service specification and interaction schemes over a
native middleware infrastructure, both application-level and middleware-level interoperability
shall be enabled by our language. This, more specifically, requires that the language provide
at both levels the appropriate specification abstractions on which interoperability mechanisms
may be built. These abstractions will be detailed in the following sections. OWL-S supports
only application-level interoperability, while it imposes a single middleware infrastructure, i.e.,
Web services. Allowing – as discussed above – different middleware infrastructures
(groundings), calls further for their adequate specification that will enable interoperability
between them.

Finally, in the ambient, user-centric, intelligent Amigo environment, supporting rich service
functionalities by integrating multiple, heterogeneous devices is not enough. The user’s actual
experience is very much dependent on non-functional properties of service provision, such as
context and QoS. Hence, our language shall specify both functional and non-functional
properties of services. As discussed in the following sections, such specification spans both
the application and the middleware level. OWL-S only supports specification of functional
properties at application level; further, the OWL-S Service Profile includes some standard non-
functional information of a service. Nevertheless, the Service Profile can be easily extended to
describe any non-functional property of a service at application level; we will exploit this
feature in our language, which constitutes an authorized extension to OWL-S. For the
middleware level, our language will include non-functional properties in the corresponding
middleware specification.

2.1.2 Specification of service functional properties
Our specification of service functional properties comprises the specification of service
capabilities (Section 2.1.2.1), service conversations (Section 2.1.2.2) and underlying
middleware (Section 2.1.2.3). In the following, the supported features and inadequacies of the
respective OWL-S Service Profile, Service Model and Service Grounding are discussed, and
appropriate extensions are identified for our language.

2.1.2.1 Service capabilities
The main functional service attribute that shall be modeled by our language is a service
capability, i.e., a specific functionality offered by the service. The OWL-S Service Profile
models a service as both:

• A semantic concept, e.g., by specifying the service category on the basis of some external,
possibly existing, service taxonomy; and

September 2005 Consortium Confidential

Amigo IST-2004-004182 14/128

• A set of semantic IOPEs specifying the data Inputs and Outputs of the service, as well as
the Preconditions that need to be fulfilled for the execution of the service and the Effects
(Results) produced to the world, e.g., the environment of the service, by the execution of
the service.

We adopt this approach in our language. However, we assume that a service may offer a
number of capabilities, and we explicitly model capabilities supported by a service. Actually,
OWL-S supports multiple profiles for a service; nevertheless, using a different profile for each
capability of a service does not allow capabilities to share a set of common attributes, which
may globally characterize the service. In our language, each such capability will be defined as
both a semantic concept and a set of semantic IOPEs. This enables specifying richer services
supporting several capabilities that may be functionally dependent or independent. Further, we
explicitly model provided capabilities as capabilities supported by a service, and required
capabilities as capabilities needed by a service, which will be sought on other networked
services. This enables support for any service composition scheme, such as a peer-to-peer
scheme or a centrally coordinated scheme. Figure 2-2 depicts the specification of service
capabilities in our language.

Figure 2-2: Specification of service capabilities

Furthermore, to be able to support any service-oriented architecture, the data types of the
Inputs and Outputs of a service capability shall be independent of a specific type system. In
service-oriented architectures, this type system is determined either by the programming
language (when a single language is used, e.g., Java data type system for RMI), or by the
middleware (when language-independent, e.g., XML Schema data type system for Web
services). As discussed above, the OWL-S Service Profile and Service Model are independent
of the Web services architecture; thus, they employ ontologies to represent data types of
Inputs and Outputs. Our language incorporates this feature of the higher-level classes of
OWL-S.

Preconditions and Effects are not communicated over the network upon service invocation.
Thus, one may select a language for expressing logical formulas, such as SWRL [SWRL], KIF
[KIF] or PDDL [PDDL], independently of the service-oriented architecture in use. OWL-S
enables the encapsulation of logical formulas expressed in different languages. Our language
adopts this handling of Preconditions and Effects.

September 2005 Consortium Confidential

Amigo IST-2004-004182 15/128

2.1.2.2 Service conversations
A service capability specified by our language shall further be associated to a service
conversation. OWL-S describes the conversation supported by a service by employing a
single OWL-S Service Model. We incorporate in our language the conversation description
approach of OWL-S. Further, following our extension of multiple service capabilities in the
previous section, we enable multiple conversation scenarios of a service, one per capability,
which, however, make part of one single conversation. This may be enabled by defining
several entry points in the conversation workflow or several branches of workflow all starting at
a single entry point. Figure 2-3 depicts the specification of service conversation in our
language.

Following from our objective to support heterogeneous service-oriented architectures, we
identify two more required features for conversation modeling to be supported by our
language.

First, our language shall model application-level interaction with a service independently of the
interaction model realized by the underlying middleware, such as RPC or event-based. In
OWL-S, atomic processes are the elementary units of application-level interaction. An atomic
process is defined as a set of IOPEs. Via the Service Grounding, an atomic process is
mapped on a WSDL invocation of a Web service operation, which can be a two-way
synchronous operation (RPC) or an one-way operation (notification), as prescribed by the
WSDL 1.1 specification. WSDL 2.0 will offer a richer interaction model, e.g., it will additionally
support two-way asynchronous interactions. Atomic processes of OWL-S are generic enough
to be mapped on any interaction model, e.g., an IOPE could be realized by an underlying
event-based middleware. Thus, we incorporate the notion of atomic processes in our
language.

September 2005 Consortium Confidential

Amigo IST-2004-004182 16/128

Figure 2-3: Specification of service conversation

Second, similarly to what was identified above for a service capability, the data types of the
Inputs and Outputs of an atomic process shall be independent of a specific type system. As
indicated above, the OWL-S Service Model is data type system-independent, employing
ontologies to represent data types of Inputs and Outputs. Further, Preconditions and Effects
are not dependent on a specific type system. Our language incorporates this feature
supported by OWL-S.

Finally, to enable automated invocation of a service, the conversation description of a service
shall be dynamically interpretable and executable by a specialized execution engine.
Automated service execution makes part of service interoperability mechanisms, which we aim
to elaborate at a later stage. OWL-S is not directly executable; nevertheless, execution
semantics have been proposed in the literature for OWL-S, and there exist implementations of
corresponding execution engines [PASS03]. We aim to investigate further execution
semantics for our language based on existing efforts addressing OWL-S.

2.1.2.3 Underlying middleware
As pointed out in Section 2.1.1, to support different service architectures, our language shall
allow and explicitly provide for different groundings, i.e., different middleware infrastructures.
Further, to enable interoperability between them, our language shall provide adequate
abstractions for specifying these infrastructures. OWL-S may support different groundings,
however, only for Web services, and employs WSDL for specifying concrete bindings to Web
service interfaces and deployed interaction protocols like SOAP. Towards multiple
middleware, our language will include specification of the underlying middleware in the service
specification.

As already discussed in Deliverable D2.1, and as further made evident in the following
chapters of the present document, in the diverse, dynamic AmI environment of the Amigo
networked home, service discovery is equally important and necessarily precedes service
interaction. Thus, we consider both service discovery and interaction as indispensable
elements of middleware.

In a first, but major, step, we aim to support well-known middleware platforms integrating
specific service interaction protocols, such as Web services/SOAP and Java RMI, coupled
with also well-known service discovery protocols, such as UPnP and SLP, respectively. In
Chapter 5 of Deliverable D2.1, we provided an abstract architecture for middleware-layer
interoperability methods (both for discovery and interaction) based on low-level semantic
abstractions of relevant protocols. In Chapter 4 of the present document, design and prototype
implementation of these interoperability mechanisms, and, more specifically, support of
UPnP/SOAP and SLP/RMI, are provided. Based on this work, the specification of underlying
middleware supported by our language may simply be a reference by name to a well-known
middleware or to the employed discovery and interaction protocols. Then, interoperability
between two services referencing each a native middleware in its specification may directly be
assessed on the basis of the availability of appropriate interoperability mechanisms between
the referenced protocols.

A second step will be to enable services to be deployed over any (discovery or interaction)
connector, possibly associated to a specific capability/conversation of the service. Then, our
language shall provide a complete specification of the connector, possibly incorporating
external ontologies providing taxonomies of connector attributes. Based on such specification,
interoperability between two connectors shall be assessed and potentially dynamically
realized. Initial results in this direction were presented in Chapter 2 of D2.1; we aim to
investigate further this approach later in the Amigo project. Figure 2-4 depicts the specification
of underlying middleware in our language.

September 2005 Consortium Confidential

Amigo IST-2004-004182 17/128

Figure 2-4: Specification of underlying middleware

Further, one of the features characterizing a middleware infrastructure or a connector is the
supported interaction model, such as RPC or event-based. As discussed in Section 2.1.2.2,
OWL-S adopts the interaction model of WSDL/SOAP, which is quite limited in WSDL 1.1 and
will be extended in WSDL 2.0. We aim to support different interaction models, and are
particularly interested in event-based middleware or, more abstractly, in event-based
connectors. The event-based interaction model is particularly suited for the dynamic,
asynchronous AmI environment.

Finally, the data type system-independency as discussed in Sections 2.1.2.1 and 2.1.2.2 shall
be complemented here by appropriate middleware-level support. Thus, our language shall
allow different type systems employed by middleware. In OWL-S, when associating the
Service Model to a concrete Service Grounding, OWL ontologies representing data types of
Inputs and Outputs are mapped on XML Schema data types. Our language will enable
mapping semantic data types to different syntactic data types, i.e., to different middleware type
systems.

2.1.3 Specification of service context
Context is a key notion in the Amigo environment. In Deliverable D2.1, an initial discussion on
context in the Amigo home was presented. There, three context categories were identified: (i)
Device Context that represents the information related to devices, including their
characteristics and capabilities, (ii) User Context that represents all information that describes
individuals, and finally (iii) Physical Context that represents the physical environment’s specific
information. Work on a context model and context management mechanism for the Amigo
system is being carried out in WP4.

In this section, we seek to identify what kind of context information is relative to a service, and
what context information shall be included in the service specification. In the following, we
discuss context-awareness related to services (Section 2.1.3.1), from which we arrive at a

September 2005 Consortium Confidential

Amigo IST-2004-004182 18/128

generic specification of service context included in our language (Section 2.1.3.2). We then
refine the fundamental ContextParameter class of our context specification elaborating a
detailed ontology (Section 2.1.3.3).

2.1.3.1 Service context-awareness
Context awareness can be used during service discovery in a number of ways:

• In the discovery phase. This allows applications and requesting services to refine their
requests with context parameters, e.g. to request ‘the nearest printer that has sufficient
A3-paper available’, or ‘the display now in use by Betty’.

• In the registration phase. The support for context-aware discovery means that services
register/publish not only a functional description of their capabilities, but also a
collection of context types and corresponding context-information sources that are able
to provide actual contextual information of the registered type. These context types
must correspond with the context vocabulary ontologies specified in Deliverable D3.1a;
the architectural design of context-information sources will be described in more detail
in Deliverable D4.1.

• In the discovery/invocation phase. We envision a shift from ‘normal’ to context-aware
services. These services have context inputs in addition to primary inputs, which may
not be explicitly provided by the user. The matching process should be able to adapt
the rating of services according to the availability of these context inputs (possibly by
automatic context source discovery).

However, to enable context awareness in service discovery, the following issues need to be
addressed:

1) Expressiveness of the service description language through which the requested
services are described. This language will need extensions to support the formulation
of additional contextual constraints, possibly with QoC (Quality of Context)
characteristics. Examples of the latter are accuracy and timestamp.

2) Distribution of functionality. Query-resolution is dependent on the current context of
both the requestor and the services that the requestor is trying to discover. For
example, ‘nearest printer with sufficient A3 paper’ depends on the actual location of
the requestor and the current amount of A3 paper. How should this be done? Is the
requestor responsible for supplying their context information? Is the service provider
responsible for supplying the current context of their service? Is the service discovery
service (if not peer-to-peer) responsible for obtaining the context of the requestor
and/or the provider?

3) Security and privacy. The service discovery infrastructure (if not completely peer-to-
peer) is some kind of man-in-the-middle with respect to context-information exchange
between service user and service provider. The privacy-considerations must therefore
be carefully considered.

In the following subsections, we analyze these open issues, and suggest some solutions.

Context-aware service specification

Adding context awareness to service discovery means that the service description formalism
must be extended with features that allow client applications to specify their own context and
their context-constraints on the returned service discovery results. Additionally, there is a
need for service providers to be able to specify the types of contextual information they can
supply on the services that they provide. These context information items are used to optimize
selection of the services that are returned to the requesting client application [PoKW03].

September 2005 Consortium Confidential

Amigo IST-2004-004182 19/128

The service description formalism must support the following additional aspects:

• Context constraints. These are elements that are provided by client applications, and
are used to describe additional conditions on the context of the requested service. The
basic elements of a constraint is a tuple <context parameter name, condition>, that can
be combined using AND/OR boolean operators. Multiple constraints can be specified,
and subsequently policy rules (similar to the MIDAS system [BCMS03]) can be used to
optimize the results.

• Context profile. This profile is specified by the service provider together with its service
description. The context profile contains context-parameters, as tuples <context
parameter name, context information type, context-information provider>. This context-
information provider is either a basic value, or can also be a reference to a service that
can be invoked to return the current value of the context parameter.

Each of the types and names must correspond to the context vocabulary ontologies defined in
Deliverable D3.1a.

Context-aware service discovery

A general model for service discovery is shown in Figure 2-5, where a Client Application, the
Service Discovery Service (SDS) and two Services are shown. This model allows Services to
either advertise themselves to the SDS or to be discovered actively by the SDS (e.g. a
Multiprotocol Service Discovery Service [RaIs05]). In either case, the Services make both their
Service specification and their Context information known to the SDS.

Due to its inherently dynamic nature, this context information is likely to change over time. To
allow for this, it is possible for a Service to provide a reference to its Service Context Service
(which may be located elsewhere and could be a proxy for (a set of) context sources), rather
than providing static context information directly to the SDS. The Service Context Service is
responsible for making the Service’s contextual information available via interaction (A) and
(A’), according to the context vocabulary ontologies defined in Deliverable D3.1a.

By taking advantage of Amigo Awareness and Notification services (as will be discussed in
Deliverable D4.1), it is possible for the SDS to “subscribe” to context changes that occur in the
Service and which are expressed by the Service’s Context Service. In this way, changes in
Service context can be “pushed” toward the SDS so that it is always kept “up to date”. Note
that there are performance considerations with regard to the tradeoff between push and pull
models; this depends on the expected frequency of context changes and also whether all (or
just some) of these changes need to be signaled to the SDS.

In general, usage of the SDS involves client applications interacting with the SDS when they
wish to discover a certain service (interaction (C)). One basic piece of information that needs
to be provided by the client to the SDS is the service specification of the Service they require.
Beyond this, they may also provide their client context to the SDS (or a reference to their
Client Context Service, as discussed earlier for the Services themselves) and also a
specification of the desired context of the Service they are searching for, as shown in
interaction (B).
From these, the SDS is able to determine matching services based upon the client-supplied
Service Specification, which may be either cached service references or discovered
dynamically. From this list of matching services, the SDS is then able to apply a filter to the
set of matches, applying the client-requested Service context along with the Client context
which may be obtained through interaction (B). From this, a final list of matching services is
returned to the client in interaction (C’). Note that as part of this process, the SDS may choose
to actively retrieve a Service’s context from its Service Context Service. An example of context
aware service matching is given in [BPSK04].

September 2005 Consortium Confidential

Amigo IST-2004-004182 20/128

Context -Aware Service
Discovery Service (Ctx-Aware SDS)

Service X

C
txt X

Service Y

Service X
Interface

Service X
Context
Interface

Service Y
Interface

Service Y
Context
Interface

C
txt Y

Client
Application

Service X
Service Y
Service ...

C
lient

C
txt

Set of
ServiceRefs

Service spec

Service Ctxt spec

Client Ctxt spec

Matching of:
Service Spec,

and then Service/Client
Ctxts

Service Reference
Cache

Dynamic
Service

Discovery

(A)

C

(A’)

C’

C’’

B

Figure 2-5: A general model for Context Aware Service Discovery

Assuming that a client has interacted with the SDS and obtained a service reference, the client
may go ahead and start to interact with the discovered service. However, over time, the
context of the client and perhaps also the service may change. In this case, there are two
options open to the client application, with regard to optimizing the service binding.

1) Issue a new request to the SDS, requesting the same service but making use of its
most recent context information (and also that of the available Services) to result in a
new set of matching Services, or

2) Make use of a “Persistent Request” to the SDS. Such a request can be considered to
be a request that has a specified lifetime. If the SDS discovers that a better match
than the Service previously suggested to the client is available, then it uses a client
callback (interaction (C’’)) to return an “updated” set of results to the query. This
functionality means that client applications can issue a single query and then continue
to be updated when more appropriate services become available, either through
changes in their own context, or those of the Services which are available. Note also
that this feature depends upon the Amigo Awareness and Notification functionality. The

September 2005 Consortium Confidential

Amigo IST-2004-004182 21/128

decision to switch to a more relevant service is made by the client. A typical application
that could benefit from this functionality is (mobile) multimedia streaming and, in
general, applications that have long-lived sessions.

2.1.3.2 Service context specification
Based on the discussion of the previous section, the context specification of a service, as
supported by our language, shall include:

• Service context parameters and sources;

• Client (of the service) context parameters and sources;

• Context required by the client; resolution of this requirement may be dependent on both
the above; and

• Context inputs of services; these may not be explicitly provided by the client.

Aiming at a generic context specification not posing any restrictions on what context can be in
the Amigo environment, we do not define the specific context information that may be
associated to an Amigo service in the service context specification included in our language.
As we have already indicated, WP4 will provide a context model for the Amigo networked
home. Nevertheless, work on context-related vocabulary carried out in Task 3.1 and presented
in Deliverable D3.1a attempts to complement the language with more concrete context
information. Concluding, the fundamental class of our service context specification is the
generic ContextParameter class, which represents any context attribute.

Figure 2-6: Specification of service context

Following this generic approach and according to the above list, we extend the OWL-S Service
Profile to include a set of service context attributes. These attributes may be global context
attributes of the service or may be associated with a specific service capability. Further, both
provided and required context attributes can be specified, thus, enabling – see the above list –
service and client context and context required by the client. Additionally, the adopted IOPE
scheme describing a specific capability allows us to specify contextual Preconditions and
Effects for each service capability. This can be further extended to include atomic processes,
which are also described as IOPEs in the Service Model. Nevertheless, contextual
Preconditions and Effects included in the Service Profile are generally more visible than the

September 2005 Consortium Confidential

Amigo IST-2004-004182 22/128

ones in the Service Model with regard to service discovery. Finally, as indicated in the above
list, besides inputs (or outputs) provided by (to) its client, a service may have a number of
context inputs (outputs). We consider this as part of the functional inputs/outputs of a service
capability. Figure 2-6 depicts the specification of service context in our language.

Our generic service context specification has so far only identified the association of the
generic ContextParameter class to specific elements of the Service Profile and Service Model.
In the following section, we go one step further refining ContextParameter. We elaborate an
ontology that provides a detailed common specification of any context parameter/attribute of a
service, among which the source attribute identified in the above list.

2.1.3.3 Context parameter ontology
We introduce a context parameter ontology that provides a standard generic modeling of
arbitrary context information originating from various domains. The designed context
parameter ontology is depicted in Figure 2-7. It consists of the following classes, most of which
are interconnected via object properties:

• ContextParameter: The ContextParameter is the centric class of the context ontology
and represents a piece of context information, aggregating various object and datatype
properties.

• Type. The Type is a class introduced to indicate the concrete context attribute
represented by a specific instantiation of the ContextParameter (e.g., “User”,
“AbsoluteLocation”, “Device”, “Time”, “InterfacePreferences”, etc.). It is associated with
the ContextParameter class through the hasType object property (ContextParameter
Æ domain, Type Æ range).

• Metric. This class defines the way each context parameter is assigned with a value. It
is associated with the ContextParameter class through the hasMetric object property
(ContextParameter Æ domain, Metric Æ range). Each Metric object consists of a
MetricType and a Value, which are modeled as datatype properties having xsd:string
values. The MetricType datatype property is an enumerated string (xsd:enumeration)
that represents the ContextParameter’s data type, e.g., int, long, string, boolean, etc.
Value is a datatype property that formulates the ContextParameter’s value as a string.
Together with the MetricType property, the system can easily extract the semantic of
this information. The Metric class is also related with the Unit class via the hasUnit
object property (Metric Æ domain, Unit Æ range) that defines the units used to
measure the contextual parameter’s quantity. Of course, each context parameter can
either be measurable or unmeasurable. In the latter case, the Unit is set to null. As
there are various ways to express a physical quantity in terms of units, the Unit class
holds a relationship with the ConversionFormula class that is introduced to enable the
transformation from one unit to another. Thus, each Unit object is related to a
ConversionFormula object via the hasConversionFormula object property (Unit Æ
domain, ConversionFormula Æ range), while the ConversionFormula class holds a
convertsTo object property (ConversionFormula Æ domain, Unit Æ range).

• Domain. The Domain is a datatype property of the ContextParameter class that
represents the domain where the ContextParameter resides. It is an enumerated string
(xsd:string (xsd:enumeration)). Potential values are user domain, physical domain
(further refined in environmental, space and time domains), device domain, application
domain, network domain, object domain and non-human beings domain (see work on
context vocabulary ontologies in Deliverable D3.1a).

• Nature. The Nature is also a datatype property of the ContextParameter class that is
used to distinguish between static and dynamic context information. Static parameters
are considered to be those that are not modified in time, while the values of dynamic

September 2005 Consortium Confidential

Amigo IST-2004-004182 23/128

parameters may be constantly changing. Obviously, the values of this enumerated
datatype property are: “Static” and “Dynamic”.

• Quality. It is the class that is related to the ContextParameter via the hasQuality object
property (ContextParameter Æ domain, Quality Æ range) and is used to represent the
quality aspects of the context information. Parameters such as accuracy, timeliness,
confidence, lifetime, min/max/mean error, etc, are examples of potential datatype
properties of the Quality class. Each of these factors can be useful when the system is
required to select among various context providers or multiple value measurements of
the same context parameter.

• Source. The Source is a class that is related to the ContextParameter via the
hasSource object property (ContextParameter Æ domain, Source Æ range) and is
used to represent the source which provided the value of the context parameter. This
source can be a device/sensor that performed the relevant context value
measurement, a context provider that sold the relevant context information, or even the
user that defined some static context data concerning himself/herself.

• RetrievalMechanism. It is a datatype property of the ContextParameter class, which
represents the mechanism used to retrieve the specific context information. The range
of this property is xsd:string (xsd:enumeration), and its enumerated values are:
“Sensed”, “Inferred”, and “Profiled”.

• Status: The Status datatype property of the ContextParameter class defines the current
status of the context parameter, i.e. active or inactive. It is a quite useful feature of the
context information, especially for the static context parameters, as it enables for
example the user to have multiple preferences and activate/deactivate them at will. The
value range of the Status datatype property is xsd:string (xsd:enumeration) and its
enumerated values are: “Active” and “Inactive”.

• Timestamp: The Timestamp datatype property of the ContextParameter class is very
important, as it enables the context parameter ontology to capture the history of
context information and check its validity. It represents the time when the value of the
ContextParameter object was last updated. It is more critical for the dynamic context
information, where the various context parameters have different updating demands
and valid lifetime, but it is also used for the static context data. Depending on the
application requirements, the system may maintain only the current value of each
context parameter, or select to monitor the values of some pieces of context
information in time, storing pairs of timestamps and values. The later is very useful in
context inference mechanisms. The data type used for the Timestamp property is
xsd:dataTime that captures the date and the exact time of the parameter’s value
update.

• Relationship. This class represents the way a ContextParameter is correlated with
others. It is related to the ContextParameter class via a hasRelationship optional object
property (ContextParameter Æ domain, Relationship Æ range). In order to interrelate
two ContextParameter objects, we introduced an infuentialParameter mandatory object
property (Relationship Æ domain, ContextParameter Æ range) that indicates (i.e. has
range) the ContextParameter that has an impact on the “owner” ContextParameter (i.e.
the domain of the specific hasRelationship property) of the Relationship. This approach
may also handle the case of asymmetric interdependencies between Context
parameters. The Relationship may be Proportional, InverselyProportional, Equal, etc,
and these factors are modeled using the IFType datatype property that has an
xsd:string (xsd:enumeration) value range. The Relationship may also be Strong,
Medium or Weak. This information is captured by the ValidityLevel datatype property
that also has an xsd:string (xsd:enumeration) value range. The ImpactFactor class is
introduced to encapsulate the two properties above (i.e. IFType & ValidityLevel) that

September 2005 Consortium Confidential

Amigo IST-2004-004182 24/128

characterize the Relationship. The hasImpactFactor object property (Relationship Æ
domain, ImpactFactor Æ range) is used to bind a Relationship to an ImpactFactor
object.

Figure 2-7: The Context Parameter Ontology

2.1.4 Specification of service QoS
QoS assurance is an essential requirement in the Amigo networked home, as it decisively
affects user’s experience of the supported AmI functionalities. In Deliverable D2.1, an initial
discussion on QoS in the Amigo home was presented. There, four main categories of QoS
information were identified: (i) runtime-related QoS, (ii) transaction-support QoS, (iii)
configuration- & cost-related QoS, and (iv) security-related QoS.

Following the same approach as for context, in this section, we do not attempt to identify the
concrete QoS information that may be associated with Amigo services. We have opted to
include in our language a generic service QoS specification, where the fundamental
QoSParameter class representing any QoS attribute is introduced; no concrete QoS attributes
are further identified. Complementary work on defining QoS-related vocabulary is being
carried out in Task 3.1 and presented in Deliverable D3.1a. Our current results on QoS will be
further refined in the course of WP3, possibly towards a QoS model for the Amigo system.

In our generic approach, we initially introduce a general classification for QoS related to a
service, in which we identify the different system levels responsible for ensuring such QoS:

• Application-level QoS. This is the QoS ensured by the service itself, e.g., response
time (performance) of a service is dependent on its computation efficiency, possibly
based on programming optimizations.

• Platform/system-level QoS. QoS depends also on the platform on which the service
executes, e.g., service response time is also dependent on the system OS, CPU,
memory, etc.

September 2005 Consortium Confidential

Amigo IST-2004-004182 25/128

• Middleware-level QoS. Mechanisms deployed by middleware can affect QoS, e.g.,
middleware may support distributed replication of a server transparently for clients in
order to improve service response time in case of high load.

• Network-level QoS. QoS certainly depends on the network connection between a
service and its client, e.g., reservation of resources along the network path can
guarantee sufficient bandwidth for timely delivery of a data stream.

Based on this classification, we identify the diffusion of QoS attributes in the service
specification. Figure 2-8 depicts the specification of service QoS in our language.

For specifying application-level and platform/system-level QoS, we extend the OWL-S Service
Profile to include a set of QoS attributes, which may be either global QoS attributes of the
service or associated with a specific service capability. QoS attributes may be either provided
or required, associated, respectively, to provided or required capabilities.

For specifying middleware-level and network-level QoS, related (provided or required) QoS
attributes shall be added to the middleware (or connector) specification included in the service
specification. In the case of network-level QoS, the middleware (or connector) specification
may be extended to include underlying network protocols. These QoS attributes may imply –
however, not specify – employment of appropriate middleware-level or network-level
mechanisms, e.g., server replication or resource reservation, respectively. Network-level QoS
mainly concerns multimedia streaming services of the CE domain in the Amigo networked
home. Our approach to CE QoS is detailed in Section 4.5 of Chapter 4.

Finally, we include security & privacy in the QoS properties that are to be ensured by the
Amigo system. More specifically, we consider security & privacy features as a set of
middleware-level QoS attributes that reflect the Amigo security & privacy architecture [Amigo-
D2.1].

Figure 2-8: Specification of service QoS

In all identified QoS categories, QoS is represented by one or more generic QoS
parameters/attributes. In the following section, we refine the fundamental QoSParameter class
of our QoS specification. As in the case of context, we elaborate an ontology that provides a
detailed common specification of any QoS parameter/attribute of a service.

2.1.4.1 QoS parameter ontology
We introduce a QoS parameter ontology that provides a standard generic model for arbitrary
QoS attributes, while defining the nature of associations between QoS attributes and the way
they are measured. The designed QoS parameter ontology is depicted in Figure 2-9. In this
ontology, each QoS attribute is described by the following classes:

September 2005 Consortium Confidential

Amigo IST-2004-004182 26/128

• QoSParameter: QoS parameter represents a non-functional property of the service
within a specific domain. These properties may be measurable or not and may hold
relationships to each other.

• Metric. This class defines the way each QoS parameter is assigned with a value. It is
associated with the QoSParameter class through the hasMetric object property
(QoSParameter Æ domain, Metric Æ range). Each Metric object consists of a
MetricType and a Value, which are modeled as datatype properties having xsd:string
values. The MetricType datatype property is an enumerated string (xsd:enumeration)
that represents the QoSParameter’s data type, e.g., int, long, string, boolean, etc.
Value is a datatype property that formulates the QoSParameter’s value as a string.
Together with the MetricType property, the system can easily extract the semantic of
this information. The Metric class is also related with the Unit class via the hasUnit
object property (Metric Æ domain, Unit Æ range) that defines the units used to
measure the QoS parameter’s quantity. Of course, each QoS parameter can either be
measurable or unmeasurable. In the latter case, the Unit is set to null. As there are
various ways to express a physical quantity in terms of units, the Unit class holds a
relationship with the ConversionFormula class that is introduced to enable the
transformation from one unit to another. Thus, each Unit object is related to a
ConversionFormula object via the hasConversionFormula object property (Unit Æ
domain, ConversionFormula Æ range), while the ConversionFormula class holds a
convertsTo object property (ConversionFormula Æ domain, Unit Æ range). The QoS
ontology also supports statistical analysis elements over the monitored QoS
parameters. This functionality is provided by the Statistics subclass of Metric that
includes various statistical functions.

• QoSImpact. The QoSImpact object property represents the way the QoSParameter
value contributes to the service quality perceived by the user. For instance, a reduction
on the service latency is expected to increase the quality utility for the user. The
QoSImpact property enables the system to estimate the degree of user satisfaction
with regards to a given QoS parameter measurement.

• Type. The Type is a class introduced to indicate the concrete QoS attribute
represented by a specific instantiation of the QoSParameter (e.g. “Bandwdth”,
“Scalability”, “SupportedStandards”). It is associated with the QoSParameter class
through the hasType object property (QoSParameter Æ domain, Type Æ range).

• Nature. This datatype property of the QoS parameter represents its static or dynamic
nature. A QoSParameter that is defined a priori and does not change during the entire
duration of the service session is a Static QoSParameter. On the other hand,
QoSParameters that may vary during the service execution time are Dynamic. The
values of the Nature datatype property are defined by the Service Provider and are
periodically confirmed in the user domain. The Nature property is formulated as
enumerated string (xsd:string (xsd:enumeration)), and its enumerated values are:
“Static” and “Dynamic”. An example of Static QoSParameter is the security protocols
supported by the service, while a Dynamic QoSParameter is the service response
time.

• Aggregated. The QoSParameter that is composed by two or more defined
QoSParameters has the object property of aggregation. For example, the service
response time is composed by the latency parameter and the request process time by
the server.

• Node. The Node datatype property of the QoSParameter identifies the network node
that may have an impact on its value. Thus, each QoSParameter may depend on the
Server node attributes, the Client node attributes or both. It is formulated as an

September 2005 Consortium Confidential

Amigo IST-2004-004182 27/128

xsd:string (xsd:enumeration) data type, while its enumerated values are: “client” and
“server”.

• Relationship. This class represents the way a QoSParameter is correlated with others.
It is related to the QoSParameter class via a hasRelationship optional object property
(QoSParameter Æ domain, Relationship Æ range). In order to interrelate two
QoSParameter objects the infuentialParameter mandatory object property
(Relationship Æ domain, QoSParameter Æ range) has been introduced, which
indicates (i.e. has range) the QoSParameter that has an impact on the “owner”
QoSParameter (i.e. the domain of the specific hasRelationship property) of the
Relationship. This approach may also handle the case of asymmetric
interdependencies between QoS parameters. The Relationship may be Proportional or
InverselyProportional. This feature is modeled by the IFType datatype property that
has an xsd:string (xsd:enumeration) value range and {“Proportional”,
“InverselyProportional”} enumerated values. For example, the service response time
and the throughput are InverselyProportional parameters. The Relationship may also
be Strong, Medium or Weak. This information is captured by the ValidityLevel datatype
property that also has an xsd:string (xsd:enumeration) value range. The ImpactFactor
class is introduced to encapsulate the two properties above (i.e. IFType &
ValidityLevel) that characterize the Relationship. The hasImpactFactor object property
(Relationship Æ domain, ImpactFactor Æ range) is used to bind a Relationship to an
ImpactFactor object.

Figure 2-9: The QoS Parameter Ontology.

September 2005 Consortium Confidential

Amigo IST-2004-004182 28/128

2.2 Conformance relations on service specification
Conformance relations exploit the semantic specification of services as elaborated in Section
2.1 to assess the capacity of heterogeneous services to integrate and interoperate. In
Deliverable D2.1, we established the basis for conformance relations on service specification,
and outlined or elaborated a couple of conformance relations for Amigo services. In this
section, we review this base work and extend it building on the service specification language
of Section 2.1.

Seeking to establish interoperability between heterogeneous service architectures, our
conformance relations shall check conformance both at application and at middleware level.
Since, in the diverse, heterogeneous Amigo environment, the case of services conforming
totally (or strongly) to each other will rather be the exception than the rule, our conformance
relations shall enable identifying partial (or weak) conformance between services. Then, the
definition of partial conformance depends on the capacity to deploy an adequate
interoperability method to compensate for the non-conforming part. These interoperability
methods shall certainly be employed both at application and at middleware level.

In Chapter 2 of Deliverable D2.1, we outlined an application-level conformance relation, which
enables checking functional conformance between services and is based on service
capabilities. According to this conformance relation, two services may be composed if they
require and provide in a complementary way semantically conforming capabilities. Capabilities
are compared as semantic concepts and/or as semantic IOPEs. A popular, base capability
matching algorithm has been introduced in [PKPS02].

In Chapter 4 of Deliverable D2.1, we elaborated a second application-level conformance
relation in the context of composition of multiple services, which also targets functional
conformance and is based on service conversations. This conformance relation enforces a
stronger conformance: it imposes semantically conforming atomic processes and workflow
conformance between service conversations. Workflow conformance is required in certain
cases where a service needs to manage its own internal state transitions during the interaction
with a remote service. In contrast, in the interaction enabled by the previous conformance
relation, a service shall follow the state transitions of the contacted remote service.

Regarding middleware-level conformance, we outlined in Chapter 2 of D2.1 a functional
conformance relation for generic connectors, where a set of features are compared to assess
interoperability between two connectors. Further, as discussed in Section 2.1.2.3, the
availability of middleware-layer interoperability mechanisms for well-known middleware
infrastructures allows us to directly infer middleware-level functional conformance between two
services.

Based on our service specification language, we now outline a comprehensive conformance
relation which covers both application-level and middleware-level conformance and addresses
both functional and non-functional service properties. All the base results discussed above are
incorporated in our comprehensive conformance relation. Then, depending on the specific
case, a subset of this relation will be applied. Thus, our comprehensive conformance relation
shall be able to check conformance between two or more services in terms of:

• Service capabilities. Provided and required capabilities will be matched as semantic
concepts and/or as semantic IOPEs.

• Service conversations. Atomic processes will be semantically matched. Workflows will
be matched in terms of structure.

• Underlying middleware. Well-known middleware platforms may directly be matched
based on available interoperability mechanisms. Generic connectors will be matched in
terms of a set of features, which is under study.

September 2005 Consortium Confidential

Amigo IST-2004-004182 29/128

• Context attributes of services/service capabilities. Context attributes will be matched in
terms of their values. Contextual Preconditions and Effects of service capabilities will
be evaluated as logical formulas.

• QoS attributes of services/service capabilities. QoS attributes will be matched in terms
of their values.

• QoS attributes of underlying middleware/network. Such attributes will trigger
deployment of appropriate middleware/network mechanisms.

• Security & privacy attributes of middleware. Such attributes indicate the availability of
appropriate middleware mechanisms.

2.3 Tools for on-line semantic reasoning on conformance
This section surveys existing software tools that could be used for online (dynamic) semantic
reasoning. Main focus is on open source tools that can provide support for the Web Ontology
Language (OWL). The implementation language and software license are also studied.

2.3.1 Terminology
OWL

The OWL Web Ontology Language (OWL) is a language for defining and instantiating Web
ontologies. An OWL ontology may include descriptions of classes, properties and their
instances. OWL specification includes three sublanguages, OWL Lite, OWL-DL and OWL
Full1.

Semantic reasoning

The Web Ontology Language (OWL) enables (via software tools) semantic reasoning of the
data. For example if x->y and y->z then x->z. In the web services it enables of discovering
services that semantically identical (using sameAs construct). So reasoning means finding
information that may not be explicitly stated in the knowledge base but can be “reasoned” from
or is entailed in the data. OWL enables merging of ontologies and creating possibly complex
ontologies so writing reasoning tools is not an easy thing to do. It also depends on what OWL
sublanguage is used, for OWL Full it is unlikely that any reasoning software will be able to
support every feature of the language.

OWL Lite

OWL Lite supports those users primarily needing a classification hierarchy and simple
constraint features. For example, while OWL Lite supports cardinality constraints, it only
permits cardinality values of 0 or 1. It should be simpler to provide tool support for OWL Lite
than its more expressive relatives, and provide a quick migration path for thesauri and other
taxonomies.

OWL-DL

OWL-DL is one of three species of OWL sublanguages. OWL DL supports those users who
want the maximum expressiveness without losing computational completeness (all entailments

1 See http://www.w3.org/TR/owl-features/ for a more comprehensive overview. In this section, we briefly describe
the different variants of OWL.

September 2005 Consortium Confidential

Amigo IST-2004-004182 30/128

are guaranteed to be computed) and decidability (all computations will finish in finite time) of
reasoning systems. OWL DL includes all OWL language constructs with restrictions such as
type separation (a class can not also be an individual or property, a property can not also be
an individual or class). OWL DL is so named due to its correspondence with description logics,
a field of research that has studied a particular decidable fragment of first order logic. OWL DL
was designed to support the existing Description Logic business segment and has desirable
computational properties for reasoning systems.

SWRL

Semantic Web Rule Language (SWRL) is a combination of OWL-DL and OWL Lite
sublanguages with the Unary/Binary Datalog RuleML sublanguages of the Rule Markup
Language. The SWRL proposal extends the set of OWL axioms to include Horn-like rules.

2.3.2 Semantic reasoning tools
This section describes the semantic reasoning tools. Supported formats, programming
languages, and software licenses are described. Descriptions also contain information whether
the tool is open source or not. A list of tools and their descriptions can be found in Table 2-1.

Tool Name Description

Jena Open source Java framework for building semantic web applications.
Supports OWL reasoning and provides framework for developing with RDF,
RDFS, and OWL. Jena is available under BSD License.

http://jena.sourceforge.net/

KAON Extends RFDS with symmetric, transitive and inverse relations, relation
cardinality, meta-modeling, etc. KAON (version 1.x.x) is open source
software but it does not support OWL. Online demo available (requires Java
Web start). LGPL License.

http://kaon.semanticweb.org/

KAON2 Reasoner for OWL-DL and SWRL. It also provides an OWL API. KAON2 is
not open source software. KAON2 is a commercial product. A precompiled
binary distribution is free of charge for research and academic purposes.

http://kaon2.semanticweb.org/

Pellet OWL
Reasoner

Pellet is an open source Java based OWL DL reasoner and available under
MIT license. Online demo available. Pellet is available under the MIT
License.

http://www.mindswap.org/2003/pellet/index.shtml

WonderWeb
OWL API

Online OWL Ontology validator. Online version:
http://phoebus.cs.man.ac.uk:9999/OWL/Validator

WonderWeb OWL API provides programmatic (Java) access to data
structures representing OWL ontologies. OWL API is open source software
and it supports OWL Lite and OWL DL. According to the web site this is work
in progress and should at best be considered alpha quality code. The API
has been developed as part of the EU IST project WonderWeb. OWL API is
available under GNU Lesser General Public License.

http://owl.man.ac.uk/api.shtml

FaCT++ FaCT++ is an (C++) implementation of an OWL-Lite reasoner. It is new
generation of the FaCT reasoner. It will support OWL DL language in the

September 2005 Consortium Confidential

Amigo IST-2004-004182 31/128

future. FaCT++ is open source software published under GNU General
Public License.

http://owl.man.ac.uk/factplusplus/

OWLJessKB OWLJessKB is an open source description logic reasoner for the W3C's
Ontology Web Language written in Java programming language. The
semantics of the language is implemented using Jess, The Java Expert
System Shell. It also uses Jena class library. Includes most of the common
features of OWL lite, plus some and minus some. It is released under GNU
General Public License.

http://edge.cs.drexel.edu/assemblies/software/owljesskb/

SOFA SOFA (Simple Ontology Framework API) is open source project aimed for
development of an integral software infrastructure and a common
development platform for various ontology-oriented and ontology-based
software applications. It is implemented using Java programming language.
The SOFA ontology model is independent from specific languages, but it
includes Ontology serialization packages for OWL, DAML+OIL and RDF/RDF
Schema. SOFA is available under the terms of GNU Lesser General Public
License (LGPL).

http://sofa.projects.semwebcentral.org/

Sesame Sesame is an open source Java framework for storing, querying and
reasoning with RDF and RDF Schema. It can be used as a database for RDF
and RDF Schema, or as a Java library for applications that need to work with
RDF internally. However, it does not support OWL. It is released under LGPL
license.

http://www.openrdf.org

Java RDF
(JRDF)

JRDF is an attempt to create a standard set of APIs and base
implementations to RDF (Resource Description Framework) using Java.
JRDF has no support for the OWL. The Apache Software License, Version
1.1.

http://jrdf.sourceforge.net/

Redland RDF
Application
Framework

Redland is a set of free (open source) software packages that provide
support for the Resource Description Framework (RDF). It is written in C and
provides bindings for several programming languages including C#, Java and
Python. Closely related software include Rasqal RDF Query Library and
Raptor RDF Parser toolkit.

It is available under LGPL Version 2.1, GPL 2 or Apache License Version
2.0.

http://librdf.org/

OWL-S
Matcher

The OWL-S Matcher is a Java implementation of a matchmaking algorithm
for matching OWL-S descriptions. The matching algorithm is presented in
[JRGL05]. Source code is available under LGPL 2.1.

http://owlsm.projects.semwebcentral.org/

OWL-S Editor Java-based tool for creating, validating and visualizing OWL-S models.

http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlseditFYP/OwlSEd
it.html

RacerPro RACER stands for Renamed ABox and Concept Expression Reasoner.
RacerPro is the commercial name of the software RacerPro supports RDF

September 2005 Consortium Confidential

Amigo IST-2004-004182 32/128

RacerPro is the commercial name of the software. RacerPro supports RDF
and OWL. RacerPro is commercial product, but trial version can be
downloaded (test for 30 days). According to the web site Educational license
can be obtained for free and can be used for 180 days.

http://www.franz.com/products/racer/

Table 2-1: Tools for semantic reasoning

2.3.3 Discussion
The previous section gave a brief overview of the semantic reasoning tools. Based on the
needs of Amigo project, perhaps the most complete open source tool available is Jena. Jena
is used in many projects and also it has the most downloads in survey done in [BiWe]. Jena
supports RDF, RFDS and OWL. It is open source and it is written in Java programming
language. Many other open source tools are not mature enough or support only RDF and not
OWL. Of the commercial products, RacerPro would be suitable for the Amigo because it
supports OWL and it is implemented as a server and so can be easily accessed from
internet/intranet. However, RacerPro is not an open source product. RacerPro evaluation
license can be used only for 30 (trial version) or 180 (educational license) days.

September 2005 Consortium Confidential

Amigo IST-2004-004182 33/128

3 Service discovery and access in the Amigo
networked home environment

3.1 The heterogeneous service-based Amigo networked home
As presented in Deliverable D2.1 [Amigo-D2.1] on the specification of the Amigo abstract
middleware architecture and as further detailed in the next chapter, the Amigo middleware
allows integrating services based on heterogeneous middleware technologies, in the
networked home environment. Such a feature is enabled by the Amigo interoperable
middleware core that implements middleware-layer interoperability methods so that services of
the networked home environment may be discovered and accessed by the other networked
services, and conversely, independent of the service-oriented middleware technology the
various networked services are implemented upon.

3.1.1 The Amigo interoperable middleware core
Key functions of the Amigo interoperable middleware core are depicted in Figure 3-1, which
illustrates interoperability between a JINI and a UPnP service. Functions of the Amigo
interoperable middleware core lie in:

• SDP detection and interoperability for service discovery independent of the specific
service discovery protocols used by networked services for advertising and requesting
services (e.g., JINI and SSDP in our example), and

• Service interaction interoperability (SII) for enabling interaction between services,
independent of the specific brokers (interaction protocols) used by networked services for
being accessed and/or accessing remote services (e.g., RMI and SOAP in our example).

Figure 3-1: Key functions of the Amigo interoperable middleware core

The Amigo interoperable middleware core may be deployed on one of the following three
types of nodes of the networked home environment: service client, service provider or

JINI
Advertisements

or
Requests

Mobile A

SDP
 Detection

SDP
Interoperability

UPnP

2

31

4
5

Amigo interoperable
middleware core

6

Mobile B

SII
Interoperability

7

8 9

September 2005 Consortium Confidential

Amigo IST-2004-004182 34/128

gateway, as most convenient according to the specific architecture of the networked home
environment, and capabilities and usage of the networked devices. For instance, it is most
convenient to embed the Amigo interoperable middleware in mobile devices, as this will allow
them to integrate in any networked home environment, as they move from one network to
another. However, the interoperability methods implemented by the middleware introduce
processing overhead, which should be accounted for, in particular in the case of resource-
constrained, wireless devices. Also, it is much convenient to deploy the Amigo interoperable
middleware core on the home gateway – if/when available – since it eases integration of
devices as they join the Amigo networked home environment, hence making the environment
open and highly adaptive.

Figure 3-2: The Amigo interoperable middleware core and legacy APIs

One key feature of the Amigo interoperable middleware core is that it is transparent to
applications. As depicted in Figure 3-2, services that are networked in the Amigo home
environment use legacy middleware core (e.g., JINI in our example) to interact with the
environment, and in particular with remote networked services. The Amigo interoperable
middleware core then interposes at the network layer to ensure interoperability with services
based on distinct middleware technologies (e.g., interaction with a UPnP service in our
example). In general, the Amigo middleware does not introduce any new API for base
functions of the middleware core, as there is a significant number of such APIs that have
already been proven quite successful for the networking of services in various environments
(e.g., UPnP for home networks whether ad hoc or infrastructure-based, JINI for Intranet/PC
networks, Web services and .NET for Internet/Intranet networks). Instead, the Amigo
middleware supports the development of services using the legacy middleware technologies
that are the most appropriate to the services being developed, both in terms of networking
features and developer skills. The Amigo middleware then takes in charge the integration of
the service in today’s, rich heterogeneous networked home environment. Hence, services that
are networked in the Amigo home environment, whether legacy or Amigo-aware, are all

Interaction with

the environment

Legacy middleware core
(Service discovery & message broker for service interaction)

Amigo
Interoperable middleware core

UPnP/SOAP

Networked service

JINI/RMI

September 2005 Consortium Confidential

Amigo IST-2004-004182 35/128

developed using legacy middleware technologies for functionalities relevant to the middleware
core.

3.1.2 The Amigo base middleware
In addition to the above interoperable middleware core, the Amigo base middleware for the
networked home environment introduces a number of value-added middleware functions that
may be exploited by developers when developing Amigo-aware services. These functions
include support for semantic service specification and related conformance checking, as
presented in the previous chapter, which is the corner stone of application-layer service
interoperability. Additional functions relate to:

• Amigo-aware service discovery that enables semantic-level, context-aware service
discovery,

• service composition,

• content interoperability,

• storage & distribution,

• security & privacy,

• accounting & billing, and

• mobility management.

These functions are partly presented in companion Deliverable D3.1c [Amigo-D3.1c]; related
APIs will be defined in the next phase of the project and be presented in Deliverable D3.3.

3.1.3 Networked services integrated in the Amigo home environment
Figure 3-3 provides an overview of the various types of networked services that may be
integrated in the Amigo home environment, together with the interactions that may effectively
take place among networked services (depicted with arrows), according to the interoperability
methods embedded on the devices. We distinguish between service client and provider
(termed service), noticing that the underlying legacy middleware instance differs on the client
and provider side, as the client side is lighter-weight and the service provider side embeds
client capabilities in addition to server ones. However, in general, we assume rich services that
act both as service client and provider, networking opportunistically (using various
communication paradigms such as, e.g., client-server, peer-to-peer or event-based
communication) with other services, as service requester and/or provider, in the home
environment. Three types of services (acting as client and/or provider) are then distinguished
in the Amigo networked home environment:

• Legacy services: These are legacy services that do not have any knowledge about
Amigo networks and are implemented on top of some legacy (service-oriented)
middleware.

• Middleware-layer interoperable services: These are services that integrate the Amigo
interoperable middleware core, and as above, are implemented using the API of some
legacy (service-oriented) middleware.

• Amigo-aware services: These are services exploiting the overall functionalities of the
Amigo base middleware, i.e., integrating both application- and middleware-layer
interoperability and possibly part of the aforementioned advanced middleware functions
although not depicted in our figure.

September 2005 Consortium Confidential

Amigo IST-2004-004182 36/128

Figure 3-3: Services networked in the Amigo home environment and related interoperability
levels

3.1.4 Interoperability levels in the Amigo networked home environment
Following the above classification, we identify three levels of interoperability (denoted by
arrows in Figure 3-3) between networked service clients and providers, from (*) to (***):

• (*)-Network-dependent interoperability is the weakest interoperability enabled in the
network, which is when neither the service client nor the service provider hosts the Amigo
interoperable middleware core. Then, interoperability is only possible if either:

Middleware-layer interoperable
service client

Legacy middleware client (Jini,
UPnP, …)

Amigo interoperable middleware core

Legacy service client

Legacy middleware client

(Jini, UPnP, …)

Legacy service

Legacy middleware server

(Jini, UPnP, …)

Middleware-layer interoperable
service

Legacy middleware server (Jini,
UPnP, …)

Amigo interoperable middleware core

Amigo-aware service

Application-layer service
interoperability (includes semantic &

context awareness)

Legacy middleware server (Jini,
UPnP, …)

Amigo interoperable middleware core

Amigo-aware service client

Application-layer service
interoperability (includes semantic

& context awareness)

Legacy middleware client (Jini,
UPnP, …)

Amigo interoperable middleware core

(*)

(**)

(***)

(**) (**)

(**)

(**)

(**)
(**)

September 2005 Consortium Confidential

Amigo IST-2004-004182 37/128

o the service client and provider are implemented upon the same or compatible
legacy middleware technologies (e.g., a Web service client may interact with a
UPnP service, assuming the client knows the service instance), or

o there is a gateway node in the network hosting the Amigo interoperable
middleware core that may act as a bridge between the service client and
provider for them to be interoperable, hence actually enabling (**)-syntactic
interoperability discussed below.

The former case is no longer discussed since this corresponds to a homogeneous
networked home environment.

• (**)-Syntactic interoperability corresponds to middleware-layer interoperability, as
achieved by the Amigo interoperable middleware core, which is transparent to services.
Specifically, services are able to integrate and compose within the networked home,
regarding both the service discovery and interaction protocols they are running, using the
API of the legacy middleware they are implemented upon, thanks to the middleware-layer
interoperability methods. However, this only solves possible protocol mismatch, it does not
solve possible semantic and syntactic mismatch at the application layer. Indeed, effective
interoperability between middleware-layer interoperable services may only be achieved if
service clients and providers use common interfaces to characterize services, which may
differ however in terms of description languages used (i.e., interfaces match syntactically,
assuming underlying semantic matching of the respective service models).

• (***)-Semantic interoperability corresponds to application-layer interoperability, as
achieved by the Amigo base middleware, using semantic description of service behavior.
This enables integration and composition of services in the networked home based on
semantic knowledge about services. Services may further benefit from advanced
middleware functions like context-and QoS-awareness.

Note that the above does not consider the case of semantic-aware services that integrate
Amigo application-layer interoperability methods but not the Amigo interoperable middleware
core. Such a class of services may indeed be developed using a subset of the Amigo
middleware. In this case, the level of interoperability that may be achieved depends on the
middleware core hosted by the networked services between which the interactions take place,
ranging from the network-dependent to semantic interoperability levels.

The two next sections detail how to develop services that enable syntactic, respectively
semantic, interoperability in the Amigo networked home environment. Section 3.4 concludes
this chapter with an overview of its contribution and area with future work.

3.2 Networked middleware-layer interoperable services
As already stressed, the development of middleware-layer interoperable services is similar to
that of legacy services, thanks to the transparency of the Amigo interoperable middleware
core. In the time frame of the Amigo project, due to obvious time and budget constraints,
software prototypes of the Amigo middleware core will be developed for experimenting
interoperability with a fixed set of legacy middleware technologies. Specifically, we will focus
on the legacy middleware technologies that are the most popular in the domains integrated by
the Amigo networked home environment, i.e.:

• UPnP for the home network that is the core of the DLNA architecture integrating the CE,
PC and mobile domains,

• Java technologies for PC, mobile and intranet networks, and

• Web services for the PC domain and Intranet/Internet networks.

September 2005 Consortium Confidential

Amigo IST-2004-004182 38/128

The following section provides references to relevant Web sites providing support for the
development of services based on those technologies. Section 3.2.2 then addresses how to
achieve syntactic interoperability in the Amigo networked home environment, as it is a key
requirement for effective use of the Amigo base middleware. Indeed, it cannot be assumed
(nor enforced) that all networked services will be Amigo-aware: legacy services will (and shall)
play a significant role in Amigo networks.

3.2.1 Interfacing with the middleware core
Middleware cores for open networked environments like the Amigo home integrate two key
functions for enabling effective integration of services within the network, i.e.:

• a service discovery protocol, so that networked services can discover, and be discovered
by, others, and

• a message broker, also referred to as service interaction, so that networked services may
access, and be accessed by, others.

From a design perspective, the Amigo middleware core enables interoperability with any
legacy middleware that is based on the service-oriented architecture paradigm. However, from
a pragmatic standpoint, service-oriented middleware technologies with which interoperability is
enabled by the software prototypes of the Amigo middleware core depend on the
interoperability units that are (will be) actually developed/available (see next chapter). As
stated above, in the time frame of the Amigo project, we concentrate on the middleware
technologies that are the most representative of the Amigo application domains, i.e., UPnP,
JINI and, more largely, Java-based middleware technologies, and Web services.

Middleware core Service discovery protocol Message broker
(service interaction protocols)

UPnP SSDP SOAP

JINI JINI RMI

Java-based SLP RMI

Web services in the home SLP SOAP

Table 3-1: Legacy middleware cores experimented with in the Amigo project

Considering the above middleware technologies, all of them provide a message broker but do
not necessarily integrate a service discovery protocol, as not all of them are specifically aimed
at open networked home environments. Specifically, the following middleware cores target
open home networks: UPnP integrates SSDP for service discovery and SOAP for service
interaction, and Java-based JINI integrates JINI proprietary service discovery protocol and
RMI for service access. Then, other Java-based middleware platforms offer necessary
functions for service interaction via RMI, but do not prescribe any specific service discovery
protocol. Also, there exist Java-based middleware like JXTA that offer a service discovery
protocol but for networks different than the networked home environment (e.g., JXTA targets
peer-to-peer computing on the Internet). Regarding Web services, the supporting middleware
defined by W3C offers SOAP for service interaction. In addition, UDDI is often put forward as
the standard service discovery protocol for the discovery of services on the Internet, although
defined by the OASIS consortium instead of W3C. Also, service discovery protocols that are
not bound to a specific message broker have been introduced. This is in particular the case of
the SLP protocol, which may be coupled with, e.g., SOAP or RMI. According to the specifics of
the Amigo networked home environment and features of the above middleware technologies,
we will primarily focus on the integration of the legacy middleware cores listed in Table 3-1,
hence developing related units, as further discussed in the next chapter. Additional legacy

September 2005 Consortium Confidential

Amigo IST-2004-004182 39/128

middleware cores may be considered as the project evolves, and in particular as prototype
applications developed in WP5-WP7 will be refined.

Development of services using the middleware cores listed in Table 3-1 has to adhere to the
developer guides of the respective service discovery protocols and message brokers. The
interested reader is thus referred to related Web sites for detail about related APIs and
implementation guidelines (see Table 3-2).

Middleware
technology

Web site for developers

UPnP http://www.upnp.org/

JINI http://www.jini.org/ ; http://www.sun.com/software/jini/

RMI http://java.sun.com/products/jdk/rmi/

SOAP http://www.w3.org/TR/soap/

SLP http://www.openslp.org/doc/html/IntroductionToSLP/

Table 3-2: Legacy middleware cores and related Web sites for developers

3.2.2 Achieving syntactic interoperability
The Amigo interoperable middleware core solves the mismatch of the service discovery and
interaction protocols, which occurs between the service client and provider’s protocols when
the client and provider are implemented upon distinct legacy middleware technologies.
Specifically, this solves the mismatch occurring at the architectural connector level in terms of
protocol behavior and message format. However, this does not solve the mismatch of service
description, as provided at the application layer (architectural component level), which
provides the semantic of the service solely based on its syntactic description. As discussed in
Deliverable D2.1 for the specific case of mapping between enriched service description and
legacy SDPs (see §3.2.1.3 of D2.1), mismatch between service descriptions may be solved
using standard taxonomies for service description, providing standard terms for naming
services, operations, and parameters, as, e.g., investigated by the UPnP forum. For instance,
in the integrated prototype presented in Chapter 5, we use the interfaces of the standardized
UPnP AV Architecture2 to elicit taxonomies for the description of both UPnP and Java-based
Audio-Video services. While the definition of standard taxonomies for all the application
services relevant to the networked home environment is beyond the scope of the Amigo
project, the Amigo project will provide taxonomies for service interfaces relevant to the
prototype applications that will be developed in WP5-7, building upon the Amigo work on
ontologies for the networked home environment carried out in Task 3.1 and relevant standards
like standardized device and service descriptions from the UPnP forum.

Standard taxonomies for service description may be exploited to:

• define standard interfaces using the description language of the specific legacy
middleware being used (e.g., UPnP XML schema for service description, Java language
for Java-based middleware, WSDL for Web services), and

• reason about the matching of service descriptions.

However, this further requires defining the mapping between the service models and data
types defined by the middleware languages for service description. Indeed, service description

2 http://www.upnp.org/standardizeddcps/

September 2005 Consortium Confidential

Amigo IST-2004-004182 40/128

languages from legacy service-oriented middleware define different service models and type
systems.

Regarding the mapping of type systems of service description languages, definitions exist in
the literature (e.g., mapping of WSDL and Java data types, mapping of UPnP and Java data
types), in particular thanks to the mapping between data types of service description
languages and programming languages, which are defined by legacy middleware. Then,
existing solutions may be exploited to elicit standard mapping between type systems of the
various service description languages, as, e.g., illustrated in the next chapter.

With respect to the mapping of service models of service description languages, we should
distinguish between models used for service discovery and those used for service access,
since not all middleware tightly integrate service discovery and service interaction protocols.
Consider first the case of service discovery, focusing on the service discovery protocols that
are listed in Table 3-1, since these are representative of most legacy protocols in use today for
pervasive computing environments. Basically, those protocols enable searching a service,
based on the provision of the name of the service type. UPnP further defines a containment
relationship for services, using the notion of devices, where a physical device may embed a
number of logical devices, each embedding a set of services. Then, it is possible to also seek
devices implementing a given device type in UPnP networks. As for SLP, it is further possible
to qualify the set of services of interest, by providing values for given known properties. All
service discovery protocols use the provided service type name to seek service instances
implementing a matching type (based on the equality of type names), and then return the
address of those instances. Note that in the case of UPnP, the discovery process is in two
steps, as the URL of the service/device description is first returned to then get the address of
the service instance(s) from this description. Basically, the notion of services matches in all the
above protocols; services are described as providing a set of operations and are sought based
on the name of the type they (exactly) implement. The notion of device may further be
considered as a special kind of service, which embeds more primitive services. Then,
assuming that services in the Amigo networks:

• enable a containment relationship, and

• are minimally described as providing a set of operations,

service models from the aforementioned protocols directly map to the Amigo service model.
However, constraining service search using properties, as in SLP, is not possible. We
consider that is this not a major issue for the Amigo networks because more advanced
service discovery and selection may be performed with Amigo-aware services, and the
attributes/properties introduced by SLP lack precise semantics and standard definition,
although some attempts have been made for specific service types (e.g., printer).

Once the address of a service instance matching a service request is discovered, the service
may be either accessed using the access protocol tightly coupled with the service discovery
protocol (e.g., UPnP-SSDP-SOAP, JINI-RMI) or using some legacy middleware interaction
protocol (e.g., SLP-SOAP, SLP-RMI). In the former case, the same service model is used for
both service discovery and access. In the latter case, the service models for service discovery
and access may differ. However, the service models used for service access by the legacy
interaction protocols listed in Table 3-1, on which we concentrate in a first step, obviously map
directly to the above Amigo service model.

Following the above discussion, syntactic interoperability may be achieved among networked
middleware-layer interoperable services within Amigo networks, by providing standard
ontologies of service interfaces according to the service model defined above. Two
approaches are possible and may actually be combined to define those ontologies, either
using the Amigo declarative language for service description, which was introduced in the
previous chapter, or using the description language of some legacy middleware. We will
undertake a pragmatic approach in the time frame of the Amigo project, i.e., we will use

September 2005 Consortium Confidential

Amigo IST-2004-004182 41/128

existing standard interfaces like the ones of the UPnP forum whenever available and
introduce new standard interfaces described using the Amigo declarative language, when
required by the application prototypes. Those standard interfaces may then be automatically
translated into middleware-specific interface descriptions, using the middleware service
description language, thanks to the mapping of respective type systems.

3.3 Networked Amigo-aware services
Amigo-aware services are developed using all the advanced features of the Amigo
middleware, i.e., they are described using the language introduced in the previous chapter and
are implemented on top of the Amigo base middleware. Interfacing with the Amigo base
middleware is addressed in the following section, while Section 3.3.2 discusses semantic
interoperability that is achieved among networked Amigo-aware services.

3.3.1 Interfacing with the Amigo base middleware
In the same way as for other networked services, Amigo-aware services use APIs of legacy
middleware for accessing to functionalities of the middleware core, i.e., syntactic service
discovery and service interaction. Then, relevant APIs for the development of Amigo-aware
services in the course of the Amigo project are those listed in Table 3-2.

Amigo-aware services may further exploit advanced functionalities embedded in the Amigo
middleware, relating to:

• Legacy middleware services like transaction processing,

• Intelligent user services investigated in WP4, and

• Base middleware functions investigated in WP3, which include various functionalities
relevant to AmI systems, like security and privacy, in addition to the ones of the
interoperable middleware core.

Relevant APIs for legacy middleware services may be found in the literature, while APIs for
Amigo middleware services will be defined in the course of the Amigo project, as part of WP3
and WP4 work.

3.3.2 Achieving semantic interoperability
Two types of services of the Amigo base middleware are key to achieving semantic
interoperability among Amigo-aware services, i.e., those dedicated to (semantic) service
interoperability and Amigo-aware service discovery. The former relates to semantic service
description and matching, as introduced in the previous chapter. The latter relates to
enhanced service discovery exploiting semantic service description, further enriched with QoS
and context information for service discovery (see Section 3.2 and Figure 3.4 of Deliverable
D2.1).

Two approaches may be considered for the development of the Amigo solution to enhanced
service discovery:

• developing a new service discovery protocol to be integrated in the middleware core,

• developing Amigo-aware service discovery as a middleware service on top of a legacy
middleware core.

As suggested above, we adopt the latter approach. Basically, the former approach has the
advantage of being potentially more efficient, in particular not paying the cost of service
access in service discovery. On the other hand, this approach does not enable to benefit from
the various legacy service discovery protocols that are already in place and optimized for the
targeted networking environment. Also, this would lead to duplicate discovery processes in the

September 2005 Consortium Confidential

Amigo IST-2004-004182 42/128

case of service discovery protocols that are tightly integrated with the middleware access
protocol, like the UPnP middleware. Then, as a first approach, we will develop the Amigo-
aware service discovery solution as an Amigo-aware service on top of legacy middleware
core. Such an approach was in particular experimented in the Ozone project, with the WSAMI3
middleware for AmI, which introduces a middleware service for service discovery that builds
on top of SLP. Performance evaluation showed that the cost of service discovery is, in this
case, comparable to that of service access and efficiency then depends on the ratio between
service access and service discovery.

The Amigo-aware service discovery process is depicted in Figure 3-4. Basically, the Amigo
service for enhanced service discovery builds on top of a legacy middleware core, which is in
particular exploited for discovering peer services for Amigo-aware service discovery in the
network (Step 1 in the figure). Then, both semantic and syntactic service discovery may be
performed. The former relies on the distributed service discovery protocol performed by the
Amigo-aware service discovery (Step 2 in the figure). The latter relies on service discovery
using the legacy middleware (Step 3 in the figure), translating the Amigo semantic service
specification in a more primitive standard service interface, based on standard ontologies for
services. Note that the latter step enables both an Amigo-aware service to be discovered by a
networked legacy service (using the push scheme on the Amigo-aware device) and a
networked legacy service to be discovered by an Amigo-aware service (using either the push
scheme on the legacy device or the pull scheme on the Amigo-aware device).

Figure 3-4: Amigo-aware service discovery

Detailed design of the Amigo-aware service discovery will be undertaken in the next project
phase, addressing in particular:

• Integration of tool for efficient (both in resource and time dimensions) on-line semantic
reasoning on semantic matching,

• Definition of the service discovery protocol, whether pull-based, push-based or both,
whether centralized, semi-distributed or fully distributed.

• Dealing with QoS and context-awareness.

Also, we have mentioned that the Amigo-aware service discovery will build on a legacy
middleware core without specifying which middleware among, e.g., those listed in Table 3-1.
Our view is that the developer should be able to use the legacy middleware technology that is
the most appropriate, according to his/her skill and main target application domain. This would
further allow refining the Amigo-aware service discovery into domain-specific service
discovery. This suggests not fixing a priori the underlying legacy middleware core for Amigo-
aware service discovery. This issue is going to be investigated further in the next phase of the
project. In addition, it is important to note that while the underlying legacy middleware

3 http://www-rocq.inria.fr/arles/download/ozone/index.htm

Amigo-aware service discovery

Legacy middleware for service
discovery and access

Amigo-aware service discovery

Legacy middleware for service
discovery and access

(2)

(1&3)

September 2005 Consortium Confidential

Amigo IST-2004-004182 43/128

technology may be left open from a design perspective, the software prototypes implementing
Amigo-aware service discovery that will be developed in the time frame of the project will be
for a limited set of legacy middleware cores to be specified in accordance with, in particular,
WP5-WP7 legacy software platforms.

3.4 Discussion
Building upon Amigo solutions to application-layer and middleware-layer interoperability that
were introduced in Deliverable D2.1 and that are further refined in this deliverable, this chapter
has investigated service discovery and access in the Amigo, open networked home
environment, which may integrate:

• legacy services that are totally Amigo-unaware and do not use any of the Amigo solutions
to interoperability;

• middleware-layer interoperable services that integrate Amigo middleware-layer
interoperability solutions, i.e., the Amigo interoperable middleware core whose detailed
design is addressed in the next chapter, and

• Amigo-aware services that are built on top of the Amigo middleware, which integrates
solutions to application-layer and middleware-layer interoperability.

Then, depending on the services, interoperability levels may be:

• network-dependent if involved services are all legacy,

• syntactic if there are middleware-layer interoperable services involved, and

• semantic if all the services involved are Amigo-aware.

Syntactic interoperability requires defining ontologies of standard service interfaces, while
semantic interoperability exploits semantic service description and matching introduced in the
previous chapter.

Key feature of the Amigo middleware with respect to service discovery and access in the open
Amigo network is that it allows effectively integrating legacy services without requiring any
change to them, while enabling discovery of, and access to, services based on heterogeneous
middleware technologies. In addition, advanced service discovery and access, exploiting
semantic knowledge about the services’ functional and non-functional (QoS- and context-
related) properties may be performed, thanks to the Amigo application-layer interoperability
methods and advanced middleware functions. A key challenge for the Amigo middleware is
then to provide such features at low cost in terms of resource usage and further offering
satisfying response time to end-users. The next chapter investigates this issue, introducing the
detailed design of the Amigo interoperable middleware core and early performance results
based on first prototype implementation.

September 2005 Consortium Confidential

Amigo IST-2004-004182 44/128

4 Amigo interoperable middleware core
The Amigo interoperable middleware aims at enabling ambient intelligence for the networked
home environment by addressing the integration of devices and related application services
available within the networked home system (i.e., devices from the Consumer Electronics
(CE), home automation, mobile and PC domains). The Amigo interoperable middleware
architecture is specifically designed to realize an open networked home system that
dynamically integrates heterogeneous devices as they join the network.

In this chapter, we present the design and implementation of the Amigo interoperable
middleware core, which comprises essential middleware functions, such as service discovery,
service interaction and QoS support, building upon the Amigo abstract middleware
architecture presented in Deliverable D2.1 [Amigo-D2.1]. More specifically, we elaborate
detailed design and first prototype implementation for certain functionalities of the middleware
core, while for other functionalities, we provide at this stage early design and implementation,
or a refined architecture with respect to the abstract middleware architecture. All parts of the
middleware core will be further elaborated in next deliverables towards the final prototype
implementation.

The main functionality offered by the Amigo interoperable middleware core is interoperability
between services that employ different discovery (e.g., SSDP, Jini, SLP) and interaction (e.g.,
RMI, SOAP) protocols. Our solution to middleware interoperability integrates two tightly related
subsystems: the service discovery interoperability subsystem (elaborated in Section 4.1) and
the service interaction interoperability subsystem (elaborated in Section 4.2). Further, we
introduce a programming and deployment framework for the Amigo system, which enables
modular development and configurability of Amigo middleware components as well as
application services (Section 4.3). We finally elaborate solutions to domotic domain
interoperability (Section 4.4) and CE domain interoperability (Section 4.5).

4.1 Service discovery interoperability (SDI)
This section presents our detailed design and implementation of service discovery
interoperability. Initially, we recall from Deliverable D2.1 the design principles on which SDI is
based (Section 4.1.1). Then, we present the detailed design and first prototype implementation
of SDI, using the UML language (Section 4.1.2). We finally provide evaluation of our prototype
in terms of implementation footprint and performance (Section 4.1.3).

4.1.1 Design principles
The majority of service discovery protocols (SDPs) support the concepts of client, service and
repository. In order to find needed services, clients may perform two types of request: unicast
or multicast. The former implies the use of a repository, equivalent to a centralized lookup
service, which aggregates information on services from services’ advertisements. The latter is
used when either the repository's location is not known or there exists no repository in the
environment. Similarly, services may announce themselves with either unicast or multicast
advertisement, depending on whether a repository is present or not. Two SDP models are
then identified, irrespectively of the repository's existence: the passive discovery model and
the active discovery model. When a repository exists in an environment, the main challenge
for clients and services is to discover the location of the repository, which acts as a mandatory
intermediary between clients and services. In this context, when using the passive discovery
model, clients and services are passively listening on a multicast group address specific to the
SDP used, and are waiting for a repository multicast advertisement. On the contrary, in an
active discovery model, clients and services send multicast requests to discover a repository,
which sends back a unicast response to the requester to indicate its presence. In a
“repository-less” context, a passive discovery model means that the client is listening on a

September 2005 Consortium Confidential

Amigo IST-2004-004182 45/128

multicast group address that is specific to the SDP used to discover services. Obviously, the
latter periodically send out a multicast announcement of their existence to the same multicast
group address. In contrast, with a repository-less active discovery model, the roles are
exchanged. Thereby, clients perform periodically multicast requests to discover needed
services, and the latter are listening to these requests. Furthermore, services reply unicast
responses directly to the requester only if they match the requested service.

Basically, all SDPs use a multicast group address and a UDP/TCP port that must and have
been assigned by the Internet Assigned Numbers Authority (IANA). Thus, assigned ports and
multicast group addresses are reserved, without any ambiguity, to only one type of use.
Furthermore, it is important to notice that an entity may subscribe to several multicast groups,
and so may be simultaneously a member of different types of multicast groups. These two
characteristics only are sufficient to provide simple but efficient environmental SDP detection.
To achieve SDP detection, a component called monitor component embeds these two major
behaviors: (i) the ability to subscribe to several SDP multicast groups, irrespectively of their
technologies; and (ii) the ability to listen to all their respective ports. The monitor component is
able to determine the current SDP(s) that is (are) used in the environment upon the arrival of
the data at the monitored ports without doing any computation, data interpretation or data
transformation. It does not matter what SDP model is used (i.e., active or passive), as the
detection is not based on the data content but on the data arrival at the specified UDP/TCP
ports inside the corresponding groups.

Figure 4-1: SDP detection and interoperability mechanisms

SDP detection is just a first step towards SDP interoperability and represents a primary
component. The main issue is still unresolved: the incoming raw data flow that comes to the
monitor component needs to be correctly interpreted to deliver the services’ descriptions to the
application components. To support such functionality, we introduce an SDP interoperability
component based on event-based parsing concepts. Figure 4-1 shows the relation between
the SDP detection component and the SDP interoperability component of the Amigo
interoperable middleware core in an environment with an SLP (Service Location Protocol)
based application and a UPnP (Universal Plug and Play) based application.

September 2005 Consortium Confidential

Amigo IST-2004-004182 46/128

Figure 4-2: SDP Unit configuration

Specifically, upon the arrival of raw data at monitored ports, the monitor component detects
the SDP that is used, and sends a corresponding event to the appropriate parser to
successfully transform the raw data flow into a series of events. The parser extracts semantic
concepts as events from syntactic details of the SDP detected. Then, the generated events
are delivered to the local components’ composers. The communication between the parser
and the composer does not depend on any syntactic detail of any protocol. They communicate
at semantic level through the use of events. Parsers and composers are dedicated to a
specific SDP protocol. Then, to support more than one SDP, several parsers and composers
must be embedded into the system. Parsers and composers are further decoupled from the
transport protocol used for the receipt/sending of messages by enabling various types of
socket components, which may further be changed at runtime.

In general, SDP functions are complex distributed processes that require coordination
between the actors of the specific service discovery function. This may be realized by
embedding the parser and composer within a unit that runs coordination processes associated
with the functions of the given SDP. The unit is further self-configurable in that it manages the
evolution of its configuration as needed by the SDP specifics and the evolution of the
environment. The behavior of the unit may easily be specified using finite state machines.

Figure 4-3: SDP interoperability mechanisms

September 2005 Consortium Confidential

Amigo IST-2004-004182 47/128

The unit is in charge of dispatching event notifications to its registered listeners through event
connectors. Message-oriented connectors enable the interaction among components that are
not event-oriented. Parsers are endowed with both event- and message-oriented connectors.
Thus, inside the units, parsers’ input ports are bound to message-oriented connectors,
whereas parsers’ output ports are bound to an event connector controlled through the unit’s
state machine. Conversely, composers’ output ports are bound to message-oriented
connectors, whereas composers’ input ports are bound to the unit’s event bus (see Figure
4-2).

SDP interoperability is achieved through the correct composition of a number of units. As
depicted in Figure 4-3, the translation from SLP to UPnP discovery corresponds to the
composition of an SLP unit with a UPnP unit. At this level, units are only considered as
computational elements that transform messages to events and vice versa. The units’ internal
mechanisms are totally hidden.

4.1.2 Detailed design and implementation
In this section, we present our detailed design and implementation of the service discovery
interoperability. In Section 4.1.2.1, we provide an overview of the design and the relations
among the classes that constitute the prototype, using UML class diagram descriptions. Then,
in Section 4.1.2.2, we detail our implementation using UML class and sequence diagrams: the
internals of each class and its relations with the other classes are surveyed to provide a better
understanding of the technical details of the prototype implementation.

4.1.2.1 Overview
Figure 4-4 depicts the components that realize the service discovery interoperability
mechanisms.

SdpSocket is the abstract class that provides the common interface and the basic
functionalities for all the sockets supported by the middleware. TcpSocket, UdpSocket,
UdpMulticastSocket and HttpSocket inherit from this base class and respectively provide
implementations of sockets for TCP, unicast UDP, multicast UDP and HTTP. SdpParser is the
abstract class that provides the common interface and the basic functionalities for all the
parsers supported by the middleware. SlpParser, SSDPParser, HttpParser inherit from this
base class and respectively provide an implementation of SLP, SSDP and HTTP parsing.
ServiceDescrParser and DeviceDescrParser are respectively used to parse UPnP device and
service descriptions. SdpComposer is the abstract class that provides the common interface
and the basic functionalities for all the composers supported by the middleware. SlpComposer
and UpnpComposer inherit from this base class and respectively provide an implementation of
a composer for SLP and UPnP.

Units are represented by the abstract class SdpUnit. The abstract class SdpUnitFactory is in
charge of the creation of instances of SdpUnit objects. Two units are currently supported by
the middleware: SlpUnit and UpnpUnit, which are respectively the implementations of SLP and
UPnP protocols. For each of them, we provide a class that inherits from the SdpUnitFactory
and is in charge of the creation of instances of the unit (SlpUnitFactory and UpnpUnitFactory).
The context state machine shown in Figure 4-2 is represented by SlpUnitContext and
UpnpUnitContext.

The definition of a unit must include at least one component of each type (socket, parser and
composer). Thus, SdpUnit contains a SdpSocket object list, a SdpParser object list and a
SdpComposer object list. SlpUnit and UpnpUnit will define the parsers, composers and
sockets used by instantiating the values of these three lists.

September 2005 Consortium Confidential

Amigo IST-2004-004182 48/128

Figure 4-4: Detailed design of service discovery interoperability

Figure 4-5: Detailed design of event and message communication

Events and messages for internal communication inside the unit are respectively implemented
by SDPEvent and SDPMsg (Figure 4-5). The implementation of connectors for transmission of
events and messages is detailed in the following section.

4.1.2.2 Detailed description
This section describes the different components and mechanisms that implement the service
discovery interoperability: the monitor, the event and message connectors, the sockets, the
parsers, the composers and the units. The details of the implementation of each component
and mechanism are described using UML class and sequence diagrams.

September 2005 Consortium Confidential

Amigo IST-2004-004182 49/128

Monitor
When the system is initialized, it is the responsibility of the Monitor to set up the correct
configuration of unit composition to achieve service discovery interoperability. In the current
prototype of service discovery interoperability, we provide a SlpUnit and a UpnpUnit. When the
system is initialized, the Monitor defines the configuration of unit composition for service
discovery interoperability as shown in Figure 4-6. In Figure 4-6a, a SLP unit listens to SLP
network messages and generates events that will be dispatched to a UPnP unit. The latter will
translate these events into UPnP messages delivered to the UPnP application. In the opposite
direction, the UPnP unit will translate UPnP messages coming from the UPnP application into
related events that will be redirected to the SLP unit to create an SLP reply. In Figure 4-6b, the
Monitor defines another configuration, with a UPnP unit listening to UPnP network messages
and an SLP unit delivering to an SLP application.

As Figure 4-6 shows, the SLP unit includes a SLP composer, a SLP parser and two UDP
sockets, one for unicast and one for multicast, while the UPnP unit includes a UPnP
composer, four different parsers (SSDPParser, HttpParser, ServiceDescrParser,
DeviceDescrParser) and four different sockets (TcpSocket, UdpSocket, UdpMulticastSocket,
HttpSocket).

Figure 4-6: SdpUnit composition configuration decided by Monitor for service discovery
interoperability

Figure 4-7 depicts the diagram of the classes involved in the initialization process coordinated
by the Monitor leading to the composition configuration depicted in Figure 4-6. The base class
SdpUnit represents an SDP unit, and each specific SDP is implemented by a concrete
subclass of SdpUnit (e.g, UpnpUnit, SlpUnit). SdpUnitFactory is the class factory able to
create instances of SdpUnit. The abstract method createNewSdpUnit of SdpUnitFactory must
be implemented by its concrete subclasses, and, when executed, it creates a corresponding
concrete subclass of SdpUnit.

September 2005 Consortium Confidential

Amigo IST-2004-004182 50/128

Figure 4-7: SDP Units, SDP Unit Factories and Monitor class diagram

September 2005 Consortium Confidential

Amigo IST-2004-004182 51/128

The sequence diagram in Figure 4-8 shows the initialization process aiming to configure the
unit composition for interoperability between SLP and UPnP depicted in Figure 4-6a. For each
supported discovery protocol other than SLP, a new SdpUnitFactory object is created
(actually, in the example, one UpnpUnitFactory object is created) and passed as a parameter
to the new generated class SlpUnit. The SlpUnit object, when created, will store a reference to
the SdpUnitFactory object and make a call to the method createNewSdpUnit of all the
SdpUnitFactory objects received as constructor parameters. This method, as already seen
above, will create an instance of the corresponding SDP unit (in the example,
UpnpUnitFactory will create an instance of UpnpUnit). The unit generated will be registered as
an event listener of the SlpUnit and vice versa (in the example, the UpnpUnit will be registered
as an event listener of the SlpUnit and vice versa). More details about the event connector
model will be provided in the following. The initialization process to configure the unit
composition for interoperability between UPnP and SLP depicted in Figure 4-6b is similar; only
the roles of SLP and UPnP classes are inversed.

Figure 4-8: UML sequence diagram of the initialization process

After this initialization step, the service discovery interoperability system is configured. Each
unit has been connected through event connectors to other units, and is able to handle the
network messages received by the socket component that is listening on the assigned address
and port. As Figure 4-8 shows, this configuration consists in associating a list of
SdpUnitFactory objects to the unit, one SdpUnitFactory object for each protocol supported
other than the one concerned by the configuration. For each new message received on the
socket, the correct unit composition is instantiated using the list of SdpUnitFactory associated.

September 2005 Consortium Confidential

Amigo IST-2004-004182 52/128

For example, if an SLP message is received, the composition of Figure 4-6a will be
instantiated by SlpUnit by creating an instance of UpnpUnit using the createNewSdpUnit
method of UpnpUnitFactory. On the other hand, if the message is a UPnP message, the
composition of Figure 4-6b will be instantiated.

Event and Message connectors
As seen in Section 4.1.2.1, the internal communication inside each unit is based on events
and messages. Each component that wants to communicate through events provides an event
connector; if it wants to communicate through messages, it provides a message connector.

Events that are carried through the connector are represented by the class SDPEvent (Figure
4-9). An SDPEvent object consists of two parts: an event type and a payload containing some
data. In Deliverable D2.1 [Amigo-D2.1], we defined the minimal set of event types that is
common to all SDPs and the sets of events that are specific to some SDPs. The minimal set
includes, for example, the events that may be generated by all SDP components in order to
notify their listeners of their internal states. It also includes the events that describe the
common functions provided by the different SDPs: service search request, service search
response, service advertisements and the type of the service searched.

All the possible values of the event type field are listed in the Event class in Figure 4-9. The
data payload carried by an event can contain different types of values: numbers, strings,
arrays of bytes or a java.lang.Object. The types of these values depend on the event type. For
example an event of type Event.SDP_REQ_SERVICE_TYPE will carry a value of type String
containing the required service identifier.

For communication with external components, a unit makes use of sockets supporting the
different network transport protocols. We introduce message connectors to separate the
internal component communication from network protocols. Thanks to message connectors
that carry protocol-independent messages, the unit components are not aware of the protocol
used to send or receive a message. Messages carried through the connectors are represented
by the class SDPMsg (Figure 4-9). Each SDPMsg object contains the message source and
destination IP addresses and ports and the content (an array of bytes) received (or to be sent)
on the socket (can be either on UDP or TCP or HTTP connection).

Figure 4-10 represents the complete class diagram hierarchy used in the middleware to
support the event and message connector model. Every component (socket, parser and
composer) is a publisher and/or a subscriber of events and/or messages.

The base interfaces EvtPublisher, EvtSubscriber are respectively provided to handle the
dispatching and reception of events. A class that wants to listen to events and be notified
when an event SDPEvent is raised will implement the interface EvtSubscriber, while a class
that wants to produce events and notify event listeners will implement the interface
EvtPublished. The interface EvtPublisher provides a method to add and a method to remove a
listener for events on the publisher class; and a method dispatchEvents to send an event to all
the listeners registered on the publisher. An event subscriber must implement the interface
EvtSubscriber. The subscriber class must use the EvtPublisher’s method
addSDPEventListener to subscribe for events on a specific event publisher class. When the
publisher raises an event, the subscriber method eventReceived will be invoked with the event
description associated with the method call.

For SDPMsg messages, the middleware makes use of the same solution as for events: the
two interfaces MsgPublisher and MsgSubscriber are the corresponding interfaces that have
the same functions as the two interfaces for events explained above.

September 2005 Consortium Confidential

Amigo IST-2004-004182 53/128

Figure 4-9: SDPMsg, SDPEvent and list of Event types

September 2005 Consortium Confidential

Amigo IST-2004-004182 54/128

Figure 4-10: Event and message connectors class diagram

The introduced base interfaces are implemented by the classes of Figure 4-10 to provide the
base mechanisms for publishing/subscribing for events and for messages. The classes
SdpEvtPublisher, SdpEvtSubscriber, SdpMsgPublisher and SdpMsgSubscriber provide the
basic implementation of the above described interfaces. Some other classes of Figure 4-10
implement more than one interface; in this case, we have a class (for example
SdpEvtSubMsgPub) that is a message publisher and an event subscriber (for example
SdpEvtSubMsgPub).

In Figure 4-11, the sequence diagram details the event notification between an EvtPublisher
and all its EvtSubscribers that receive the notification of the event: an object makes a call to
the dispatchEvent method of the EvtPublisher class with the SDPEvent event describing the
event to be notified. The publisher has a list of its listeners EvtSubscriber. For example, in
Figure 4-11, a class inheriting from the SdpEvtPubSub class is in the list of listeners. For each
of its listeners, the publisher calls the method eventReceived (containing the SDPEvent event
definition as a parameter). It is up to the class implementing the interface EvtSubscriber to
provide an implementation of this method and to handle the received events. For example, in
Figure 4-11, the class inheriting from SdpEvtPubSub will further dispatch the received

September 2005 Consortium Confidential

Amigo IST-2004-004182 55/128

SDPEvent to its own listeners by calling its own method dispatchEvent that will execute the
same actions as above described for EvtPublisher.

A similar mechanism is implemented for messages: the only difference is that the class
SdpMsgPubSub does not re-dispatch the SDPMsg received on its method msgReceived.

Figure 4-11: Event publish/subscribe sequence diagram

Socket
Sockets are in charge of sending and receiving messages using a specific transport protocol.
As we currently assume all-IP networks, we define the corresponding types of socket
components: multicast sockets and unicast sockets, where the latter may be either
connection-oriented or connection-less. Socket components offer flexibility enabling the
implementation of system components in a way that is independent of the underlying
transport.

The base abstract class for sockets is SdpSocket (Figure 4-12) and it is a subclass of
SdpMsgPubSub: both its inbound and outbound connections are message connectors. The
socket components provided by the middleware are: UdpSocket to send and receive on a
unicast UDP socket, TcpSocket to send and receive on a unicast TCP socket,
UdpMulticastSocket to send and receive on a multicast UDP socket, and finally HttpSocket
that is able to handle HTTP messages (including the HTTP header and all the possible options
and features offered by the HTTP protocol) on an HTTP connection.

September 2005 Consortium Confidential

Amigo IST-2004-004182 56/128

Figure 4-12: Class diagram of the sockets provided by the middleware

When activated (by invoking the receive method), the socket starts listening to messages on
the assigned address and port. For each new message received (the reception of the
message is implemented in accordance with the corresponding transport protocol
specification), the socket creates an SDPMsg object (adding the content of the message
together with the information about source and destination address and port), and delivers it to
its listeners using its dispatchMsg method. On the other hand, when the unit wants to send a
message through the socket, it must invoke its method msgReceived(SDPMsg). The SDPMsg
object contains all the information required by the send method for building the message in the
context of the transport protocol supported by the socket: the content of the message, the
destination address and port.

We add an AvoidLoopTable object shared by all UDP sockets to prevent the middleware from
entering in a message handling loop. When a UDP multicast message is sent, its source and
destination addresses and ports are registered in AvoidLoopTable; when a UDP multicast

September 2005 Consortium Confidential

Amigo IST-2004-004182 57/128

message is received by the middleware, it must be discarded if its source address and port
appear in AvoidLoopTable. If these messages were not filtered, the middleware would receive
and process its own messages.

Parser
The role of a parser component is to wait for messages, parse their content and generate a
sequence of semantic events in conformance with the implemented protocol specification.
Parsers are decoupled from the transport protocol by means of socket components, which
may be changed at runtime. As a result, the same HTTP parser instance may parse streams
from a UDP datagram, generated by either a unicast or multicast request, as well as from a
TCP stream.

The base abstract class for parser components is SdpParser, and it is a subclass of
SdpEvtPubMsgSub: its inbound connector is a message connector, while its outbound
connector is an event connector. As SdpParser is a subclass of SdpEvtPubMsgSub, it
provides a method msgReceived(SDPMsg) that will be invoked by an MsgPublisher object.
The method msgReceived creates an InputStream object containing the SDPMsg content and
passes it to the abstract parse method to be parsed. Each parser that inherits from SdpParser
must implement the parsing algorithm in its parse method. The role of the parse method is to
extract semantic concepts as SDPEvent objects from the SDPMsg received, and to deliver
each SDPEvent object to the Parser listeners using the event notification mechanism
(SdpParser is a subclass of SdpEvtPublisher).

Figure 4-13 represents the set of parsers available in the middleware. The SLPParser class
implements the SLP protocol: each SDPMsg object received by the parse method must
contain an SLP message, and the SDPEvent events generated respect the SLP protocol
specification4. In the same way, the SSDPParser class implements the SSDP protocol (UPnP
protocol for device and service discovery), and the HTTPParser class implements the HTTP
protocol. As an HTTP message usually contains a payload that can be from another protocol
(for example XML), the parser generates the Event.SDP_PARSER_SWITCH event after
having finished parsing the HTTP Header. It is up to the unit state machine to set the next
parser that will continue parsing the SDPMsg and will generate the corresponding events. For
the HTTP parser, we make use of the Cybergarage UPnP implementation5. Our class
HTTPPacket2 in Figure 4-13 is a subclass of HTTPPacket, a class from the Cybergarage
implementation. We have fixed some bugs and handled the chunked option of HTTP protocol
specifications not implemented in the Cybergarage library. The DeviceDescrParser
implements a parser that is able to parse the UPnP device descriptions received as response
to UPnP messages. The device description syntax is defined by the UPnP specifications6. This
parser takes into account this syntax and generates two events for each service contained in
the device: the first notifies the service description URL (Event.SDP_SERVICE_
DESCRIPTION_URL_PATH) and the second the control URL of the service
(Event.SDP_CONTROL_URL_PATH). The ServiceDescrParser implements a parser that is
able to parse the UPnP service definition taking into account the UPnP specifications7 for
services; this parser generates events to notify the description of the methods of the service.

4 http://www.faqs.org/rfcs/rfc2608.html
5 http://www.cybergarage.org/net/upnp/java/index.html
6 http://www.upnp.org/download/UPnPDA10_20000613.htm
7 http://www.upnp.org/download/UPnPDA10_20000613.htm

September 2005 Consortium Confidential

Amigo IST-2004-004182 58/128

Figure 4-13: Class diagram of the parsers provided by the middleware

All the SDP interoperability components and connectors presented in this section (e.g.,
parsers, sockets) are not necessarily specific to an SDP; they may be reused in various units,
even if not related to the same SDP. For instance the HTTP parser developed for UPnP may
be reused for another SDP unit.

Composer
The role of a composer is to generate well-formed messages in conformance with the specific
protocol implemented and at the same time coherent with the semantic events received on its
event connector from the event notification mechanism.

September 2005 Consortium Confidential

Amigo IST-2004-004182 59/128

As a composer is a subclass of SdpComposer and SdpEvtSubMsgPub, it is a listener of
SDPEvent objects that are received by the eventReceived method and a producer of SDPMsg
objects. The set of events that a composer is able to handle depends on the protocol
implemented; if an event received is not supported, it will be simply discarded. For example, a
subset of events generated by a UPnP parser is successfully understood by a SLP composer,
whereas specific UPnP events, due to UPnP functionalities that SLP does not provide, are
simply discarded by the SLP composer, as they are unknown. When all the events required for
the creation of a message in the specific protocol have been received, the corresponding
SDPMsg object is generated and published with the method dispatchMsg. The composer’s
listener (a socket) will receive and handle the message.

As Figure 4-14 shows, the middleware provides an implementation for SLP and UPnP protocol
composers. The SdpComposer’s methods sendReply, sendRequest, isResponseReady,
getCurrentDevice, getCurrentService, isServiceInCache, getNextServiceInDevice and
allServicesInDevice defined by the abstract class are used by the unit state machine to ask the
composer to execute an operation or to obtain information about the current state of the
composer. Each concrete composer subclass must provide an implementation of these
functionalities.

Unit
A unit implements event-based interoperability for a specific SDP by translating messages of
the specific SDP to and from semantic events associated with service discovery; and by
implementing coordination processes over the events according to the behavior prescribed by
the SDP specification. Units are composed and communicate through their event connectors,
whereas they use their socket components to interact with components that are outside the
SDP interoperability system. Within a unit, coordination and composition rules among
embedded SDP components are specialized with respect to a given SDP according to the unit
state.

The class diagram in Figure 4-15 shows the relation between the classes implementing the
units and their components (sockets, parsers and composers). The base abstract class
SdpUnit implements all the basic functionalities required by every unit to manage the
components and to allow the unit state machine to coordinate the components. It also
identifies the methods that each concrete unit class must implement according to the SDP
specification. The unit is the control point of all the components and coordinates the internal
interaction between the composers, the parsers and the sockets. SdpUnit contains a series of
data structures storing its dynamic component configuration that can change over time. These
data structures keep a reference to the list of supported sockets, parsers and composers in
relation to the protocol specification (for example the UPnP unit needs TCP and UDP sockets,
SSDP and HTTP parsers, and a UPnP composer). The methods provided to add one of these
components are the following: addParser, addComposer and addSocket. Even if the unit can
have multiple references to sockets, parsers and composers, at a specific instance it has only
one active socket and composer and one or more active parsers (ordered in a sequential list),
depending on the action that the unit is executing. The methods switchToParser,
switchToParsers, switchToComposer and switchToSocket are used to select the active
components. The method setFollowingParser is used when a list of active parsers has been
set and the parsing of the message requires changing the current parser and switching to the
following one in the list.

September 2005 Consortium Confidential

Amigo IST-2004-004182 60/128

Figure 4-14: Class diagram of the composers provided by the middleware

Since the unit superclass SdpUnit is a subclass of SdpEvtPubSub, it can produce and receive
SDPEvents. The SDPEvents produced by the unit are dispatched through the method
dispatchEvents; the unit’s listeners that will receive the events have been defined in the
initialization process executed by the Monitor to set up the unit composition configuration (see
above). On the other hand, the SDPEvents are received by the eventReceived method. This
method must be overloaded by every subclass of SdpUnit; its role is to forward the SDPEvent
to the associated state machine class in order to be handled in the right way. Every unit has a
state machine associated with it. For example UpnpUnitContext and SlpUnitContext are
respectively the classes implementing the state machines of UpnpUnit and SlpUnit units. The
state machine engine will take into account the current state and the received event before
executing the related instructions and moving to the corresponding state; it may additionally
react to the event with actions modifying the unit’s current configuration. For example, the
state machine class can modify the current socket and parser in order to set up the unit for

September 2005 Consortium Confidential

Amigo IST-2004-004182 61/128

receiving a message on the right socket address and port and for parsing it with the right
parser.

Figure 4-15: Unit class diagram

September 2005 Consortium Confidential

Amigo IST-2004-004182 62/128

For the definition of the state machine of each SDP unit, the middleware makes use of the tool
SMC - The State Machine Compiler8and its associated language and tools. The SM definition
in the SMC language must take into account the SDP specification. The activation/deactivation
and dynamic composition of unit components is defined by the SM to accomplish the operation
that must be provided at a certain moment by the unit. The state machine file defined with the
SMC language is compiled with the compiler tool provided by SMC into a java class
(SlpUnitContext and UPnPUnitContext).

Figure 4-16 provides an extract from the SM file of UpnpUnit. SMC defines an initial IDLE
state; for each state defined for the SDP unit, there are two entries that are matched
respectively when the SM enters the state (Entry) and before leaving the state (Exit). The
occurrence of an event may cause transitions between states if the event matches both the
event type defined in the transition and the optional conditions of the transition.

In the example in Figure 4-16, the state UPNP_WAIT_CREATE_UPNP_RESPONSE represents the
behavior of the UPnP unit when it is waiting for all the necessary information to build a UPnP
reply message. The transition from state UPNP_WAIT_CREATE_UPNP_RESPONSE to state IDLE
(that represents the initial state) will take place when an SDP_STOP event is received
(generated when the parsing of a message is finished) and the condition
isResponseReady()==true is true. Further, the state machine will execute the list of actions
switchToParser("SSDP"), switchToSocket("UDP"), dispatchEvtToComposer(e) and
sendReply(). After these actions, the composer will send the UPnP reply; the parser and
socket are then set up to receive the next UPnP message.

The unit’s methods sendReply, sendRequest, waitResponse are used by the unit state
machine to control the unit and its active components: to require sending a reply message, to
send a request message, and to wait for a response message, respectively.

IDLE

Exit { print("UNIT_UPNP:IDLE:EXIT"); }

Entry { print("UNIT_UPNP:IDLE:ENTRY"); }

{

 Evt(e:SDPEvent)

 [e.getType() == Event.SDP_START]

 START

 {}

 Evt(e:SDPEvent)

 nil

 {

 printEventReceived(e);

 print("UNIT_UPNP:Enqueue");

 enqueue(e);

 }

}

UPNP_WAIT_CREATE_UPNP_RESPONSE

8 http://smc.sourceforge.net

September 2005 Consortium Confidential

Amigo IST-2004-004182 63/128

Exit {print("UNIT_UPNP:UPNP_WAIT_CREATE_UPNP_RESPONSE:EXIT"); }

Entry { print("UNIT_UPNP:UPNP_WAIT_CREATE_UPNP_RESPONSE:ENTRY");}

{

 Evt(e: SDPEvent)

 [e.getType() == Event.SDP_STOP && isResponseReady() == true]

 IDLE

 {

 switchToParser("SSDP");

 switchToSocket("UDP");

 dispatchEvtToComposer(e);

 sendReply();

 }

 Evt(e:SDPEvent)

 nil

 {

 dispatchEvtToComposer(e);

 }

}

Figure 4-16: Extract from UPnP unit state machine

4.1.3 Evaluation of implementation and performance
We have implemented a first prototype of the service discovery interoperability subsystem of
the Amigo interoperable middleware core. Currently, it includes a UPnP unit and a SLP unit.
Although our prototype is not yet optimised, it is robust enough for assessing the performance
of our approach in different use cases. The following discusses key elements of the prototype.
We first discuss its small code footprint requirements compared to existing solutions. We then
evaluate its performance by comparing supported response times with native service
discovery.

Amigo middleware size requirements
 Size (KB) Classes NCSS Overhead

Core framework 44 15 789 -
UPnP Unit 125 18 1515 -
SLP Unit 49 6 606 -

Total 218 39 2910 -
SDP library size requirements

OpenSlp Library 126 21 1361 -
Cyberlink UPnP 372 107 5887 -

Total 498 128 7248 -
Size requirements to provide interoperability with and without Amigo middleware

SLP &UPnP Library +
SLP & UPnP clients

514 - - -

September 2005 Consortium Confidential

Amigo IST-2004-004182 64/128

UPnP client & Library + Amigo
middleware

598 - - 14%
SLP client & Library + Amigo

middleware
352 - - -31.5%

Table 4-1: Footprint requirements in KBytes for known libraries and the Amigo middleware
core

The prototype is implemented in Java to take advantage of cross platform portability. We are,
in particular, able to deploy our solution on any mobile device that embeds J2ME9, which
provides a Java virtual machine customized for devices with limited resources.

In Table 4-1, we compare the footprint requirements of the Amigo middleware core with the
ones of common open-source libraries like OpenSlp10 and Cyberlink for Java11. The overall
Amigo middleware consists of 39 Java classes and 2910 lines of Non-Commented Source
Statement Classes (NCSS). The overall system size is 218 Kbytes. This includes 125Kbytes
for the UPnP Unit and 49Kbytes for the SLP Unit. To be interoperable, nodes running UPnP
(resp. SLP) applications need to host a native UPnP (resp. SLP) library plus the Amigo
middleware. This is to contrast with an interoperable device that is not equipped with our
interoperable system, which needs: (i) to host both the full UPnP stack and the SLP library,
and (ii) some engineering effort to develop and host an additional SLP (resp. UPnP) client that
is equivalent in terms of functionalities to the UPnP (resp. SLP) client.

As further depicted in Table 4-1, the size requirements of a middleware that needs to be
interoperable and does include the Amigo interoperable middleware core (includes both full
SLP and UPnP) is 514Kbytes when hosting one simple service. In contrast, the size
requirement for a middleware dedicated to UPnP (resp. SLP) equipped with the Amigo
middleware is 598Kbytes (resp. 352Kbytes). Then, the size requirements increase
proportionally with the number of hosted services. The size requirements of an interoperable
middleware without the Amigo interoperable middleware core increase faster than the ones of
a middleware equipped with the Amigo interoperable middleware core, because, for the
former, each time we add a service, we have to add two implementations of the service (e.g.,
SLP service + UPnP service). Thus, the small size overhead introduced by the Amigo
interoperable middleware core with UPnP applications disappears when the number of hosted
services increases.

Further, a middleware that needs to host different services, in terms of both functionalities and
SDP used, must have all the corresponding native libraries irrespectively of the use of Amigo
middleware. However, in this case, the latter still provides efficient interoperability: it reduces
drastically both the number of hosted services and, in the long term, the overall middleware
size since we do not have to develop and deploy services for each existing SDP.

Experimental results

We evaluate the performance of our interoperability mechanisms by investigating the response
time of the Amigo interoperable middleware core when enabling a client dedicated to one SDP
to discover a service based on another SDP. Specifically, the experiments consider the case
where a SLP (resp. UPnP) client searches a SLP (resp. UPnP) service. We then compare the
native client waiting time to get an answer from a native service with its waiting time to get an

9 http://java.sun.com/j2me/index.jsp
10 http://www.openslp.org/
11 http://www.cybergarage.org/net/upnp/java/

September 2005 Consortium Confidential

Amigo IST-2004-004182 65/128

answer from an Amigo-interworked service. The impact of Amigo middleware on performance
varies according to its location, either on the client or on the service side. Thus in the following,
we consider the two cases. In addition, as interoperability is achieved without generating
additional traffic, we have not evaluated the network bandwidth consumption. Indeed, the
generated traffic is well known since we are neither providing a new service discovery protocol
nor altering native protocols.

Although our solution is dedicated to various devices, including resource-constrained ones, all
tests are performed on workstations equipped with 256Mbytes RAM on Intel PIV processor
rated at 1.8GHz. In fact, currently, to the best of our knowledge, there does not exist any
UPnP profile for J2ME devices in the open source community. Thus, the operating system, the
Java virtual machine and the performance tools platform used are, respectively, Linux from
Redhat Fedora Core 2, JDK1.4.2 from Sun, and the Hyades platform from the Eclipse
Foundation. Moreover, the SLP (resp. UPnP) client and SLP (resp. UPnP) service are hosted
on different hosts connected to a LAN at 10Mb/s. The SLP client and service are based on
OpenSlp, whereas the UPnP client and service use Cyberlink for Java. The given
measurements are in msec and are the median of 30 successful tests to avoid a mean skewed
by a single high or low value.

 SLP -> SLP UPnP -> UPnP

Median value
(ms)

0.7 40

Figure 4-17: Native clients & services

In Figure 4-17, we first give the response time of a search request generated by a native client
to get a successful answer from a native service: for SLP, we get 0.7 ms, whereas for UPnP,
we get 40ms. It is clear that using SLP is much more efficient than UPnP, which is a higher-
level protocol than SLP. These results are considered as references values to enable us to
interpret the following results.

 Slp->[Slp-UPnP] UPnP->[UPnP-Slp]
Median value (ms) 65 40

Figure 4-18: Performance with Amigo located on the service side

Consider now the case where Amigo middleware is located on the service side to enable the
latter to be interoperable with any client independently of its SDP (Figure 4-18). In the context
where the client is SLP and the service is UPnP, the client gets an answer in 65ms. The

SLP ServiceSLP Client
Slp Messages

UPnP Client UPnP Service
UPnP Messages

Network

SLP ServiceUPnP Client Amigo

Network Local

UPnP

Messages Slp

UPnP SeviceSlp Client Amigo

Slp

Messages UPnP

September 2005 Consortium Confidential

Amigo IST-2004-004182 66/128

translation between SLP and UPnP is not direct. For instance, UPnP and SLP search
responses are semantically different: a SLP client expects a direct reference to interact with
the service discovered, whereas a UPnP client expects a reference to a description file
corresponding to the service found. Consequently, the Amigo middleware has translated the
SLP request into two local UPnP requests to get the information that is necessary to generate
on the network the corresponding SLP response. This means that the Amigo middleware has
waited and parsed successively two UPnP responses, thus increasing the SLP
responsiveness latency. On the service side, it is clear that the Amigo middleware simulates a
UPnP client, and therefore we cannot interfere on the native time taken to get a UPnP
response from the service. In this context, the Amigo middleware result is pretty good.

Still in Figure 4-18, when the client is UPnP and the service is SLP, the response time to get
an answer is 40ms. In fact, it corresponds exactly to a search request generated on the
network from a native UPnP client to a native UPnP service. On the service side, the response
time to a SLP request is negligible as the latter is generated locally.

 [Slp-UPnP]->UPnP [UPnP-Slp]->Slp
Median value

(ms)
80 0.12

Figure 4-19: Performance with Amigo located on the client side

When the Amigo interoperable middleware core is located on the client side (Figure 4-19a),
the latter becomes interoperable and can discover any service whatever its SDP. If the client is
SLP and the service is UPnP, the SLP client gets the answer to its search request in 80ms. It
corresponds globally to two native UPnP responses from a native UPnP service. This is
obvious, since, as previously, the Amigo interoperable middleware core has translated the
SLP request into two network UPnP requests to get the necessary information to generate
locally the corresponding SLP response. Once again, the Amigo interoperable middleware
core result is encouraging. It is important to note that compared to the case depicted in Figure
4-18, the response time is higher than previously, simply because the UPnP traffic goes
across the network between the Amigo interoperable middleware core and the UPnP service,
increasing by 15 ms the response time. In the same context, the high response time inherent
to the UPnP protocol is confirmed, as a UPnP client gets a response from a SLP service in
only 0.12ms (Figure 4-19b). This is due to the fact that, first, the UPnP traffic is local and, then,
the only traffic that goes across the network is SLP, which is particularly fast. In addition, the
necessary information to generate a search response for UPnP is tiny. We can consider this
case as the best case.

a) SLP search request to a UPnP service

Client side

UPnP Service

Amigo SLP Client

Network

UpnP

messages

Local

Slp

Client side

Slp Service

Amigo UPnP Client

Network

Slp

messages

Local

UPnP

b) UPnP search request to a SLP service

September 2005 Consortium Confidential

Amigo IST-2004-004182 67/128

The above results show that the Amigo interoperable middleware core is particularly efficient
in providing interoperability in all possible contexts.

4.2 Service interaction interoperability (SII)
This section presents our early design and implementation of service interaction
interoperability (SII). Initially, we recall from Deliverable D2.1 [Amigo-D2.1] the design
principles on which SII is based (Section 4.2.1). Then, we present the early design and first
prototype implementation of SII, using the UML language (Section 4.2.2).

4.2.1 Design principles
According to the service-oriented architectural style, interaction protocols identify two
application components: a client and a service. The former requires and the latter provides
some functionality. For a specific interaction the protocol identifies the client and the service;
the client and service roles may be inversed in another interaction.

Practically, the service runs at an address that may be known by the client, either statically at
design time or dynamically using some service discovery protocol. However, in both cases,
knowledge of the service’s address does not mean knowledge of the service’s interaction
protocol, although it may be assumed when known statically. More specifically, unlike the SDP
detection mechanism, the interaction protocol detection cannot be simply based on the
address of the interacting parties. Achieving interaction protocol interoperability further raises
similar issues as for achieving SDP interoperability, i.e.: (i) dealing with the heterogeneity of
service description, which relates to the use of diverse service interface definition languages
for interaction (e.g., WSDL for SOAP, IDL for CORBA); and (ii) dealing with different
interaction protocols.

Service-oriented computing allows several interaction paradigms between client and service.
For example, interaction protocols may be RPC-based, message-oriented or event-based. As
discussed in Deliverable D2.1, we focus on RPC-based interactions at a first stage.

To save the client code from dealing with the details of the service’s reference, interface and
interaction protocol, a component called stub is usually provided by the middleware, assuming
knowledge of the interaction protocol on which the service is based. The client then calls
methods on the client stub. The stub converts method calls into network protocol messages,
and takes care of marshalling method arguments. If the service replies with a message to the
client call, the stub unmarshals the results and performs a regular method return to the client
application.

Interaction protocol interoperability is achieved using the same method as the one described in
the previous section, i.e., it relies on event-based parsing (see Figure 4-20). Two major issues
arise from event-based parsing to actually achieve interaction protocol interoperability:

- Mapping of service references between heterogeneous middleware platforms; and

- Identification of the incoming communication protocols, i.e., detection.

We enrich our solution with the facility of dynamic stub generation. Stubs are generated
according to the client’s required interface and to the service description. The stub generation
is a two-step process. The step-zero takes place during the development of the client, and
corresponds to the classical, static generation of the client-side part of the stub (see Step 0
below), using the client’s required interface as input. The first runtime step corresponds to the
discovery of a service matching the client’s required interface. This further reveals the
interaction protocol of the remote service, and may be considered as realization of direct
conformance checking between the interaction protocols of the client and the service, from the
standpoint of Chapter 2 (see Step 1 below). In the second step, the service’s provided

September 2005 Consortium Confidential

Amigo IST-2004-004182 68/128

interface will be used for the dynamic generation of the service-side part of the stub (see Step
2 below).

IP2
Parser

IP2
Composer

Connector

IP1
Parser

IP1
Composer

IP1 Reply

IP1 Request
Semantic
Events

Figure 4-20: Interaction protocol interoperability relying on event-based parsing

Static client-side part of the
stub generated from client’s
required interface

1

Generator

Stub
Remote Service

(SOAP)

Client Application
Component (RMI)

RMI
Parser

SOAP
Composer

23

4

5

6

SOAP
Parser

RMI
Composer

Events

Events

0
Remote services descriptions
and properties obtained from
the service discovery step.

RMI Unit SOAP Unit

Figure 4-21: Interaction protocol interoperability with dynamic stub generation

More specifically, interaction protocol interoperability is achieved as follows (see Figure 4-21):

- Step 0: The generator uses the service’s required interface of the client application
component to generate the client-side part of the stub, along with the interface definition
data that will be used for the dynamic generation in Step 2. In our example depicted in
Figure 4-21, the generator will instantiate the RMI unit (RMI parser and RMI composer),
and will create the definition of the RMI interface that will be used for the dynamic
generation of the SOAP unit (SOAP parser and SOAP composer). The generator must
take into account the interaction protocol paradigm for the instantiation of the components

September 2005 Consortium Confidential

Amigo IST-2004-004182 69/128

and the generation of the interface definition data (in the example, RMI uses a
synchronous RPC style).

- Step 1: The service’s description and reference are obtained from the service discovery
step. This step is tightly related to the discovery process and the corresponding SDP
interoperability system. The service will be described in the service interface definition
language (e.g., the SOAP service will be described in WSDL).

- Step 2: The generator dynamically instantiates the stub part dedicated to the remote
service from the service’s description and reference. This part amounts to instantiating the
appropriate unit, taking into account the information on the client’s required interface
(obtained from Step 0) and the remote service’s interaction protocol paradigm (available
from the service description in Step 1). In our example, we assume that the SOAP remote
service follows the synchronous RPC style, same as the RMI client application component.

- Step 3&4: The stub acts as the intermediary between the client and the remote service.
Specifically, the stub presents to the client application component the same interface as
the remote service, but in a compatible format. The client may therefore invoke service
operations. Invocations are forwarded to the remote service in the appropriate format
required by the service through the stub that holds the reference to the remote service.

- Steps 5&6: The remote service, in its turn, may reply to the client with its native protocol,
as if the client were running a matching interaction protocol, thanks to event-based parsing
interoperability.

Note that the proposed solution resolves the two aforementioned issues, i.e.: (i) the mismatch
between service references that are specific to interaction protocols (retrieval of the service
reference in Step 1, generation based on the service reference in Step 2, and use of the
service reference in Step 4); and (ii) the identification of the incoming communication protocol
needed to select the appropriate parser (instantiation of the parser in Step 2 and use in Step
5), together with the enforcement of the appropriate communication paradigm (stub generation
based on communication paradigm in Steps 0 and 2). Nevertheless, this assumes a known
mapping between the required and provided interface.

4.2.2 Early design and implementation
In this section, we present our early design and implementation of the service interaction
interoperability. In Section 4.2.2.1, we provide an overview of the design and the relations
among the classes that constitute the prototype, using UML class diagram descriptions. Then,
in Section 4.2.2.2, we detail our implementation using UML class diagrams: the internals of
each class and its relations with the other classes are surveyed to provide a better
understanding of the technical details of the prototype implementation.

4.2.2.1 Overview
In this section, we present our design of the service interaction interoperability (SII) based on
the design principles introduced in Deliverable D2.1 and recalled in Section 4.2.1. The design
is at an early stage and is essentially a case of study to test our solution for a special case of
configuration of client and service interaction protocols. This configuration has been defined to
support the integrated prototype described in Chapter Error! Reference source not found..
In the next phase of the project, this early design will serve as a basis for generalization and
will be extended to a more advanced and detailed design that will cover all possible cases of
client- and service-side interaction protocols without any restrictions in the configuration of
these protocols.

In this first design of the SII, we address only a special case of client/service configuration: the
client is RMI-based and the service is UPnP-based. Further, the internal mechanisms of the
generated proxy (called stub in Section 4.2.1) to implement interaction interoperability are not

September 2005 Consortium Confidential

Amigo IST-2004-004182 70/128

based on units (and their related components, that is, parsers and composers) and semantic
events mechanisms. The alternative solution that we have adopted is to generate a proxy that
has the client interface (RMI) and for each method contains the code to generate directly
UPnP calls to the remote service. A subset of the UPnP stack to make RPC calls must be
available on the client, so the Proxy Provider component of middleware makes it available to
be downloaded by the client together with the proxy.

Figure 4-22: Early design of service interaction interoperability components

Figure 4-23: Early design of service interaction interoperability

Figure 4-22 depicts our solution for SII. Achieving SII requires service discovery
interoperability (SDI) to provide SII with some information about the discovered services. The
SDP units’ event connectors are configured to mutually exchange events about the ongoing
service discovery process. We add an event-based Proxy Generator component with an event
connector and configured as a listener and publisher of events on the SDP units’ connectors. It
will receive all the SDP events and make use of those that are relevant for its function. The
role of the Proxy Generator is the one described in Section 4.2.1, that is, to generate a proxy

September 2005 Consortium Confidential

Amigo IST-2004-004182 71/128

that is in charge of providing the client with the expected service interface and generating
message calls to the remote service in the expected interaction protocol. During the service
discovery process execution, the Proxy Generator component receives some information from
SDI and, using this information, builds the proxy that will be used by the client to access the
remote service. When the proxy is created, the Proxy Generator invokes a method on the
Proxy Provider to deploy it. The Proxy Provider will take into account the specification of the
supported middleware technology to handle the interactions with the client.

Figure 4-23 depicts in more detail the components that build the SII shown in Figure 4-22 and
their interactions with SDI’s components.

• ServiceDescrParser is a parser activated by the UPnP unit (available from SDI) and
designed to parse UPnP services’ descriptions. It generates SDPEvents containing the
semantic description of the service. The SDPEvents generated by ServiceDescrParser
and received by the ProxyGenerator contain either CpMethod objects or CpVariable
objects. CpMethod represents a service’s method, while CpVariable represents a variable
defined in a UPnP service.

• SlpComposer is an SDI component that implements the SLP protocol. In particular, one of
its functionalities is to build SLP reply messages containing the address of the discovered
remote services. Building such a reply involves an interaction with the SII Proxy Generator
and Proxy Provider, because the message will contain the address of the proxy (for
interoperability) as deployed by the SII Proxy Provider instead of the real address of the
remote service.

• ServiceDefinition is a memory representation of a remote service. It includes information
about the location of the service and a set of InterfaceDefinition objects, one for each
interface exposed by the service. An InterfaceDefinition object includes the list of the
provided methods, each one represented by a CPMethod object.

• ProxyGenerator defines the generic interface and implements the basic functionalities for
proxy generation.

• RMI2UPnPProxyGenerator implements the logic of proxy generation for RMI clients and
UPnP services.

• RMIHolders is a generic name for a set of classes introduced to resolve a difference
between RMI and UPnP concerning the method arguments: UPnP services’ methods
support multiple output arguments for primitive types (e.g., numbers, strings) in opposition
to RMI that supports only one return value.

The service interaction interoperability only supports RMI clients at this stage, so the Proxy
Provider subsystem includes only an RMIProxyProvider that makes use of an RMI Registry
from RMI technology.

The following is a short description of the steps implemented by the SII for the proxy
generation:

1. The middleware obtains the service description. Each service can support one or more
interfaces; the role of the unit in this step is to get all the information related to each of
these interfaces, that is, the list of all methods provided to client for invocation. The
service’s description and reference are obtained from the service discovery step. This step
is tightly related to the discovery process and the corresponding SDP interoperability
system. In order to obtain the service description, each SDP unit (described in Section 4.1)
is defined in conformance with the SDP specification and taking into account the supported
interaction protocols.

2. The service description is parsed and transformed into a series of semantic events that are
published in the same way and with the same mechanisms as SDP events described in

September 2005 Consortium Confidential

Amigo IST-2004-004182 72/128

Section 4.1. The SDP unit coordinates the parsing using the SDP parser associated and
able to understand the description of the service.

3. The semantic events generated in step 2 are used to reconstruct a memory representation
semantically equivalent to the service description obtained in step 1.

4. The service memory representation obtained from step 3 is used to generate the proxy
that will be used by the client to invoke methods of the service.

5. The client can finally interact with the remote service using the proxy as an intermediary.
Specifically, the proxy presents to the client application component the same interface as
the remote service, but in a compatible format. The client may thereby invoke service
operations. Invocations are forwarded to the remote service in the appropriate format
required by the service through the proxy that holds the reference to the remote service.
The remote service, in its turn, may reply to the client with its native protocol, as if the
client were running a matching interaction protocol.

4.2.2.2 Detailed description
This section details the different components and mechanisms that implement the service
interaction interoperability: the SDI and SII interaction through the use of events, the proxy
generator and the proxy provider. The details of the implementation of each component and
mechanism are described using UML class diagrams.

SDI and SII interaction through events
Figure 4-24 shows the class diagram of ServiceDescrParser, a parser designed for UPnP
services (it has already been described in Section 4.1) that is activated by the UPnP unit to
parse the description of a service. Its method parse reads the service description content and
generates SDPEvent events.

ProxyGenerator defines the generic interface and implements the basic functionalities for
proxy generation. As its role is to generate the proxy for the remote service, it requires all the
necessary information about the service description. This information can be provided by SDI
and, in particular, by the ServiceDescrParser by means of appropriate events. ProxyGenerator
is interested in events of type SDP_SERVICE_METHOD_DESCRIPTION and
SDP_SERVICE_VARIABLE_DESCRIPTION. The former contains an object of type CpMethod
with the definition of a method (name, arguments, service and interface reference). For each
argument of the method, it contains the name, the data type and the direction (i.e., IN for an
input parameter and OUT for a return parameter). The latter event type contains an object of
type CpVariable used to define a UPnP variable, as described in the UPnP service description
(name, data type, service and interface reference). This second type of event has been
introduced because the definition of method arguments is divided in two sections in the UPnP
service definition. In the first section, the methods with their name, argument names and
respective directions are defined. Then, in the second section each argument data type is
defined. The complete method definition (with association of arguments with their respective
data types) will be reconstructed when all the information from the two sections will be
collected by the ProxyGenerator.

September 2005 Consortium Confidential

Amigo IST-2004-004182 73/128

Figure 4-24: Diagram of classes used for interaction between service discovery and service
interaction interoperability systems

Proxy Generator
Figure 4-25 shows the class diagram of the classes involved in the process of remote service
proxy generation.

When all the events concerning service’s methods description (SDP_SERVICE_METHOD_
DESCRIPTION and SDP_SERVICE_VARIABLE_DESCRIPTION, discussed in the above
subsection) have been received and processed by ProxyGenerator, the latter finally produces
a memory representation of the service in a ServiceDefinition object. The ServiceDefinition
memory representation and the actual remote service description are semantically equivalent,
but the ServiceDefinition object is independent and not aware of the technologies and

September 2005 Consortium Confidential

Amigo IST-2004-004182 74/128

protocols on which the service is based. ServiceDefinition includes the name of the service
along with some information about the location of the service: the IP address of the host and
the port where the service is running. Further, it contains a series of InterfaceDefinition
objects, one for each interface exposed by the service.

The CPMethod and CPVariable objects contained in the events handled by the proxy
generator have a reference name to the service and interface they are associated with. This
information is used by the generator to associate the method definition to the right
InterfaceDefinition object of ServiceDefinition. The InterfaceDefinition object contains the
name of the service’s interface together with some information (URIPath) used to construct the
complete URI address that has to be used to invoke a method call on the specific service’s
interface. The complete URI of an interface’s method call can be reconstructed by using the
address obtained by concatenation of the following data: ServiceDefinition.host +
ServiceDefintion.port + InterfaceDefinition.URIPath. An InterfaceDefinition object further
includes the definition of the provided methods in a list of CPMethod objects. Each CPMethod
object contains the name of the method it represents, the list of arguments with respective
name, data type and direction (either input or output argument), and the name of the service
and interface it is associated with.

September 2005 Consortium Confidential

Amigo IST-2004-004182 75/128

Figure 4-25: Diagram of classes used for proxy generation

Starting from the ServiceDefinition, RMI2UPnPProxyGenerator realizes the logic of proxy
generation. As we indicated above, RMI2UPnPProxyGenerator is, at the moment, the only
implementation of ProxyGenerator provided by SII, and it addresses specifically the case of
interoperability between a RMI client and a UPnP service. To achieve this task, it has to
produce a RMI-compatible proxy that will be provided to the client to access the remote
service. The proxy must present a RMI-compatible interface and, at the same time, instantiate
the part of the proxy dedicated to the remote service, that is, it must implement UPnP service
call marshalling and unmarshalling (producing UPnP compatible messages and being able to
understand the UPnP replies from the service).

Figure 4-26: Example of generated classes for interfaces, service and proxy

For the deployment of the proxy on the Proxy Provider (see next subsection for technical
details), the RMI2UPnPProxyGenerator assumes that the service implements all the interfaces
in the InterfaceDefinition list. Since the proxy must be a front-end to the service, it must
implement the same interfaces.

Each InterfaceDefinition object corresponds to a .java interface file generated with the
method writeInterface and named InterfaceDefinition.name. The generation of this file involves
the creation of the signatures of all the methods owned by the interface including: method’s
name, return value, arguments with their name, type (mapped to the corresponding java/RMI
data type) and direction (input or output).

Then, writeClass generates a .java file named ServiceDefinition.name and representing
ServiceDefinition: it must implement all the interfaces. However, since its role is simply to
permit the deployment of the proxy, it will contain only the list of the methods from all the
interfaces; their respective implementation will be void.

Finally, the proxy is generated with the writeProxy method. The result of the proxy generation
is a .java file that implements all the methods from all the service’s interfaces. The proxy file
is generated taking into account the communication protocol of the remote service and the
client required interface. For each method call, the method name and the input arguments

September 2005 Consortium Confidential

Amigo IST-2004-004182 76/128

(with their names and values) are used to generate a UPnP message that is sent on an HTTP
connection, to the address ServiceDefinition.host + ServiceDefinition.port + InterfaceDefinition.

Figure 4-26 shows an example of the generated classes and interfaces for a service Service1
defined with two interfaces with two methods respectively. The interfaces generated
(Interface1 and Interface2) must inherit from java.rmi.Remote and must define the methods
following the RMI specifications. Then, the service implementation Service1Impl inherits from
the RMI class java.rmi.server.UnicastRemoteObject and implements the two interfaces with a
void implementation of all the four methods. Finally, the actual implementation of the proxy,
Service1Impl_Proxy, inherits from the RMI class java.rmi.server.RemoteStub and provides an
implementation for all the four methods from the two interfaces consisting in the remote UPnP
service call.

When all the .java files for interfaces, service and proxy classes have been created, then
compile methods (i.e., compileStub, compileInterface …) are used to transform .java files
into java binary .class files.

In the creation of method calls in proxy and in interfaces, the different specifications between
UPnP and RMI raise a problem concerning methods’ arguments that must by resolved by SII.
UPnP services’ methods support multiple output arguments for primitive types (e.g., numbers,
strings) in opposition to RMI that supports only one return value. Because of this difference in
the two technologies, the middleware introduces a collection of classes that appears in Figure
4-25 with the generic name of rmiholders. rmiholders are used in the generated RMI proxy in
replacement of method’s output arguments. For each primitive data type (e.g., String, Integer)
we define an rmiholder class (e.g., StringHolder, IntegerHolder); each method output
argument (one or more) in the CpMethod definition is replaced with the corresponding
rmiholder class to hold the argument value returned by the method invocation.

Proxy Provider

Figure 4-27: Diagram of classes used by proxy provider

The role of the proxy provider component is essentially to set up the system for enabling the
client to obtain the proxy generated by the ProxyGenerator. As the proxy provider is tightly

September 2005 Consortium Confidential

Amigo IST-2004-004182 77/128

related to the Proxy Generator, the current version of SII provides only an RMI protocol
implementation for this component (RMIProxyProvider).

As Figure 4-27 shows, RMIProxyProvider is implemented using the classes provided by RMI
technology: java.rmi.registry.LocateRegistry is used to create an instance of
java.rmi.registry.Registry, while java.rmi.Naming is used afterwards, when the registry has
been created and ProxyGenerator has completed the proxy generation process and has to
add a new instance of the proxy in the RMI registry.

Adding a new proxy instance for a discovered service involves binding a proxy object instance
(obtained from ProxyGenerator.getObject) to a corresponding address in the RMI Registry. In
the example of Figure 4-26, the object that will be bound is Service1Impl; the RMI Registry will
associate Service1Impl_Proxy to it and check the existence of all the implemented interfaces.
When a service proxy is bound to one address through the registry, it is immediately available
at the given address and the registry is in charge of providing it to clients asking for a proxy
instance.

The proxy generated by RMI2UPnPProxyGenerator to invoke remote service methods makes
use of the UPnP protocol. The client that will make use of it is not aware of the fact that the
remote service and the downloaded proxy are UPnP-based. Thus, not all the classes
referenced by the proxy are available on the client side. The RMI registry is configured to
make accessible all the classes referenced by proxies on an HTTP server. It is up to the
RMI2UPnPProxyGenerator and RMIProxyProvider to export the classes generated along with
the proxy and the classes they reference by following the RMI registry configuration.

The address to which the proxy is bound is finally sent, as an SDPEvent, to the
SLPComposer, which will use it in replacement of the actual UPnP service address to create
the SLP reply for the client.

Then, the RMI-based client will make use of the standard RMI protocol to access the RMI
Registry java.rmi.registry.Registry created and managed by the RMIProxyProvider to obtain
the service proxy.

4.3 Programming and deployment framework for Amigo services

4.3.1 Overview
This section aims to define programming interfaces and a programming framework to be used
by developers of either application services or middleware components of the Amigo system.
The goal is to enable middleware components and application services to be developed
independently on the basis of these well-defined interfaces and then deployed together on the
same execution platform to form an "instance of the Amigo architecture" as defined in D2.1
[Amigo-D2.1].

To that purpose, components need:

• to agree on programming interfaces associated to Amigo abstractions like a service, a
service description, a service request, a context information etc.;

• to agree on some bootstrapping mechanism that allows components running on the
same execution platform to execute together.

To fulfill the first need, programming interfaces can be specified independently of the
programming language and the execution environment. The second need, however, refers to
an execution framework. Rather than defining a new "Amigo execution platform", we propose
to rely on existing standards, such as the .NET application platform or the OSGi application
platform.

September 2005 Consortium Confidential

Amigo IST-2004-004182 78/128

OSGi specifications define a standardized, component-oriented computing environment for
networked services. It is supported by a great number of companies, the OSGi Alliance, and
benefits from an active industrial and free community (the OSGi implementation Oscar is now,
for instance, an Apache project). The OSGi framework defines a Java platform where
components called "bundles" can be deployed, started, stopped, or updated at run-time.
Bundles can interact by publishing services and by using services published by other bundles
(the word "service" stands here for a Java object exposing a well-known Java interface).

.NET is a software development platform focused on rapid application development, platform
independence and network transparency. .NET technology provides the ability to quickly build,
deploy, manage, and use connected, security-enhanced solutions with Web services and
other network technologies. The .NET Framework is language neutral: currently, it supports
C++, C#, Visual Basic, JScript and COBOL. The .NET Compact Framework is a streamlined
version of the .NET framework designed to run on mobile devices with limited resources, like
memory and battery power, including smart devices like PDAs, smartphones and set-top
boxes.

Section 4.3.2 provides the first design of Amigo basic interfaces, while section 4.3.3 is an early
design of the Amigo OSGi-based deployment framework and deals with defining behaviour for
"Amigo-conformant OSGi bundles". Although implementation issues are beyond the scope of
this section, an example of implementation is given in the case of UPnP.

4.3.2 Early programming interfaces design
This section defines basic interfaces that correspond to abstractions of the Amigo architecture,
such as:

• Interfaces corresponding to application services and networked devices ("Amigo
Service", "Amigo Action", AmigoServiceDescription, etc.). These interfaces are
described in Section 4.3.2.1;

• Interfaces corresponding to Amigo middleware services. In this early design, only the
"enhanced discovery lookup" is described in Section 4.3.2.2.

These interfaces do not rely on any technology and could be used in any context of
development language or environment.

4.3.2.1 Basic concepts: AmigoService, AmigoServiceDescription, AmigoAction
As shown in Figure 4-28, an AmigoService is an object that provides a set of actions.
Implementations of AmigoService could be:

• a proxy to a networked service in a particular technology;
• a local service; or
• the result of the composition of services linked or not to a device .

An AmigoAction represents an action that can be invoked on an AmigoService. If the
AmigoService is a proxy, invoking an action will send a message through the corresponding
protocol stack, wait for the response, and return the result.

AmigoServiceDescription represents the semantic description of the service using the Amigo
semantic service specification language introduced in Chapter 2. This interface is not detailed
in this early design.

A description of available actions must be provided by each service through the getActions
method. Each service can also export the description of the device (location, hardware
references …) to which it is attached through the AmigoDeviceDescription. Note that an
AmigoService is not necessarily linked to a hardware device and therefore can export an
empty AmigoDeviceDescription. When relevant, this device description is however useful, in

September 2005 Consortium Confidential

Amigo IST-2004-004182 79/128

particular for context-aware discovery: when looking for the nearest service of such kind, it is
helpful to know which physical device hosts such or such services.

Figure 4-28: Class diagram of Amigo basic concepts: AmigoService, etc.

4.3.2.2 The Amigo enhanced lookup
This section specifies the programming interface that an implementation of the Amigo
enhanced lookup should provide to components running on the same execution platform
(Amigo-aware clients). As shown in Figure 4-29, the AmigoServiceLookup interface allows:

• Active discovery: retrieve services matching semantic criteria using the lookupService
method.

• Passive discovery: subscribe for being notified of services matching semantic criteria
using the register method. Clients must provide an instance implementing the
AmigoLookupClient interface.

4.3.3 Early OSGi-based deployment framework design
In order to develop an application that, for example, uses the AmigoService interface, knowing
the interface is not enough: the life cycle of objects must be defined, and bootstrapping
methods to retrieve instances implementing interfaces are required. The following sections
deal with these aspects in the context of an OSGi platform.

The OSGi framework offers several facilities, among which the local service lookup and
service tracker that allow deployed components to:

September 2005 Consortium Confidential

Amigo IST-2004-004182 80/128

• Register "OSGi services" (that is, Java objects) together with a set of properties;

• Retrieve registered "OSGi services" that exhibit some interface, possibly providing a
filter (in LDAP form) on declared properties;

• Ask to be notified anytime an OSGi service corresponding to a given Java interface
and a filter on declared properties is registered or unregistered.

Figure 4-29: Class diagram of AmigoServiceLookup

The Amigo OSGi framework relies on the service lookup and service tracker (together simply
called "OSGi lookup" in the following) to bootstrap interactions between "Amigo-aware
bundles". By ‘Amigo-aware bundles’, we mean either a middleware component or an
application component packed in an OSGi bundle.

Section 4.3.3.1 defines the contracts that Amigo middleware bundles will have to respect in
order to be integrated into the Amigo platform. It defines, for example, "Amigo driver" (an
Amigo driver is an OSGi bundle that is specialized on a given technology, e.g., UPnP, and
instantiates java objects implementing the AmigoService interface according to devices
present on the network), and "Amigo publishers", which make available AmigoService
instances according to a given technology. Then, Section 4.3.3.2 defines how Amigo-aware
components running on an OSGi platform will use an OSGi-based Amigo middleware. Finally,
Section 4.3.3.3 discusses the implementation of drivers and publishers.

An OSGi platform running on a given device with a given set of Amigo components will define
an OSGi-based “instance of the Amigo architecture”. It will be able to interact with legacy
devices and services, as well as with other instances of the Amigo architecture which may be
(or not) OSGi-based.

Our introduced specifications are inspired from the "UPnP base driver" specifications in OSGi
specification release R3: OSGi release R3 defines first a set of Java interfaces (UPnPDevice,

September 2005 Consortium Confidential

Amigo IST-2004-004182 81/128

UPnPService, UPnPAction) that correspond to the concept of UPnP protocol. It defines also
the contract that a bundle should respect in order to be considered a conformant "UPnP Base
Driver". A "UPnP Base Driver" does not provide any interface per se. When started, it performs
in background the following tasks:

• Manage the SSDP protocol, and provide instances of UPnPDevice corresponding to
each UPnP device discovered. These instances are published by the OSGi lookup
and can be discovered by any other bundle that knows only the Java interfaces.
Invoking methods on these instances will transparently result into UPnP requests and
responses.

• Listen to the OSGi registration of local objects implementing UPnPDevice, and
announce these devices onto SSDP.

• Handle requests coming from the network concerning local UPnP devices and
transform these requests into Java method invocations.

4.3.3.1 Amigo conformant bundles

Amigo drivers
An Amigo Driver is (generally) specific to a protocol, for example UPnP. It is in charge of
building and managing proxies corresponding to remote services that use this technology. It
does not provide an interface per se (or may provide an administration interface, to allow, e.g.
for filtering or scoping). It provides implementations of AmigoService, AmigoAction, etc.
corresponding to the specific technology. Its contract is:

• Whenever it discovers a new service on the network, it creates a proxy for this service
and publish it locally as an AmigoService (using the OSGi and Amigo lookups).

• By invoking on published proxies the methods specified by the basic interfaces
(AmigoService, AmigoAction…), it performs the necessary network operations so that
the corresponding action is invoked on the remote service.

• Whenever it detects that a service has disappeared from the network, it deregisters the
objects that have been built (according to the protocol, this may be a lease system or a
direct "deregister" announcement or a combination of both).

Clients do not directly interact with the drivers: they take advantage of the available Amigo
drivers by discovering the Amigo services using the OSGi lookup or the enhanced Amigo
lookup.

Amigo publishers
An Amigo Publisher bundle is (generally) specific to a communication and a discovery
protocol. It allows local Amigo services (instances of AmigoService) to be published using a
given network discovery protocol. It takes care of:

• Handling active requests coming from external clients: asking the local Amigo lookup,
and producing the corresponding answer;

• Listening to the publication of local Amigo services and publishing these services onto
the network: this generally involves exporting the service (building a reference or URL
for this object) and publishing this reference on a discovery protocol like SLP or SSDP;

• Handling network calls onto the published URLs: parsing the requests to find which
local AmigoService is targeted, the action name and the parameter values; and then
invoking the corresponding AmigoAction, building the response and sending it on the
network.

Note that the same bundle may act as both a driver and a publisher, as in the case of the
UPnP base driver.

September 2005 Consortium Confidential

Amigo IST-2004-004182 82/128

The presence on the same platform of a driver for a given technology T1 and a publisher for
another technology T2 enables interoperability between a client using T2 and a server using
T1. Thus, a developer has only to concentrate on using the technology he/she is familiar with,
and the AmigoServiceLookup will automatically provide discovery and interaction of this
service in the different available technologies.

Amigo enhanced lookup bundle
A conformant Amigo enhanced lookup bundle tracks locally registered instances of
AmigoService. It publishes an instance of AmigoServiceLookup. Clients have therefore two
ways of finding Amigo Services:

• Non-Amigo-aware clients can use the OSGi lookup, which allows research criteria to
be specified in LDAP syntax;

• Amigo-aware clients can use the AmigoServiceLookup, which is able to handle
complex research criteria and complex service description, possibly including dynamic
context information.

An advanced implementation of AmigoServiceLookup may use semantic matching to create
on demand a new AmigoService as a composition of several already available services.

4.3.3.2 Using OSGi-based Amigo middleware
An Amigo client or middleware service hosted on an Amigo OSGi platform can use the OSGi
lookup (or the Amigo enhanced lookup if available) to discover instances of AmigoService that
are available on this platform. These instances are either local to the platform or proxies to
services hosted by remote devices. Figures 4-30 to 4-34 show examples of use.

Figure 4-30: Sequence diagram showing an OSGi discovery example

September 2005 Consortium Confidential

Amigo IST-2004-004182 83/128

In Figure 4-30, an Amigo-aware client uses passive discovery to obtain a media player (1). A
technology-specific driver detects a service announcement on the network (2). It creates an
instance of AmigoService and registers it locally (2.2). The client is notified (2.2.1). It asks for
an action called "play" (3). The client invokes the action (4), which results in sending a request
on the network, waiting for the response, parsing the response and returning the result to the
client.

Figure 4-31: An Amigo-aware client uses the OSGi lookup and active discovery to retrieve a
Translation Service

Figure 4-32: An Amigo-aware client uses the OSGi lookup and passive discovery to retrieve a

Translation Service.

September 2005 Consortium Confidential

Amigo IST-2004-004182 84/128

Figure 4-33: An Amigo-aware client using the Amigo enhanced lookup

In Figure 4-33, an Amigo-aware is client using the Amigo enhanced lookup. The Amigo
Service lookup listens to OSGi registration of AmigoServices. When an AmigoService is
announced (2.1), it asks for the service description in order to be able to provide enhanced
service discovery.

Figure 4-34: Publication of a translation service according to a specific protocol

In Figure 4-34, a translation service is published according to a specific protocol: the
translation server creates an Amigo service and registers it locally. If a network publisher is

September 2005 Consortium Confidential

Amigo IST-2004-004182 85/128

present, it publishes it on the network according to the communication protocol(s) and
discovery protocol it handles.

4.3.3.3 Implementing drivers and publishers
The internal design of drivers and publishers may follow different patterns. Hereafter, we
provide a non-exhaustive discussion of implementation methods.

First, implementation may rely on monitors, composers and parsers as defined in Section 4.1.
This is not specified in this early design.

Second, in some cases (e.g. Jini, UPnP) where work on OSGi mapping has already been
done by a standardization group, a convenient way is to build on this work. For example, an
Amigo UPnP driver listens to the creation of UPnPDevice instances: whenever a UPnPDevice
corresponding to a remote device is announced on the OSGi lookup, the driver requests the
services of this device, creates the corresponding UPnPAmigoService instances and
publishes them. The generic UPnPAmigoService class implements the AmigoService interface
that contains references to a UPnPService and a UPnPDevice, and delegates all handling to
these encapsulated objects (see Figure 4-35).

Figure 4-35: Example of implementing an AmigoService as an UPnPAmigoService

This is illustrated in Figure 4-36. The AmigoUPnPDriver declares a service listener (1) to OSGi
service events. When a new UPnP device is announced through SSDP, the UPnP driver
creates (3) and publishes (4) an instance of UPnPDevice. The AmigoUPnP driver service
listener interface is notified (4.1). It calls the getServices methods of the UPnPDevice (4.1.1)
and creates for each service an instance of AmigoUPnPService (4.1.2). It announces these
services on OSGi (4.1.3) so that other Amigo-aware bundles can discover them.

September 2005 Consortium Confidential

Amigo IST-2004-004182 86/128

Figure 4-36: Registering UPnPServices of an UPnPDevice as AmigoUPnPServices

Once the AmigoUPnPService is declared, clients can retrieve it by using either the OSGi
lookup or the Amigo enhanced lookup. Figure 4-37 illustrates a case of use where a client
asks for AmigoService with certain properties (1). Service references are returned by the OSGi
lookup, among which that of a UPnPAmigoService instance. The client decides to use this
service (2) – however, the client knows only the AmigoService interface exposed by the
UPnPAmigoService. The client requires a specific action by its name (3). It invokes the action
(4). Invoking the action results into invoking the corresponding UPnPAction (4.1), which results
in a SOAP request. Responses are handled symmetrically.

Figure 4-37: Lookup and access to the UPnPDevice through the AmigoUPnPService

Symmetrically, a UPnP publisher provides encapsulations of AmigoService that implement the
UPnPDevice and UPnPService interfaces (see Figure 4-38). Whenever a local AmigoService
is announced, it creates an instance of AmigoUPnPService – and an instance of
AmigoUPnPDevice – and publishes the AmigoUPnPDevice on the local OSGi registry. If a

September 2005 Consortium Confidential

Amigo IST-2004-004182 87/128

UPnP base driver is started (at this time or later on), it will be notified and publish the
AmigoUPnPDevice using SSDP.

Figure 4-38: Mapping of AmigoUPnPDevice and AmigoUPnPService with UPnPDevice and
UPnPService

Third, a publisher may also be composed of an export factory linked to a specific
communication protocol and a lookup linked to a specific discovery protocol: the export factory
provides an "export" function: String export(AmigoService service) that possibly builds useful
structures (by calling UnicastRemoteObject.export and Naming.rebind in the case of RMI,
POA.export in the case of CORBA) and returns a URL. The lookup provides a method that
allows to register a URL according to a given discovery protocol.

As stated before, this discussion of implementation methods is not exhaustive, and several
publishers/drivers following different designs may be deployed on the same platform and
interact with each other or with other Amigo-aware bundles.

4.4 Domotic interoperability
This section describes the interoperability mechanisms applied to realize domotic domain
interoperability. Initially, we recall from Deliverable D2.1 [Amigo-D2.1] the design principles on
which domotic domain interoperability is based (Section 4.4.1). Then, we provide an overview
of the early design of domotic interoperability and the details of the prototype implementation
using the UML language (Section 4.4.2).

4.4.1 Design principles
The Amigo domotic service architecture aims at integrating the diverse existing domotic
systems towards flexible networked domotic service provision in the Amigo home
environment.

The Amigo interoperable middleware core supports different service discovery protocols (e.g.,
UPnP and SLP), but, unfortunately, currently existing domotic systems are not ready to
interact with it yet. As described in Deliverable D2.1, there is a great diversity and
heterogeneity of domotic devices. Amigo device classes were introduced there in order to
classify the existing domotic devices. Consequently, the middleware shall support the different
domotic systems and provide interoperability mechanisms amongst them. In Deliverable D2.1,
the following architectural components were introduced: bus controllers, proprietary device

September 2005 Consortium Confidential

Amigo IST-2004-004182 88/128

factories and discoverable device factories, which gradually enable passing from proprietary
access mechanisms to common, technology-independent interfaces for domotic devices (see
Figure 4-39). By employing these components, the Amigo domotic device classes can be
integrated into the Amigo domotic architecture.

heterogeneous
platform
layer

heterogeneous
middleware
layer

communication service discovery

heterogeneous
application
layer

Bus controllers
e.g. EIB, EHS, BDF

Proprietary Device Factory
(builds proprietary devices)

Discoverable Device Factory
(builds discoverable devices)

e.g. UPnP devices

Proprietary Device Proxies
e.g. EIB WaMa, BDF Oven,

RS232 Lamp

domotic services
semantic functional

domotic services
semantic functional

Amigo Services
e.g. Amigo Heater, WaMa, Oven, Lamp

Discoverable Device Proxies
e.g. UPnP devices

Figure 4-39 : Amigo domotic architecture

By means of the proposed architecture, any domotic device, classified in any Amigo domotic
device class, can be discovered via Amigo service discovery interoperability; thus, the services
offered by the domotic device can be used in the environment. We provide a common
interface for domotic services (e.g., UPnP device interface) accessible within Amigo,
independently of the physical devices’ low-level features and communication protocols. From
the Amigo application point of view, it is not necessary to know if an application is actually
accessing an EIB, EHS or BDF lamp, because it just sees an Amigo service enabling control
of a lamp, not an EIB, EHS or BDF lamp. The bus controllers, proprietary and discoverable
device factories, as described in Deliverable D2.1, support this common interface of domotic
services. We shall also stress that discoverable device factories can be implemented to enable
not only a standard SDP (e.g., UPnP), but several ones. We may choose to develop a UPnP-
related factory or a SLP-related one, or both of them.

A domotic bus is a subsystem that allows interaction amongst several domotic devices that
support the corresponding bus protocols for communication and discovery and are connected
to the bus physical layer (e.g. twisted pair, power line, radio…). Thus, a BDF device is a
domotic device that can be connected to the BDF physical layer (power line) and that supports
the BDF protocols for discovery and communication. A bus controller is responsible for
enabling the connection with a particular domotic bus (BDF, EIB, EHS…), sending and
listening to messages on the bus. This architecture is easily extensible to support new devices
and buses by means of adding new bus controllers (if a new bus system must be supported)
or updating the factories (if a new device must be supported).

4.4.2 Early design and implementation
In this section, we provide a description of the early design and implementation of domotic
domain interoperability. In Section 4.4.2.1, we provide an overview of the design. Then, in

September 2005 Consortium Confidential

Amigo IST-2004-004182 89/128

Section 4.4.2.2, the design and prototype implementation are detailed using UML class and
sequence diagrams: the details of each class and its relations with the other classes are
surveyed to provide a better understanding of the technical details of the prototype
implementation.

4.4.2.1 Overview
In this section, we provide an overview of domotic interoperability within the Amigo
interoperable middleware core, which makes any domotic device discoverable by components
that use service discovery/interaction protocols. The following subsections present the domotic
architecture components (Bus Controllers, Proprietary Device Factories and Discoverable
Device Factories) needed to obtain the required final result: produce Discoverable Device
Proxies for domotic devices. For our early design, two device classes are addressed
representing the most common domotic devices: Amigo Legacy Devices and Amigo Base
Devices; further, the UPnP protocol has been chosen as the employed Service Discovery
Protocol.

Amigo Legacy Devices
An Amigo Legacy Device is a very simple domotic device that is not integrated in a domotic
bus; thus, it does not need any domotic bus support. As it is a rather isolated element,
communication with this device will be based on proprietary protocols with a strong
dependency on manufacturer technologies.

heterogeneous
platform
layer

heterogeneous
middleware
layer

communicationservice discovery

heterogeneous
application
layer

Proprietary Device Factory
(build proprietary proxies)

Discoverable Device Factory
(builds discoverable proxies)

UPnP proxies

domotic services

Proprietary Device Proxies
e.g. RS232 Lamp

Amigo Services
e.g. UPnP Lamp

RS232 Lamp

Figure 4-40: Amigo Legacy Device Architecture

Since a Legacy Amigo Device is not connected to a domotic bus, it does not need a bus
controller. The Proprietary Device Factory builds the Proprietary Proxy of the physical device,
and the Discoverable Device Factory builds a Discoverable Proxy (e.g., UPnP proxy) from the

September 2005 Consortium Confidential

Amigo IST-2004-004182 90/128

Proprietary Proxy (See Figure 4-40). Amigo service discovery can discover this UPnP proxy;
thus, we have achieved our goal to make this class of devices available in the Amigo
environment.

Amigo Base Devices
An Amigo Base device is any domotic element that is integrated in a domotic bus. In order to
be able to integrate bus-dependent devices into the Amigo system, it is necessary to provide
domotic bus support in the Amigo architecture. Some of the existing buses can discover
installed devices, but not by using standard SDPs; thus, the Amigo interoperable middleware
core cannot directly discover the services offered by an Amigo Base Device. Figure 4-41
depicts a typical BDF infrastructure, where BDF domotic devices are connected to the home
Power Line.

Figure 4-41: BDF infrastructure

heterogeneous
platform
layer

heterogeneous
middleware
layer

communicationservice discovery

heterogeneous
application
layer

Bus controllers
e.g. EIB, EHS, BDF

Proprietary Device Factory
(build proprietary proxies)

Discoverable Device Factory
(builds discoverable proxies)

UPnP proxies

domotic services

Proprietary Device Proxies
e.g. EIB WaMa, BDF Plug

Amigo Services
e.g. UPnP WaMa, UPnP Plug

BDF PlugEIB WaMa

Figure 4-42: Amigo Base Device Architecture

September 2005 Consortium Confidential

Amigo IST-2004-004182 91/128

In the Amigo domotic architecture, domotic bus support is provided by a Bus Controller that
listens to the bus. When a physical device on the bus is detected by listening to the
corresponding bus messages, the Proprietary Device Factory builds the Proprietary Proxy of
the device, and the Discoverable Device Factory builds a Discoverable Proxy from the
Proprietary Proxy. Again, in this way, we have made this class of devices available in the
Amigo environment.

4.4.2.2 Detailed description

Amigo Legacy Devices

A lamp controlled via RS232 interface will be provided as an example of a legacy device (see
Figure 4-43). It is connected to a serial port of a PC. Software running on this PC will detect
the connected device and instantiate the corresponding UPnP proxy to access the lamp. In the
same way, if the lamp is disconnected, the UPnP device will be removed. By means of this
UPnP proxy the lamp can be switched on and off remotely from any UPnP control point in the
network.

Figure 4-43: RS232 Lamp

Figure 4-44 shows the class diagram used to integrate this Amigo Legacy Device into the
Amigo interoperable middleware core, and the corresponding UPnP proxy generation. The
RS232Driver class is responsible for the communication via RS232, checking the connection
and sending messages to the lamp. The LampModel class is a model of the physical lamp and
represents its current status. The Monitor class has the responsibility of periodically checking
that the lamp is connected and updating its status when requested. The UPnPLamp class is a
UPnPDevice that acts as a UPnP proxy of the physical lamp.

+new()
+destroy()
+updateStatus()
+getStatus()

LampModel

+instantiate()
+destroy()
+setStatus()
+getStatus()

UPnPLamp

+timerSignal()
+setStatus()
+getCurrentStatus()

Monitor

+checkConnection()
+sendMessage()

RS232Driver

Figure 4-44: RS232 Lamp Class Diagram

September 2005 Consortium Confidential

Amigo IST-2004-004182 92/128

Figure 4-45 shows the sequence diagram followed in order to discover a connected RS232
lamp. The lampMonitor is periodically (1) checking the RS232 port (2), waiting for a response
from the lamp. When it receives a positive response (ok), it instantiates a new LampModel
object (4) and the corresponding UPnPLamp proxy (5).

timer lampMonitor : Monitor driver : RS232Driver

1: timerSignal()

2: checkConnection()

physycal Lamp

3: check:

lampModel : LampModel

ok:

ok:

4: new()

upnpLamp : UPnPLamp

5: instantiate()

Figure 4-45: Lamp discovery sequence diagram

timer lampMonitor : Monitor driver : RS232Driver

1: timerSignal()

2: checkConnection()

physycal Lamp

3: check:

lampModel : LampModel

no response:

no response:

5: destroy()

upnpLamp : UPnPLamp

4: destroy()

Figure 4-46: Lamp removal sequence diagram

September 2005 Consortium Confidential

Amigo IST-2004-004182 93/128

The sequence depicted in Figure 4-46 describes how the UPnP proxy is destroyed when the
physical lamp is disconnected.

Figure 4-47 shows how the lamp can be switched on and off from an external UPnP control
point. When the upnpLamp object receives the setStatus message from a control point (1), the
lampMonitor‘s setStatus method is invoked (2). This one tries to switch on/off the lamp
according to the received message by means of the RS232Driver (3) which sends the
adequate message to the physical lamp (4). Only if the response from the lamp is ok, the
lampModel is updated with the new status. Thus, the lamp model always represents the
current status of the physical lamp.

driver : RS232Driver physycal LamplampModel : LampModelupnpLamp : UPnPLampcontrol point

1: setStatus()

lampMonitor : Monitor

2: setStatus()

5: updateStatus()

3: sendMessage()

ok:

4: set:

ok:

ok:

ok:

ok:

Figure 4-47: Action invocation sequence diagram

Amigo Base Devices
As an example of Base Device, a BDF device has been chosen; concretely a BDF Plug (See
Figure 4-48).

Figure 4-48: BDF Plug

A BDF Plug consists of a domotic Schuko receptacle (see Figure 4-49) that, when plugging
any electrical device (i.e. coffee machine, lights…) in it, allows to connect/disconnect the
plugged device remotely. The connection start and end time can also be scheduled.

September 2005 Consortium Confidential

Amigo IST-2004-004182 94/128

Figure 4-49: Schuko receptacle

A set of software components running on a PC will be in charge of listening to the BDF bus
(power line), detecting the connected device (the BDF plug), and instantiating the
corresponding UPnP proxy to access the BDF device. Using this UPnP proxy, the plug can be
discovered and accessed by other services.

+announce()
+remove()
+sendMessage()

BusDriver

+create()
+getBDFRef()

BDFServiceFactory

+instantiate()
+invokeMethod()
+destroy()

BDFService

+serviceAdded(in service : BDFService)
+serviceRemoved(in service : BDFService)

BDFServiceMonitor

+create()
+getModelRef()

ModelFactory

+instantiate()
+invokeMethod()
+destroy()

-Methods
-Attributes
-Events

ServiceModel

+serviceAdded(in model : ServiceModel)
+serviceRemoved(in model : ServiceModel)

ModelMonitor

+createDevice(in model : ServiceModel)

UPnPDeviceFactory

+instantiate()
+destroy()
+invokeAction()

UPnPDevice

BDFModelFactory

BDFBusDriver

UPnPModelMonitor

BDF -> Service Model Service Model -> UPnPBus -> BDF

Service ModelBus

+register(in service : BDFService)
+addServiceListener(in listener : ServiceListener)
+register(in model : ServiceModel)
+unregister(in service : BDFService)
+unregister(in model : ServiceModel)

OSGi Registry

OSGi

+ServiceChanged()

ServiceListener

Figure 4-50: Class diagram for BDF support

Figure 4-50 shows the class diagram used to implement the BDF support and the UPnP
device proxy generation.

The base class BusDriver defines the basic methods and provides the basic functionalities that
are necessary to listen and speak to a generic domotic bus. The BDFBusDriver class
specializes the base class by implementing the methods for receiving announcements and

September 2005 Consortium Confidential

Amigo IST-2004-004182 95/128

goodbyes from devices in the BDF bus, and for sending BDF messages to any element in the
bus. The BDFService class represents the functionality of any BDF device. The
BDFServiceFactory class will create the necessary instances of BDFService in accordance
with the devices present in the bus. Thus, using these classes, BDFService instances are
obtained from bus messages.

Another class, BDFServiceMonitor, attends to newly registered or unregistered BDFService
instances in a service registry. For the current prototype, the OSGi framework will be used, so
the mentioned components will be implemented as OSGi bundles, and BDF services will be
registered in the OSGi registry (as an implementation of the service registry). The OSGi
service registry provides a comprehensive model to share objects between OSGi bundles. The
OSGi specification defines an event (ServiceChanged) to handle the coming and going of
services from the OSGi registry, enabling dynamic notification of newly registered and
unregistered services. Services are just Java objects that can represent anything (in this case,
BDFService instances).

The ServiceModel class represents a generic service and enables describing the methods,
attributes and events, if any, of a specific service. The ModelFactory class is a base class and
is responsible for instantiating generic ServiceModel objects from specific services. The
BDFModelFactory class, a specialization of the ModelFactory class, implements the methods
to obtain ServiceModel instances from BDFService instances. The ModelMonitor is a base
class to receive notifications of added or removed ServiceModel instances in a service registry
(OSGi registry).

The UPnPDeviceFactory class uses ServiceModel objects to instantiate UPnPDevice
instances. UPnPModelMonitor specializes the ModelMonitor class and, when it receives a new
ServiceModel registration notification, asks the UPnPDeviceFactory to instantiate the
corresponding UPnPDevice object. In a similar way, when the ServiceModel is unregistered,
the UPnPModelMonitor receives the appropriate notification and the previously created UPnP
device is destroyed.

Figure 4-51 shows the sequence diagram that represents the process from the announcement
of the domotic Plug in the BDF bus to the UPnP device generation. First of all, both monitors,
BDFServiceMonitor and UPnPModelMonitor, subscribe themselves to the service registry to
receive notifications of registrations and unregistrations (1 and 2). When the newly installed
Plug sends a message to the bus advertising itself according to the BDF protocol, the
bdfBusDriver object receives a message (3) with the information about the new device. By
means of a BDFServiceFactory, it gets an instance of a BDFService to access the physical
device (4 and 5), and registers it in the service registry (6). Then, the service registry notifies to
its subscribers (bdfMonitor) that a new BDFService has been registered (7), and the
BDFMonitor, using a BDFModelFactory, gets a PlugModel instance of a generic service
representing the installed Plug (8 and 9). This generic service is also registered in the service
registry (10). As upnpModelMonitor is notified that a new ServiceModel (plugModel) has been
registered, by means of a UpnPDeviceFactory, it instantiates a new UPnPDevice (upnpPlug)
from the generic ServiceModel.

September 2005 Consortium Confidential

Amigo IST-2004-004182 96/128

plug bdfBusDriver : BDFBusDriver

3: announce()

BDFServiceFactory

4: getBDFRef() bdfPlug : BDFService

5: instantiate()

OSGi Registry

6: register(service:BDFService)

bdfMonitor

1: addListener()

7: serviceAdded(service:BDFService)

BDFModelFactory

8: create()

plugModel : ServiceModel

9: instantiate()

10: register(model:ServiceModel)

upnpModelMonitor : UPnPModelMonitor

2: addListener()

11: serviceAdded(model:ServiceModel)

UPnPDeviceFactory

12: createDevice(model:ServiceModel)

UPnPPlug : UPnPDevice
13: instantiate()

Figure 4-51: Device presentation sequence diagram

Figure 4-52 depicts the process followed when a device is removed from the bus. When the
plug is removed, the bdfBusDriver object receives a message (1) about the device removal.
So, it unregisters the previously instantiated BDFService from the service registry (2) and
destroys it (5). BDFMonitor is then notified that a BDFService (bdfPlug) has been unregistered
(3) so, following the same process, it unregisters the plugModel (4) and destroys it (5). In a
similar way, upnpModelMonitor is then notified about the ServiceModel unregistration and
destroys the UpnpDevice.

Plug BDFBusListener : BusDriver

1: remove()

OSGi Registry

2: unregister(service:BDFService)

BDFMonitor

3: serviceRemoved(service:BDFService)

UPnPModelMonitor : ModelMonitor UPnPPlug : UPnPDevice

4: unregister(model:ServiceModel)

7: serviceRemoved(model:ServiceModel)

8: destroy()

BDFPlug : BDFService

5: destroy()

PlugModel : ServiceModel

6: destroy()

Figure 4-52: Device removal sequence diagram

September 2005 Consortium Confidential

Amigo IST-2004-004182 97/128

Figure 4-53 shows the sequence followed by an action invocation in which a UPnP Control
Point sends a SOAP message specifying the action to be invoked to the UPnP Device. When
an action is invoked on the upnpPlug (1), the corresponding method is invoked on the
plugModel (2). Then, the latter invokes the BDFService method (3), which asks the
BDFBusDriver to send the appropriate message to the BDF bus; this message is finally
received by the physical Plug. The return values, if any, follow the opposite way.

Control Point PlugBDFBusDriver : BusDriverBDFPlug : BDFServicePlugModel : ServiceModelUPnPPlug : UPnPDevice

1: invokeAction()

2: invokeMethod()

3: invokeMethod()

4: sendMessage()

5: message()

return()

return()

return()

retrun()

return()

Figure 4-53: Action invocation sequence diagram

4.5 Consumer Electronics interoperability
This section describes the interoperability mechanisms applied to realize Consumer
Electronics (CE) domain interoperability. Initially, we recall from Deliverable D2.1 [Amigo-D2.1]
the main areas in the CE and multimedia domain in which interoperability problems lie
(Section 4.5.1). Then, we provide our architecture for QoS interoperability that refines and
finalizes the abstract CE architecture defined in Deliverable D2.1 (Section 4.5.2).

4.5.1 Overview
Nowadays, most CE and multimedia interoperability efforts are directed towards the adoption
of a set of standards ensuring compatibility between devices by enforcing compliance with the
appropriate standard with respect to functionality (e.g., UPnP AV for content distribution and
rendering control, MPEG4 as codec standard, etc.). Different efforts towards CE and
multimedia streaming interoperability include among others the Digital Living Network Alliance
(DLNA), the Consumer Electronics Association (CEA), the Internet Streaming Media Alliance
(ISMA) and the Home Audio/Video Interoperability (HAVi). The Amigo interoperable
middleware shall support the different convergence standards and provide interoperability
between them. There are five main areas in the CE domain and multimedia in which
interoperability problems lie:

September 2005 Consortium Confidential

Amigo IST-2004-004182 98/128

� Service discovery and interaction: the mechanisms via which CE devices make their
services known to and accessed by the networked environment;

� Streaming protocols: the protocols that actually transport content and related signaling;
� Content Formats: the way in which content is coded and presented;
� Content Description: the mechanisms that enable identifying and finding content;
� Quality of Service: the technologies used by CE devices that enable a guaranteed

quality of service in the communication between two CE devices or a CE device and
another device.

In the following, we discuss in more detail these five areas.

Service discovery and interaction
Different standardisation institutions and previous projects have addressed this problem
providing state of the art analysis of the different service discovery protocols available. After an
analysis of the different standardisation institutions’ and alliances’ proposals, it is obvious that
there is a small set of discovery (and in some cases interaction) protocols widely accepted,
some with more, some with less popularity in the CE domain: mainly SLP, UPnP, Jini,
Bluetooth SDP, WS-D and Salutation.

Service discovery and interaction interoperability in the CE domain must be resolved (see
DMS and DMR mapping to the Amigo abstract architecture in Deliverable D2.1 [Amigo-D2.1]).
UPnP is the most popular standard (recommended by DLNA, CEA) within this domain.
Interoperability between this standard and the other standards mentioned above is addressed
in the service discovery and interaction interoperability sections of this document (respectively
Sections 4.1 and 4.2). In the case of CE legacy devices, a proxy will provide an intermediate
device interface to the network and probably a standard audio or video connection (e.g., RCA,
Euroconnector) to the legacy device (e.g., Set Top Box) enabling discovery and interaction
with the legacy device.

Streaming protocols
Analysis of the interoperability in the CE domain within the context of streaming protocols
concerns studying which protocols are the main ones and how they are used in multimedia
streaming. Deliverable D2.1 presented the abstract Amigo architecture for DMR and DMS;
availability of streaming protocols is required on both entities.

Some streaming technologies such as RealAudio and Windows Media utilize dedicated
servers that support superior UDP and RTSP transmission. Other formats such as
Shockwave, Flash, MIDI, QuickTime and Beatnik are primarily designed to stream from a
standard HTTP Web server. It is clear that HTTP and RTSP are the main streaming protocols
used by CE devices and will be the ones to take into account in Amigo. RTSP uses a
combination of reliable transmission over TCP (used for control) and best-effort delivery over
UDP (used for content) to stream content to users. HTTP streaming uses only TCP and is thus
referred to as pseudo-streaming, since technically it is possible to stream via HTTP. But HTTP
is much likely to cause major packet drop-outs, and it cannot deliver the same amount of
streams as UDP and RTSP transmission. Herein lies the difference between most low-end
solutions and more professional broadcasting solutions that require dedicated servers and
extra bandwidth and server capacity.

Interoperability at this level may be attacked with two possible approaches:

• Provide interoperability methods for transforming HTTP requests to RTSP ones and
vice versa. In fact, UPnP AV supports this kind of proxies [UPnPCD].

• Resolve interoperability at platform level, requiring either or both a streaming client
and server for each different technology to be implemented on a device.

September 2005 Consortium Confidential

Amigo IST-2004-004182 99/128

Considering real-time requirements of streaming, the second approach is a much more
reasonable one and can provide a solution for streaming interoperability between CE devices
in Amigo. We will not address this issue in WP3, as it is rather integration work than research
work.

Content Formats
Interoperability in the multimedia domain further concerns codecs and file-formats. The DLNA
guidelines specify that all devices claiming support of some media type must support a
specified codec/format of this media type (LPCM for audio, JPEG for images, and MPEG2 for
video), in order to ensure that all devices supporting a given media type are compatible (see
Deliverable D2.1). However, this is not possible for certain devices with, for example, limited
memory (e.g., mobile domain), so some type of format adaptation may be necessary. Since
this mainly concerns content distribution, it is tackled as part of the content adaptation issue
discussed in Deliverable D3.1c [Amigo-D3.1c].

Content Description
An analysis of interoperability in the CE domain within the context of content distribution is
required. DLNA guidelines define UPnP AV services as the standard for content browsing and
transfer management between devices, as well as for content rendering control. Other
interoperability institutional efforts either do not address directly this point or adopt UPnP as
standard at the time of writing. Thus, CE devices implementing the UPnP AV services will
interoperate within these functionalities seamlessly. However, heterogeneity of content
descriptions poses an added problem. DLNA guidelines establish, through UPnP AV, DIDL
Lite, based on an extended set of Dublin Core, as the content description standard. However,
an application performing content navigation may use any of the other popular content
description schemes (such as MPEG-7 Description Definition Language, included in the TV
Anytime specifications). Interoperability between applications and devices using different
content descriptions must be achieved in order, not only to assure access to the content
available at home and outside the home from different devices offering different content
navigation technologies, but also to avoid to a certain extent content duplication. Since this
mainly concerns content distribution, it is tackled as part of the content adaptation issue
discussed in Deliverable D3.1c [Amigo-D3.1c].

Quality of Service
Access networks, which have been improved by the innovation in broadband access
technology and the investment in access infrastructure such as copper enhancements (ADSL,
SDSL, and VDSL), Fiber-To-The-Home (FTTH), and Wireless Local Loop (WLL), still cannot
match the bandwidth inside the home. While the latter can be over 400 Mbps (e.g., IEEE
1394), the one of the access network is generally below 2 Mbps. Although currently the
Internet offers a straightforward best effort delivery service, where there is no commitment to
bandwidth or latency for senders, more and more delay-sensitive services are being
developed and deployed on the Internet, requiring QoS. Therefore, both domains, the Internet
and the home network, tend to adopt QoS techniques as a reaction to the emergence of more
demanding applications and services (e.g., Video on Demand and videoconference).

Current Layer 2 home network technologies only support packet priority QoS. This is not a
disadvantage since prioritized traffic: is compatible with QoS-unaware networks; works with
dynamic data rates; there are many standards available; is easy to manage; has low
overhead; and supports simultaneous services. Moreover, when interoperability is the
objective, a priority-based QoS architecture can accommodate QoS-unaware devices and
applications. DLNA will probably adopt UPnP QoS as the QoS interoperability standard. For

September 2005 Consortium Confidential

Amigo IST-2004-004182 100/128

the time being, UPnP QoS regards mainly packet-priority-based QoS, but using generalised
levels of priority that decouple it from the actual Layer 2 priority scheme.

However, there are other more mature QoS technologies, present on the Internet and other
public and private networks (e.g., RSVP). Interoperability between these technologies and the
CE interoperability standards shall be provided to assure QoS of multimedia streaming from
sources outside the Amigo home. Deliverable D2.1 introduced QoS support as a requirement
for the middleware, which was directly derived from the existence of multiple heterogeneous
streams with different QoS demands in the home network. There, the common solution of
providing interoperability by enforcing compliance with the appropriate standard (DLNA
directives in this case) was presented. However, we consider that providing a general
interoperability mechanism that would adapt easily to appearing QoS technologies, and that
provides immediate interoperability between two existing ones of a completely different nature,
is a step further towards the project objectives. Our choice is further reinforced by the
recommendation of Chapter 10: Assessment of Amigo interoperability of D2.1 identifying the
need for a QoS interoperability mechanism between the QoS standards of the in-home
network and the ones of networks outside the home. In the present chapter, we elaborate our
approach addressing this issue.

4.5.2 Refined Architecture
Having as a starting point the Amigo abstract multimedia streaming architecture with all its
components as introduced in Deliverable D2.1 (see Figure 4-54), along with the analysis of the
interoperability issues presented in the previous section, the next step is to refine these
components that will be implemented in the Amigo interoperable middleware:

• DRM: The DRM management will be addressed within middleware modules related to
Security and Pivacy (Task 3.5);

• Accounting and Billing: The management of accounting and billing will be addressed
in the related Task 3.8;

• Content Management and Content Storage: This module is currently being
addressed in the related Task 3.7 (see Deliverable D3.1c [Amigo-D3.1c]).

• Service Discovery and Message Communication Protocols: These services will
use the common service discovery and interaction mechanisms addressed in Sections
4.1 and 4.2 of this document.

• Streaming Protocols and Streaming Session Control Protocols: We discussed
these in the previous section: they will not be addressed in WP3.

• QoS Support: This module will be addressed in this section, according to the
discussion of the previous section. We will provide interoperability between Internet
QoS technologies and CE QoS standards. As indicated, the two state of the art
technologies outstanding in their respective domains are UPnP QoS and RSVP, so our
interoperability solution between access network and home network QoS technologies
will use these as a starting point. These two technologies are essentially different: the
first provides QoS inside a local area network on a packet class differentiation basis;
the second provides QoS on Internet connections on a ‘per flow’ reservation basis.
Section 4.5.2.1 provides the background for our QoS interoperability solution, which is
presented right then (Section 4.5.2.2).

September 2005 Consortium Confidential

Amigo IST-2004-004182 101/128

Figure 4-54: Amigo abstract Multimedia Streaming Architecture

4.5.2.1 Background

UPnP QoS
A base study of UPnP QoS was presented in Deliverable D2.1. We summarize in this
subsection, the main UPnP QoS operational issues of interest from an interoperability point of
view.

A UPnP QoS scenario comprises the following elements (see Figure 4-55):

• QoS Policy Holder: Contains the criteria that will be applied upon the assignation of
QoS to the streams. Traffic streams are classified using priorities established according
to the traffic and user importance.

• QoS Manager: Composed of a QoS Manager Service and a QoS Management Entity,
represents the QoS front-end to the Control Point.

• QoS Devices: The network devices that will carry the data streams.

Content
Storage

Message Comm. Protocols

Streaming
Protocols

(RTP/RTCP,
HTTP)

Streaming
Session
Control

Protocols
(RTSP,

UPnP AV)

Service
Discovery

Content
Management

Accounting &
Billing

Multimedia Services
syntactic + semantic functional/end-to-end QoS specification
syntactic media format specification

QoS support

Stream Shaping
Transcoding
Reservation
Prioritization

DRM

QoS Support

September 2005 Consortium Confidential

Amigo IST-2004-004182 102/128

Figure 4-55: UPnP QoS scenario (see [UPnPQoS])

For uniformity with the UPnP QoS specifications issued by the UPnP Forum ([UPnPF]) this
document uses the same terminology as that in the original documentation for referencing
actions. This is “Entity_name : action_name”, with the following acronyms:

QoS : Quality of Service

QM : QosManager

QD : QosDevice

The UPnP QosManager will be in charge for setting up and controlling the QoS assigned to a
certain flow of data, acting as a Control Point to UPnP QosDevice services.

The general operation procedure is started by the QosManager discovering the QosDevice
services available on the network. Once first step is accomplished, it can get information about
the device by using the actions “QD:GetQosDeviceCapabilities” and “QD:GetQosState”
offered by the QosDevice. The first action returns a new parameter called
“QosDeviceCapabilities” detailing the capabilities and the network interfaces present on the
devices, while the second returns the current state of the device as well as the parameters
“QosDeviceState”, “NumberOfTrafficDescriptors” and “ListOfTrafficDescriptors”.

Qos Policy Holder services must be discovered by the QosManager, expecting only one of
them to be present. In case none or more than one are discovered, a default policy (FCFS) is
assumed by the QosManager.

In a UPnP AV scenario any application that acts as a control point can require the
QosManager services to set up the desired QoS for a given data stream.

First of all, the control point requires the “QM:RequestTrafficQos” to call for the QosManager
service set up, using the “InitialTraffficDescriptor” as a parameter, receiving “TrafficHandle”,
“NumPolicyHolders” and “UpdatedTrafficDescriptor” as response. Every “TrafficDescriptor”
contains the following parameters:

September 2005 Consortium Confidential

Amigo IST-2004-004182 103/128

• Tspec: contains a description of Content QoS Requirements. The XML structure
consists of “TspecIndex” an identifier that also indicates preference (smaller equals
higher), “AVTransportUri”, “AVTransportInstanceID” identifier associated with the AV
Transport service associated with the content item for which QoS is requested (see
[UPnPAV]), and “TrafficClass” associated with the traffic stream.

• TrafficHandle: unique identifier associated with a particular traffic stream (or instance of
TrafficDescriptor).

• AvailableOrderedTspecList:
• ActiveTspecIndex: indicates the index of the current active Tspec from the TspecList.
• QosBoundarySourceAddress: address from which the QoS traffic stream enters the

UPnP network when it originates outside the home network. Used by the QosManager
for path determination.

• QosBoundaryDestinationAddress: termination point address for UPnP QoS when the
traffic stream terminates outside the home network. Used for path determination.

• TrafficImportanceNumber: integer indicating the priority of a traffic stream according to
the traffic type. Highest equals more priority.

• TrafficID: contains information for classification and identification of packets, containing
the following: SourceIP, DestinationIP, SourcePort, DestinationPort, Protocol.

• UserName: user who requested a traffic stream.
• CpName: control point that requested the traffic stream.
• VendorApplicationName: single URI string associated with the application initiating the

UPnP QoS Action.
• PortName:URI string associated with the port used by an application for its connection

set-up.
• ServiceProviderServiceName:URI string identifying a service offered by a service

provider.
• TrafficLeaseTime:lease-time associated with a particular traffic stream expressed in

seconds.
• MediaServerConnectionId: optional field used to identify a traffic stream that is being

setup by the UPnP AV CP requesting QoS when it is streaming multiple Tspecs.
Obtained via the “CM::PrepareForConnection” action.

• MediaRendererConnectionId: see MediaServerConnectionId

Any unknown arguments may be left blank and therefore filled after the traffic QoS is
implemented in the QosDevice. Parameters that may also be included by the control point are
“UserName”, “CpName”, “VendorApplicationName”, “PortName” and “ServiceProvider
ServiceName”.

Information available in the QosPolicyHolder may be used for retrieving the
“TrafficImportanceNumber” and “UserImportanceNumber” for the current traffic stream.

The control point invokes the “QM:RequestTrafficQos” action providing the
“InitialTrafficDescriptor” and obtaining the parameters “TrafficHandle”, “NumPolicyHolders”
and “UpdatedTrafficDescriptor”. This action is offered by the QosManager QoS Management
Entity which queries the QosPolicyHolder to get the “TrafficImportanceNumber” (ranged from 0
to 7) and “UserImportanceNumber” (from 0 to 255).

In order to determine the devices in the path of the data stream, the QosManager invokes the
“QD:GetPathInformation” action offered by the devices, obtaining the “PathInformation”
parameter. It may also invoke the “QD:GetQosDeviceInfo” in order to retrieve the

September 2005 Consortium Confidential

Amigo IST-2004-004182 104/128

“PortNumber” and “ProtocolInformation” belonging to the given “TrafficDescriptor”. Once the
devices have been identified, the QosManager QoS Management Entity calls the
“QD:GetQosState” action to each one of them retrieving the “QosDeviceState”,
“NumberOfTrafficDescriptors” and “ListOfTrafficDescriptors”. Next step consists of the
“QosManager” issuing the “QD:SetupTrafficQos” action with the input “SetupTrafficDescriptor”
and “QosStateId” arguments to the devices in the path of the traffic. If successful, it is now
when the control point receives the updated “TrafficDescriptor” argument in response to its
former “QM:RequestTrafficQos” petition. If failed, the proper error message is sent.

Updating the current QoS associated with a particular traffic implies the use by the CP of
“QM:UpdateTrafficQos” providing the “TrafficHandle” and “RequestedTrafficDescriptor”
arguments and receiving the “ImplementedTrafficDescriptor” and “NumPolicyHolders”. The
update process means repeating the previous admission control process using the new
“TrafficDescriptor”.

Releasing such QoS is achieved through the issue of the “QM:ReleaseTrafficQos” action
offered by the QosManager using the “RevokeTrafficHandle” as parameter. When receiving
this action, the QosManager will issue the “ReleaseTrafficQos” action to all the devices in the
path of the data flow, providing them with the “ReleaseTrafficHandle” parameter.

Whenever the path of the traffic changes, the QosDevice updates the “PathInformation”
variable and issues an event to the subscribed QosManager. The “PathInformation” variable
consists of the “LinkReachableMacs”, “LinkId”, “MacAddress”, “ReachableMac” and “BridgeId”
arguments.

RSVP
Resource ReSerVation Protocol, also known as RSVP, is an Internet protocol that enables
Internet applications to request enhanced IntServ quality-of-service (QoS). It supports two
classes of service:

- Controlled load Service - this is an attempt to provide a guarantee that a network
appears to the user as if there is little other traffic - it makes no other guarantees - it is
really a way of limiting the traffic admitted to the network so that the performance
perceived is as if the network were over-engineered for those that are admitted.

- Guaranteed Service - this is where the delay perceived by a particular source or to a
group is bounded within some absolute limit. This may entail both an admission test
and a more expensive forwarding queuing system.

Basically, RSVP is a receiver-initiated protocol. The sending node is just to pass the
requirements of the traffic to the receiver via sending a PATH message. The receiving node is
responsible for initiating the resource reservation by sending back a RESV message.

In RSVP-enabled network architectures, each RSVP host will contain RSVP-aware
applications, an RSVP API, a RSVP Daemon, and a RSVP protocol stack that consists of
admission control, Policy control, packet scheduler and packet classifier. RSVP-aware
applications send or receive data flows using RSVP in parallel: unlike legacy applications, they
interact with RSVP daemon to require the QoS support from network. Each of RSVP APIs is a
set of procedures used by applications to interact with RSVP daemon. In general, they are
created as libraries and linked by programs at run time. Typical RSVP API is RAPI library on
UNIX platforms [BH98].

The RAPI procedures consist of rapi_session(), that is used to initialize a session,
rapi_sender(), to notify RSVP daemon of the sender traffic characteristics, rapi_reserve(), to
notify RSVP daemon of the reservation parameters, and rapi_getfd() as well as
rapi_dispatch(), those are used together to receive notification of events (see Figure 4-56).
The RSVP daemon is responsible for handling the RSVP signaling. It must be able to deliver

September 2005 Consortium Confidential

Amigo IST-2004-004182 105/128

RSVP messages to the network and all RSVP messages received by the host must be passed
to it.

In the receiver, an RSVP agent application waits for PATH messages from sender. It extracts
QoS parameters from PATH message, and send RESV message back with the readjusted
QoS parameters. The sender firstly delivers the QoS request, then the receiver determines to
follow the sender’s proposal or readjust the parameters, depending on the receiver network
environment. The RSVP Agent of the receiver first uses RAPI to create a RSVP session and
register a callback function. When RSVP daemon in receiver receives a PATH message, it
triggers a RAPI_PATH_EVENT event. Then the Upcall (callback) function registered is called
to parse the PATH messages in order to get QoS parameters such as Tspec, token rate,
bucket depth, etc. Finally, the RSVP Agent uses the RAPI to send RESV messages back with
the receiver application’s QoS parameters need.

Therefore all of the hosts in the client side must active the RSVP daemon to handle the RSVP
message events. The application and the RSVP daemon establish a Unix socket connection to
exchange the information; this allows to trigger and handle the PATH and RESV events.
Finally, RSVP daemon determines when to deliver PATH and RESV messages, and
communicate with the underlying layer for bandwidth reservation information to establish the
QoS connection. By calling RSVP API, the Internet application can create, maintain and
release a QoS connection, and forward any error information to the application.

The parameters interchanged in the use of rapi functions are:

RAPI Session

An application calls this routine to define an API session for sending or receiving, or both, a
single simplex data flow. The RAPI session routine define de IP - Port address, protocol IP
and the Event Return parameter. The latter points to an upcall routine that is invoked to notify
the application of RSVP errors and state change events. Pending events also cause the
invocation of the upcall function when dispatched.

RAPI Sender

An application calls this routine to register as a data sender. The RAPI sender specifies the
session handle that was returned by a successful call to the rapi_session() routine. Also it
specifies several RSVP objects like:

- Sender Template: Points to a RSVP API (RAPI) filter specification structure that
specifies the format of data packets to be sent, or is NULL. This template is in the form
of a filter spec used to select sender's packets from others in the same session on the
same link. The sender template has the same power and format as the Resv
message's filter spec. It specifies the sender IP address and optionally the UDP/TCP
sender port. This is an optional parameter.

- Sender Tspec: Points to a Tspec that defines the traffic characteristics of the data flow
the sender will generate. This information is used to prevent over-reservation and
Admission Control failures

- Sender Adspec: Points to a RAPI Adspec structure, or is NULL. This information is
passed to the local control traffic, which returns it updated; the updated version is then
forwarded downstream in Path messages.

September 2005 Consortium Confidential

Amigo IST-2004-004182 106/128

Figure 4-56: RAPI Interaction.

RAPI Reserve

An application calls this routine to make a QoS reservation as a data receiver. The RAPI
reserve specifies the session handle that was returned by a successful call to the
rapi_session() routine. Routine Style ID parametrer specifies one of the following reservation
style identifiers Wilcard Filter (RAPI_RSTYLE_WILDCARD), Fixet Filter
(RAPI_RSTYLE_FIXED) and Shared Explicid (RAPI_RSTYLE_SE). Also it specifies several
RSVP objects like:

September 2005 Consortium Confidential

Amigo IST-2004-004182 107/128

- FilterSpec: The filter spec, together with a session specification, defines the set of
data packets (the flow) to receive the QoS defined by the flowspec. If the FilterSpecNo
parameter is zero (0), this parameter is ignored.

- FlowSpec : The flowspec specifies a desired QoS. The flowspec is used to set
parameters in the node's packet scheduler or other link layer mechanism, while the
filter spec is used to set parameters in the packet classifier. Data packets that do not
match any of the filter specs for the session are handled as best-effort traffic. If this
parameter is zero (0), the rapi_reserve() routine removes the current reservation or
reservations for the specified session and ignores the FilterSpec_List and
Flowspec_List parameters.

The parameters sent in RSVP messages are:

PATH

- SenderTspec: contains the QoS parameters for sent traffic.

- SenderTemplate: Parameter by which the sender identifies itself and describes the
format of the packages that the emitter generates. It also contains the IP address of the
sender, source port and protocol.

- Sender adspec: it informs of the state of the network to enable the receiver application
to initiate the calculation of the properties of QoS that will settle down in the way.

- Session: Destination IP address/port and protocol identifier to which the socket is
sending.

RESV

- FlowsSpec: contains desired QoS parameters for traffic to be received.

- FilterSpec: contains the source or sources from which QoS-enabled traffic will be
received.

- Session: contains the destination of the sent traffic.

4.5.2.2 QoS interoperable middleware architecture
In the previous section, two major QoS technologies, one applicable to the home environment
and one to the wide area networks, have been presented together with their specific
parameterizations of quality of service. In order to provide interoperability between QoS
technologies, an abstraction of QoS is required as a framework. Initial related work has been
elaborated as a semantic ontology in Deliverable D3.1a [Amigo-D3.1a], and will be refined in
future work. Based on these semantics, QoS requirements can be understood by the
interoperability modules and translated to the appropriate technology syntax and procedure
using technology-specific interoperability methods that will make the semantics effective. Our
general architecture for QoS interoperability is depicted below:

September 2005 Consortium Confidential

Amigo IST-2004-004182 108/128

QoS

UPnP Stack RSVP

RAPI

UPnP QoS
Interoperability Methods

RSVP Interoperability
Methods

QoS Events based on
semantic modeling

RSVP NetworkUPnP QoS Network

QoS

Figure 4-57: QoS interoperability: UPnP QoS and RSVP interoperability.

The Interoperability Methods presented in Figure 4-57 will provide intrinsic QoS technology
difference adaptation (i.e. 'per flow' bandwidth reservation to packet priority mapping, specific
calls, etc.) at middleware level and will relay on the interaction protocol specific stacks. The
translation of the abstract QoS events to a real QoS technology will be performed by the
interoperability methods whose architecture is proposed below and depicted in Figures 4-58
and 4-59.

There are two different cases for which interoperability must be provided (not necessarily at
the same time) depending on the direction of the QoS requirement initiation. Therefore, for
each QoS technology the middleware must provide inbound mechanisms to serve network
initiated demands, and outbound mechanisms to serve middleware initiated demands (that is,
initiated from another QoS technology network or a local application): in Figure 4-58 these are
referred as QoSP Inbound and QoSP Outbound units respectively. A QoSP unit performs the
protocol specific actions corresponding to a QoS event. Outbound units will be communicated
via QoS events with Inbound units and therefore both will be event publishers and mutual
event subscribers. Interoperability between QoS protocols is provided in one direction by an
inbound unit and an outbound unit connected with each other. The unit pair subscription to
events will be generated by the middleware based on the locally available QoS technologies
and on incoming QoS demands. In Figure 4-58, the UPnP outbound unit makes use of the
interoperability mechanism presented in Section 4.1 to use any communication protocol (such
as RMI invocations) for forwarding demands to the local QoS technology methods (e.g. UPnP
QoS Manager service).

September 2005 Consortium Confidential

Amigo IST-2004-004182 109/128

UPnP QoS Units

UPnP QoS
Manager

Service Proxy RSVP

RAPI

RSVP QoS UnitsQoS Events based on
semantic modeling

RSVP NetworkUPnP QoS Network

UPnP
Inbound

Unit

QoS Events

UPnP Local
QoS Device

UPnP QoS Translator RSVP QoS Translator

UPnP
Outbound

Unit

RSVP
Inbound

Unit

RSVP
Outbound

Unit

Figure 4-58: QoS interoperable middleware architecture refined for UPnP QoS and RSVP

UPnP QoS Outbound
Unit

X Protocol O
utbound

U
nit

UPnP QoS Outbound
Unit

RSVP QoS Inbound
Unit

X Protocol Inbound
U

nit

Events

Events

RSVP QoS Inbound
Unit

Events

QoS DemandQoS Demand

QoS Demand

Figure 4-59: Multiple QoS interoperability based on unit pairs.

On the other hand, the UPnP inbound unit must be aware of QoS demands invoked on the
QoS Device service requiring interoperability. In the case of invocation based protocols this
awareness must be blocking (i.e. by using an upcall mechanism) since no response can be
given to the client until an acknowledgement is received from the other technology network.

The units related to a given technology make use of a Translator which is responsible of
mapping events in the common QoS semantics into the UPnP QoS specific vocabulary and
vice versa (see Figure 4-60). The translator module is bidirectional and is common for all units
based on the same technology.

Outbound and inbound units will differ mainly in the protocol specific methods they use e.g. as
it was mentioned above a UPnP QoS Outbound Unit will interact with a possibly remote QoS
Manager service, while the UPnP QoS Inbound Unit will interact with the local QoS Device
implementation. An abstract QoSP Outbound Unit will be composed of a state machine and
an Outbound Connector. The connector will receive QoS events from the state machine which
will be translated into the appropriate vocabulary using the Translator and will perform the
appropriate actions and invocations onto drivers or services. This procedure is similar to the

September 2005 Consortium Confidential

Amigo IST-2004-004182 110/128

one carried out in the opposite direction: a response from a service or driver may lead to an
event which will be expressed, after being mapped by the translator, in the common event
vocabulary. This event will be managed by the state machine and possibly passed on to the
associated listener.

QoSP Outbound Unit

EventsQoSP
Outbound
Connector

QoSP
Outbound

State Machine

QoSP Translator

EventsInvocation

QoSP Inbound Unit

EventsQoSP Inbound
Connector

QoSP Inbound
State Machine

QoSP Translator

EventsInvocation

Figure 4-60: Abstract QoS Unit Architecture

Table 4-2 lists the identified QoS events. These events will be produced by QoSP inbound and
outbound connectors triggered by the interaction with the protocol specific methods. The unit’s
state machine will damp protocol specific transitions between common QoS events and retain
state conscience between these.

Event Description

QoS_REQUEST Request a quality of service

QoS_ACCEPT Accept the request or the proposal

QoS_NEGOTIATE Negotiate the initial request with a
proposal

QoS_RELEASE Terminate the QoS session

Table 4-2: Identified common quality of service events

The following example will help to illustrate the theory of operation of the proposed
architecture. Suppose there is a gateway between a RSVP network and a UPnP QoS network.
The middleware will connect the four QoSP Units by making outbound units subscribe to
inbound units events and vice versa. When a RSVP “Path“ message is received the RAPI
receiver upcall function in the Inbound Connector will construct the QoS_REQUEST event with
the parameters obtained from the RSVP QoS Translator and will pass it to the state machine.
The Translator may simplify or not, depending on QoS semantics, RSVP specific data like the
filterspec or the adspec parameters. If waiting for this event, the inbound state machine will
change state and throw the event with its parameters, which will be captured by the UPnP
outbound unit. The UPnP QoS Outbound unit will process the event if appropriate according to
the current state, by mapping the event parameters to the UPnP own vocabulary through the
Translator (i.e. completing the QoS semantic based event by possibly assigning a
“trafficImportanceNumber” to the flow description) and passing it to the UPnP QoS Outbound

September 2005 Consortium Confidential

Amigo IST-2004-004182 111/128

connector that will in turn access the UPnP QoS Manager Service (using Control Point
methods or a service proxy). If the result of this invocation comes to be a success then a
confirmation event will be back-propagated and transitions will take place in both state
machines, resulting in a “Resv” message towards the RSVP network.

September 2005 Consortium Confidential

Amigo IST-2004-004182 112/128

5 Integrated Prototype
The integrated prototype presented in this section is aimed at demonstrating the
interoperability mechanisms provided by the Amigo interoperable middleware core and
elaborated in Chapter 4 of this document. This integrated prototype provides a first, proof-of-
concept integration of several interoperability mechanisms across the Amigo domains, i.e., the
PC, mobile, domotic and CE domains.

Section 5.1 describes the integrated prototype infrastructure and the details of the
configuration of the different devices and software components composing the prototype.
Section 5.2 presents how the interoperability mechanisms elaborated in Chapter 4 are
integrated into this prototype, each one taking care of a specific aspect of interoperability.
Finally, Section 5.3 illustrates the visualization tool used to show the interactions and
messages exchanged among the components of the prototype.

5.1 Scenario and integrated prototype infrastructure
Scenario
It’s a Tuesday evening and John is returning home after a day at work. He opens the door,
takes his Personal Remote Control (PRC) out of his pocket and, as there is not enough light in
the living room, turns on the lamp using the PRC’s domotic GUI. Then, sitting on the sofa, he
switches the TV set on, and using the PRC’s GUI for Consumer Electronics, he browses the
multimedia content directory available on the DMS of the Amigo home environment via the
wireless network. After having listened to some music, he finally decides to watch a movie.
Before playing the movie, he turns on the coffee machine (using the PRC’s domotic GUI) to
warm up some coffee. And when coffee is ready, he finally turns off the lamp using the PRC’s
domotic GUI and sits on the sofa to watch the movie.

Integrated prototype infrastructure

Figure 5-1: Integrated prototype infrastructure

September 2005 Consortium Confidential

Amigo IST-2004-004182 113/128

Figure 5-1 shows the infrastructure of the integrated prototype that implements the scenario
described above. The figure also shows the interactions among the different devices and
components in terms of service discovery and interaction, with a reference to the protocol of
each exchanged message and, for each component, the protocols on which it is based.

The Personal Remote Control is realized by two PDAs (Personal Digital Assistants) that run
some client applications providing the functionalities to control the CE and domotic devices
available in the Amigo home environment.

The Digital Media Server (DMS) provides the multimedia contents. The Digital Media Renderer
(DMR), which visualizes multimedia contents, consists of a Philips Streamium connected to a
TV set through a SCART cable.

The Laptop1 hosts the Amigo interoperable middleware core mechanisms described in
Sections 4.1 and 4.2, while the Laptop2 incorporates the programming and deployment
framework described in Section 4.3.

The Domotic Laptop controls the domotic devices installed in the home environment, that is,
the lamp and the coffee machine, connected to the laptop through a plug.

The PDAs, the laptops, the DMS and DMR are all connected through a Wireless WiFi Network
(infrastructure mode).

As the home is equipped with a machine running the Amigo interoperable middleware core,
the services and clients running on the different devices can be discovered and can interact,
even if based on different service discovery protocols (SDPs) and service interaction protocols
(SIPs).

We detail below each device shown in the integrated prototype infrastructure figure with a
description of the device and of the software provided.

Personal Remote Control
The essential role of the Personal Remote Control is to provide remote control software for
controlling the Consumer Electronics subsystem (DMR and DMS) and the Domotic subsystem
(plug and lamp).

The PDAs are Sharp Zaurus SL-6000 running Linux as operating system and supporting the
Java platform Java2 Micro Edition Connected Device Configuration12 (J2ME CDC) with
Personal Profile (PP). The remote control client software deployed on the PDA is a Java
application with a graphical user interface (GUI) based on Java awt library (J2ME CDC/PP
supports only this graphic library, but does not support the Java graphic swing library).

The application is based on SLP for service discovery and RMI for service communication.
The application sends SLP messages to discover instances of DMS and DMR in the
environment. When the address of the service is returned by SLP, as the application is based
on RMI technology, it looks up in the RMI Registry at the address notified by SLP to obtain the
service proxy to access the remote service via RMI remote method calls.

The operations supported by the client GUI are: browsing the multimedia content directory
provided by the DMS, selecting a multimedia content from those offered by the DMS and ask
the DMR to play the content and further, to pause or stop the content that the DMR is currently
playing.

Laptop1

12 http://java.sun.com/j2me/index.jsp

September 2005 Consortium Confidential

Amigo IST-2004-004182 114/128

The operating system running on the laptop is Linux and the software it provides is the Service
Discovery Interoperability (SDI) and Service Interaction Interoperability (SII) of the Amigo
interoperable middleware core described in Sections 4.1 and 4.2.

Laptop2
The operating system running on the laptop is Linux and the software it provides is the OSGi-
based framework implementation described in Section 4.3.

Digital Media Server (DMS)
The Digital Media Server (DMS) can be either a laptop or a PC running Windows as operating
system. The DMS software installed on the machine is Philips Media Manager13, a UPnP
based software available only for Windows that provides access from a networked machine to
multimedia content (music, movies and pictures) stored on the PC and explicitly made
available through the DMS software. The official UPnP specifications for this device are part of
the UPnP Device Control Protocol (DCP) standards14.

Digital Media Renderer (DMR)
The Digital Media Renderer (DMR) is a Philips Streamium SL300i15, a UPnP-based device
that enables reproduction of multimedia content (music, movies and pictures) stored in an
accessible DMS on a TV connected via a SCART cable. The official UPnP specifications for
this device are part of the UPnP Device Control Protocol (DCP) standards16.

Domotic Laptop
The operating system running on the laptop is Windows XP. It provides the RS232 lamp proxy
and the BDF Plug proxy that are respectively based on .NET framework and on Oscar OSGi
Framework implementation17. All the components described in Section 4.4 realizing home
automation interoperability run on this laptop.

The laptop accesses the power line using a RS232-Powerline bridge. This bridge is connected
to a serial port of the laptop. As only one serial port is available in this laptop, a USB-Serial
adapter is also required because both the bridge and lamp are connected to the laptop via
serial ports.

Lamp
The lamp used is a prototype table lamp that has an RS232 serial connector. Its proxy running
on the domotic laptop advertises the lamp as a UPnP device when connected. The lamp can
be remotely switched on/off by any UPnP Control Point in the network.

Plug

13 http://www.streamium.com/support/MediaManagerPC.cfm
14 http://www.upnp.org/standardizeddcps/mediaserver.asp
15 http://www.streamium.com/products/sl300i/
16 http://www.upnp.org/standardizeddcps/mediaserver.asp
17 http://oscar.objectweb.org/

September 2005 Consortium Confidential

Amigo IST-2004-004182 115/128

The domotic plug is a Fagor ED200-S DomoSwitch18 that supports the BDF protocol. It only
requires to be connected to the home power line as any other electrical device. No further
connections are required. Any other non domotic electrical device plugged in it can be
remotely switched on/off or scheduled to be switched on/off at the desired time.

5.2 Integrated prototype realization using the Amigo interoperable
middleware core

5.2.1 Integration of SDI and SII
In this section, we detail how the Amigo interoperable middleware core (SDI and SII) running
on the laptop is integrated into the prototype to allow all the devices and software components
to work together even if they are based on different technologies.

Figure 5-2: SDI and SII integration into the prototype

Figure 5-2 shows the sequence of messages and events exchanged among the different
components involved in the integrated prototype to enable service discovery and interaction

18 http://www.fagor.com/es/domotic_n/index.html

September 2005 Consortium Confidential

Amigo IST-2004-004182 116/128

through interoperability methods. In particular we focus on the interaction between the
Personal Remote Control, the Digital Media Server (DMS) and the Amigo interoperable
middleware core (SDI and SII). Below, we detail each step of the interaction represented in
Figure 5-2:

1. The client application is based on SLP for service discovery. The name of the service to be
discovered is fixed to the identifier corresponding to UPnP standards for DMS19:
service:MediaServer. The SLP request message is received by the SLP unit of the
Amigo interoperable middleware core.

2. The SLP request message is parsed by the SLP unit’s parser and the semantic events are
generated and dispatched to the UPnP unit and its composer using the mechanisms
described in Section 4.1.

3. The UPnP unit’s composer translates the semantic events into a semantically equivalent
UPnP device discovery message for device urn:schema-upnp-org:device:
MediaServer.

4. The UPnP device matching the discovery message replies with a message containing the
URI of the document describing the device and all the services supported by the device.
The message is received by the UPnP parser and the related events are generated.

5. The events describing the device description URI are used by the UPnP unit’s composer to
send a UPnP message to request the device description XML document.

6. The UPnP parser (DeviceDescr class described in Section 4.1) receives the UPnP device
description and generates the events related to the device description and to the services
supported by the device (for each service supported, the device description contains the
URI of the XML document that describes the service).

7. For each service, the events related to the description’s URI are used by the UPnP unit’s
composer to send a UPnP message to get the service XML description.

8. The UPnP parser (ServiceDescr class described in Section 4.1) receives the UPnP service
description and generates the events related to the service description (events are related
to the description of the interface provided by the service: it’s a list of methods and their
descriptions).

9. The events generated in steps 4, 6 and 8 are sent to the SII’s Proxy Generator and to the
SDI’s SLP unit.

10. The Proxy Generator dynamically creates the remote service’s proxy and all the other
classes required to deploy the proxy on the Proxy.
As the client is based on RMI technology (for more details, see RMI specifications20), the
SII provides an RMI Registry that is used by the client to dynamically download the proxy.
Registering the proxy on the RMI Registry requires the following classes: the java RMI

19 http://www.upnp.org/standardizeddcps/mediaserver.asp
20 http://java.sun.com/products/jdk/rmi/

September 2005 Consortium Confidential

Amigo IST-2004-004182 117/128

interfaces provided by the remote service, the proxy implementing all the methods
declared by the interfaces and finally the RMI service that provides a void implementation
of all the methods declared in the interfaces.

11. When all the classes have been generated in step 10, the Proxy Generator registers the
proxy on the RMI Registry and binds the proxy to a specific address (rmi://ip:port/proxy).

12. The address bound to the proxy in step 11 (rmi://ip:port/proxy) is notified with an event to
the SLP unit.

13. The SLP unit dispatches the address received in step 12 to the SLP composer that is in
charge of creating (taking into account all the events received from the beginning of the
operation) the SLP reply and sending it to the client.

14. The client receives the service address (rmi://ip:port/proxy). Since it expects the remote
service to be an RMI service using SLP as discovery protocol, it looks up on the RMI
Registry at the address received as SLP reply.

15. The RMI Registry on the Amigo interoperable middleware core returns the service proxy to
the client application.

16. The client finally invokes a method on the remote service making use of the proxy. The
message sent over the network and the reply from the service are SOAP messages and
the proxy is in charge of the translation from SOAP to java for the client.

The process described above to enable service discovery and interaction interoperability, and
detailed for the special case of DMR, is the same for any other UPnP device in the integrated
prototype (e.g., the DMR, the UPnP proxy for plug and the UPnP proxy for lamp). The internal
components of the Amigo interoperable middleware core used for these other devices will be
the same. There is no specialization required for the SDI and SII components to be used for
different devices and services, so they can be reused without any modifications.

5.2.2 Integration of the OSGi-based framework
In this section, we employ the OSGi-based framework introduced in Section 4.3 to develop
and deploy a middleware architecture realizing interoperability between the graphical client
and the UPnP devices of the integrated prototype. We show how interoperability can be
ensured by a set of OSGi "bundles" interacting with each other, each of them dealing with a
different aspect of interoperability. First, we present two possible deployment architectures for
the prototype, where the bundles ensuring interoperability are either deployed on the client, or
on a separate node. Then we detail the role and behaviour of each bundle, and the way
bundles interact with each other.

Deployment architecture
The demonstration can be deployed according to two different architectures:

1. Interoperability methods co-localized with the client. In this case, the client is an OSGi
bundle that uses the OSGi framework to retrieve instances implementing wished Java
interface (MediaServer, MediaRenderer,…). Figure 5-3 summarizes the deployment
architecture: the client can discover and interact with the external devices (Media

September 2005 Consortium Confidential

Amigo IST-2004-004182 118/128

Renderer, Media Server) as soon as the amigo_interop and upnp base driver bundles
are launched. The role of each bundle is explained in the next subsections.

UPnP device

UPnP device

UPnP base driverAmigo cp

Amigo utils

Amigo interop

Service binder

OSGi platform

client UPnP base driverAmigo cp

Amigo utils

Amigo interop

Service binder

OSGi platform

client

Figure 5-3: First OSGi-based deployment architecture

2. Interoperability methods on a node (called Interoperability node), and remote client on
the PDA. We use in this case the same client as in the non-OSGi case presented in
Section 5.2.1. Figure 5-4 summarizes the deployment architecture: the same bundles
as in the previous architecture (amigo_interop and amigo_utils) are deployed on the
OSGi platform, plus an additional bundle (Amigo slp) that allows the publication
according to the SLP protocol. A rmi registry must also be running on the same node
as the OSGi platform (possibly in a bundle or outside the platform).

UPnP device

UPnP device

UPnP base driverAmigo cp

Amigo utils

Amigo interop

Service binder

OSGi platform

client

Amigo slp

rmiregistry Interoperability node

Figure 5-4: Second OSGi-based deployment architecture

SLP/RMI client
The SLP/RMI client is described in Section 5.2.1.

Local client
The local client is based on the same code as the SLP/ RMI client. The differences lie in the
bootstrap process (the functional components are instantiated by a main program in the case
of SLP/ RMI client, by the bundle's activator in the case of the OSGi client) and in the lookup
service (the implementation of ServiceLookup and ServiceReference are based in one case
on SLP/ RMI registry, and on the OSGi framework local lookup in the other case).

When the bundle is started, the client starts looking for local instances of MediaRenderer and
MediaServer.

UPnP base driver bundle
This bundle is specified by the OSGi R3 specifications. The specification defines Java
interfaces (UPnPDevice, UPnPService, UPnPAction) that corresponds to the UPnP
abstractions. Also, it specifies the behaviour that a bundle must provide in order to be a
conformant "UPnP base driver".

September 2005 Consortium Confidential

Amigo IST-2004-004182 119/128

Among others, a conformant UPnP base driver provides implementations of the UPnPxxx
interfaces that allow interacting with a UPnP device. These UPnPDevice implementations
provide all necessary methods to interact with a real UPnP device: obtain the list of services
provided by the device, as a set of UPnPService instances, the list of actions provided by each
service, invoke an action etc.). The UPnP base driver manages the UPnP stack, builds a local
instance of the "UPnPDevice" class as soon as a device is announced on the network and
announces these instances using the OSGi local lookup.

Several implementations of the UPnP base driver exist (open source or proprietary). We use
the open source implementation provided by domoware21.

Service binder bundle
The "service binder"22 bundle eases the interaction between bundles by introducing the
concept of service component to the OSGi framework. A service component is similar to the
concept of a logical bundle but the difference is that multiple service components can be
deployed inside a single physical bundle.

A service component declares a set of provided service interfaces, and a set of required
service interfaces. During execution, an instance of a service component implements the
provided services and is connected to other instances that implement the required interfaces.

The service binder is an open source development.

Amigo_util bundle
This bundle provides generic classes (packages rmiholders and standard) described in
chapter 4.2.

SLP bundle
This bundle publishes a service which offers a programmatic interface to the SLP protocol
Service Agent functions.

Amigo_interop bundle
This bundle provides Java interfaces and classes generated from the XML description of
UPnP devices. It provides also the interoperability methods between UPnP and OSGi local
clients, and between UPnP and RMI/SLP client. The latter is achieved only if the SLP bundle
is deployed on the OSGi platform.

An extension of the proxy generator presented in Section 5.2.1 has been developed. This
OSGi code generator parses a set of UPnP xml descriptions and generates classes that
implement the interfaces expected by the client. Generated classes extend
java.rmi.UnicastRemoteObject and rely on UPnPDevice, UPnPService and UPnPAction (as
defined by the OSGi standard). More precisely, an instance of a generated class (say,
MediaRendererOSGi_Impl) is associated to an instance of UPnPDevice, and a set of
UPnPService and UPnPAction instances. Invoking a specific method on a
MediaRendererOSGi_Impl results in building a set of arguments for the corresponding
UPnPAction, calling the "invoke" method (which transparently results into a UPnP network
invocation), retrieving the result and filling the corresponding rmi holders.

21 http://domoware.isti.cnr.it/
22 http://gravity.sourceforge.net/servicebinder/servicebinder-index.html

September 2005 Consortium Confidential

Amigo IST-2004-004182 120/128

The role of the Amigo_interop bundle is to create instances of these generated classes as
soon as UPnPDevice instances appear, and publish these instances so that the client can
discover and use them.

The interoperability bundle code is not specific to the devices/services supported by this
prototype and could be reused in another prototype with different ones.

Interaction between bundles
Bundles interact by means of the service binder described above. As an example, the
interoperability bundle declares that it contains a component (called AmigoInteropComponent)
and that this component must be warned each time an instance of the "UPnPDevice" class is
published on the OSGi lookup. The service binder instantiates AmigoInteropComponent, and
tracks registrations of instances of UPnPDevice.

The diagram of Figure 5-5 illustrates the discovery of a UPnP device. The UPnP base driver
handles the UPnP stack. As soon as a device is announced on SSDP, it creates an
UPnPDevice instance and publishes it by the OSGi lookup. The service binder is informed
(2.1) and calls the corresponding method (2.1.1) on Amigo Interop Component. The interop
component asks the device its description (2.1.1.1), extracts the UPnP device type from the
description and searches which Java type correspond to the UPnP type of the UPnPDevice
(2.1.1.2), in this case it is MediaRendererOSGi_Impl. It instantiates this class (2.1.1.3) and
links the instance with the UPnPDevice (2.1.1.4). Finally, it registers it as a MediaRenderer, so
that the local client can discover and use it.

Figure 5-5: Sequence for discovery of a UPnP device

If an SLP service is present (not shown on the diagram for the sake of simplicity), the
additional actions are performed:

• Export the MediaRendererOSGi_Impl using rmi's UnicastRemoteObject exportObject
method

• Generate a uuid
• Bind the object to the local rmi registry using the generated uuid
• Register the rmi URL using SLP.

September 2005 Consortium Confidential

Amigo IST-2004-004182 121/128

The Amigo interoperability bundle and the UPnP base driver play complementary roles in the
interoperability middleware: the Amigo interoperability bundle does not deal directly with the
UPnP protocol, but rather uses the abstractions provided by the OSGi R3 specification. It
provides model interoperability (match the generic model of UPnP artefacts onto a specific
Java interface) inside the OSGi platform, whereas the UPnP base driver provides
interoperability between the Java world and UPnP devices.

5.2.3 Integration of domotic interoperability
In this section, we detail how the Amigo domotic interoperable architecture makes domotic
devices (which use service discovery/interaction protocols not supported by the Amigo
system) available to both middleware realizations: the interoperable middleware core (SDI and
SII) and the OSGi-based middleware.

UPnP proxies of the domotic devices are provided by the domotic interoperable architecture,
by means of the components described in Section 4.4 running on the Domotic laptop
described in Section 5.1.

The BDF Plug is based on BDF protocol for discovery and communication. Thus, the objective
is to instantiate a UPnP proxy, useful for the middleware prototype, representing the physical
BDF device. BDF protocol's physical layer is power line. The BDF plug is, then, only
connected to the power line and requires no further connection. All the BDF messages are
sent to and received from the power line. First of all, a BDF bus listener is required, so that
BDF messages through the power line can be managed. A RS232-Powerline bridge enables
the passing of messages from the laptop to the power line and back. The bus listener is a
software component running on the laptop so, with the described setup, this component can
listen to the BDF messages in the power line. It's implemented as an OSGi bundle, and runs
over Oscar23.

We recall here, the behaviour of the domotic interoperability explained in detail in Section
4.4.2.2. When a BDF plug is discovered by the bus listener in the power line, another bundle
(a BDFServiceFactory bundle) is notified about the new physical device, and instantiates a
BDFService (a java object to access the real device). This BDFService is registered in the
OSGi framework, advertising it and making it available to every component in the framework.
A BDFModelFactory (listening to BDFService registrations in the framework) instantiates a
generic ServiceModel java object that describes the methods and properties of the
BDFService, but decoupling it from the BDF underlying technology. This ServiceModel is a
generic service that is also registered and advertised within the OSGi framework. A
UPnPDevice factory component receives the notification of the availability of the ServiceModel
in the framework, and instantiates the corresponding UPnP device. Thus, we provide a
UPnPDevice proxy to handle the physical BDF plug. UPnP service discovery/interaction
messages from the interoperable middleware core and from the OSGi based middleware are
managed by the proxy are finally sent to the BDF plug.

The RS232 Lamp has a RS232 connector to access the functionalities of the lamp: getting and
setting its status. Thus, the objective is to instantiate a UPnP proxy, representing the physical
device, and providing for the middleware prototype with access to the lamp. In this case, .NET
technology has been used for the required implementation. A RS232 Monitor running on the
laptop is continually checking the presence of the lamp in the serial port. When the lamp is
detected (responding to a predefined protocol), a lamp model is built and a UPnP proxy of the
lamp is instantiated. By means of this proxy, the interoperable middleware core and the OSGi
based middleware can interchange messages with the lamp using the RS232 interface.

23 http://oscar.objectweb.org/

September 2005 Consortium Confidential

Amigo IST-2004-004182 122/128

5.3 Integrated prototype visualization

Figure 5-6: Preliminary version of the Amigo integrated prototype visualisation.

The viewer application is written in the Python language24. It utilizes a gaming library called
PyGame25 for displaying and moving images. PyGame is a set of Python modules designed
for writing games. It is written on top of the Simple Directmedia Library (SDL)26, allowing the
creation of fully featured games and multimedia programs in the python language. PyGame is
highly portable and runs on nearly every platform and operating system.

The viewer is constructed by a number of entities such as Nodes, Messages, Lines, Actions,
and Layers. These can be combined to form a visualisation such as the one shown in Figure
5-6. Nodes, Messages, and Lines can be animated (e.g. resized, moved, rotated, etc).

The triggers for these animations can come from different types of input. Typically this input
will be the keyboard keys, for example to start a pre-programmed scenario, or from the ‘sniffer’
input that allows triggers to be based on specific packets sensed on the network.

Essentially the sniffer input is a python object wrapper around a Libpcap27 (on Linux) or
winpcap28 (on Windows) library. The standard libpcap syntax is used for defining filters for
these sniffer inputs.

24 http://www.python.org
25 http://www.pygame.org
26 http://www.libsdl.org/index.php
27 http://www.tcpdump.org/
28 http://www.winpcap.org/

September 2005 Consortium Confidential

Amigo IST-2004-004182 123/128

A server socket can also be used as an input allowing arbitrary clients to send events of
interest to the viewer application. The form of these events is plain ASCII text, allowing
maximum flexibility in defining events and actions.

All animations are placed in a buffer from which they are retrieved one after the other for
playing. The rate at which they are retrieved and played can be varied, making the viewer
application well-suited for illustrating protocols and their message exchanges between
different computers.

A client socket in Java is provided as well to allow the Amigo middleware to send events of
interest to the viewer application.

September 2005 Consortium Confidential

Amigo IST-2004-004182 124/128

6 Conclusion
In this report, we have elaborated on the Amigo Interoperable Middleware Core and on Amigo-
aware Service Specification, refining the Amigo abstract middleware architecture presented in
Deliverable D2.1. We have considerably advanced our work on the middleware core by
providing detailed design and prototype implementation of essential functionalities. Moreover,
prototype implementations related to different application domains have been linked into an
early, proof-of-concept, integrated prototype. In the next phase of the project, we will proceed
towards a full prototype implementation of the Amigo middleware core.

Further, we have provided an informal definition of a declarative language for semantic service
specification and associated conformance relation mechanisms. We intend to proceed to a
detailed, formal definition of the language and elaborate associated online tools for service
matching and interoperability.

Finally, we have identified the different classes of services and interoperability levels in the
Amigo home environment. Co-existence of legacy services, middleware interoperable services
and Amigo-aware services is inevitable in the open Amigo environment. We will further
elaborate all required mechanisms that will make it possible for services of different classes to
integrate and interoperate.

September 2005 Consortium Confidential

Amigo IST-2004-004182 125/128

Acronyms
ADSL Asymmetric Digital Subscriber Line

API Application Programming Interface

BDF Bus Domotico Fagor (Fagor Domotic Bus)

CDC Connected Device Configuration

CE Consumer Electronics

CEA Consumer Electronics Association

CORBA Common Object Request Broker Architecture

DHCP Dynamic Host Configuration Protocol

DIDL Digital Item Declaration Language

DLNA Digital Living Network Alliance

DMR Digital Media Renderer

DMS Digital Media Server

EHS European Home System

EIB European Installation Bus

FTTH Fiber To The Home

GUI Graphical User Interface

HAVi Home Audio Video interoperability

HTTP Hypertext Transfer Protocol

IANA Internet Assigned Numbers Authority

IETF Internet Engineering Task

IOPE Outputs, Pre-conditions and Effects

IP Internet Protocol

ISMA Internet Streaming Media Alliance

J2ME Java 2 Micro Edition

JDK Java Developers Kit

JPEG Joint Photographic Experts Group

JXTA Juxtapose

LPCM Linear Pulse Code Modulation

MPEG Moving Pictures Experts Group

OSGi Open Service Gateway Initiative

OWL Ontology Web Language

OWL-DL Ontology Web Language Description Logics

OWL-S Ontology Web Language for Services

PC Personal Computer

PP Personal Profile

September 2005 Consortium Confidential

Amigo IST-2004-004182 126/128

PRC Personal Remote Control

QoS Quality of Service

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RMI Remote Method Invocation

RPC Remote Procedure Call

RSVP Resource Reservation Protocol

RTCP Real-Time Control Protocol

RTP Real-Time Transport Protocol

RTSP Real-Time Streaming Protocol

SCART Syndicat des Constructeurs d'Appareils Radiorécepteurs et Téléviseurs

SD Service Discovery

SDI Service Discovery Interoperability

SDL Simple Directmedia Library

SDP Service Discovery Protocol

SDS Service Discovery Service

SDSL symmetric digital subscriber line

SII Service Interaction Interoperability

SLP Service Location Protocol

SMC State Machine Compiler

SOAP Simple Object Access Protocol

SOFA Simple Ontology Framework API

SSDP Simple Service Discovery Protocol

TCP Transmission Control Protocol

TV Television

UDDI Universal Description, Discovery and Integration

UDP User Datagram Protocol

UML Unified Modeling Language

UPnP Universal Plug & Play

UPnP AV Universal Plug & Play Audio/Video

VDSL Very high data rate Digital Subscriber Line

WSDL Web Service Definition Language

WLL Wireless Local Loop

W3C World Wide Web Consortium

XML eXtensible Markup Language

September 2005 Consortium Confidential

Amigo IST-2004-004182 127/128

References
[Amigo-D2.1] Amigo Consortium. Deliverable D2.1: Specification of the Amigo Abstract

Middleware Architecture. February 2005.

[Amigo-D3.1a] Amigo Consortium. Deliverable D3.1a: Detailed Design of the Amigo
Middleware Core – Service Modelling for Composability. September 2005.

[Amigo-D3.1c] Amigo Consortium. Deliverable D3.1a: Detailed Design of the Amigo
Middleware Core – Security & Privacy, Content Distribution, Data Storage.
September 2005.

[BCMS03] P. Bellavista, A. Corradi, R. Montanari, C. Stefanelli, Context-Aware
Middleware for Resource Management in the Wireless Internet, IEEE
transactions on Software, 2003

[BiWe] [Developers Guide to Semantic Web Toolkits for Different Programming
Languages. Chriz Bizer, Freie Universität Berlin, Germany. Daniel Westphal,
Freie Universität Berlin, Germany. http://www.wiwiss.fu-
berlin.de/suhl/bizer/toolkits/.

[BH98] R. Braden and D. Hoffman, "RAPI-An RSVP Application Programming
Interface version 5", Internet Draft, August 11, 1998.

[BPSK04] T. Broens, S. Pokraev, M. van Sinderen, J. Koolwaaij, and P. Dockhorn
Costa, "Context-aware, ontology-based service discovery", in 2nd European
Symposium on Ambient Intelligence (EUSAI'04). Eindhoven, the
Netherlands: Springer Lecture Notes 3295, 2004.

[CEA] Consumer Electronics Association. http://www.ce.org/

[DeMi] Ontology Editor Survey 2004. Michael Denny.
http://www.xml.com/2004/07/14/examples/Ontology_Editor_Survey_2004_Ta
ble_-_Michael_Denny.pdf

[DLNA] Digital Living Network Alliance. http://www.dlna.org

[GKRST] Google Directory – Reference > Knowledge Management > Knowledge
Representation > Ontologies > Software and
Tools.http://directory.google.com/Top/Reference/Knowledge_Management/K
nowledge_Representation/Ontologies/Software_and_Tools/

[HAVi] Home Audio / Video Interoperability. http://www.havi.org/

[ISMA] Internet Streaming Media Alliance. http://www.isma.tv/

[JRGL05] Michael C. Jaeger, Gregor Rojec-Goldmann, Christoph Liebetruth, Gero
Mühl and Kurt Geihs: Ranked Matching for Service Descriptions Using OWL-
S. KiVS 2005: 91-102. http://user.cs.tu-berlin.de/~michi/resources/kivs05-
jaegeretal-owlsmatchmaker.pdf

[KIF] Knowledge Interchange Format: Draft proposed American National Standard
(dpans). Technical Report 2/98-004, ANS, 1998.
Also at http://logic.stanford.edu/kif/dpans.html.

[PASS03] Massimo Paolucci, Anupriya Ankolekar, Naveen Srinivasan and Katia
Sycara. The DAML-S Virtual Machine. In Proceedings of the Second
International Semantic Web Conference (ISWC), 2003, Sandial Island, Fl,
USA, October 2003, pp. 290-305.

[PDDL] M. Ghallab et al. PDDL-The Planning Domain Definition Language V. 2.
Technical Report, report CVC TR-98-003/DCS TR-1165, Yale Center for

September 2005 Consortium Confidential

Amigo IST-2004-004182 128/128

Computational Vision and Control, 1998.

[PKPS02] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara.
Semantic Matching of Web Services Capabilities. In Proceedings of the 1st
International Semantic Web Conference (ISWC 02), 2002.

[PoKW03] S. Pokraev, J. Koolwaaij, M. Wibbels, Extending UDDI with Context-aware
Features based on Semantic Service Descriptions, in: Proceedings of the 1st
International Conference on Web Services (ICWS’03), Las Vegas (USA),
June 2003

[RaIs05] P.-G. Raverdy, V. Issarny, Context-aware Service Discovery in
Heterogeneous networks, in: World of Wireless Mobile and Multimedia
Networks 2005 (WoWMoM 2005), Toarmina (Greece), June 2005

[Saun04] Steven Saunders. Home Network Quality of Service. http://www.itu.int/ITU-
T/worksem/hnhs/conclusions/S6_SS_conclusion.ppt

[SWRL] SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
Version 0.5 of 19 November 2003. Ian Horrocks, Department of Computer
Science, University of Manchester. Peter F. Patel-Schneider, Bell Labs
Research, Lucent Technologies. Harold Boley, National Research Council of
Canada. Said Tabet, Macgregor, Inc. Benjamin Grosof, Sloan School of
Management, MIT. Mike Dean, BBN Technologies.
http://www.daml.org/2003/11/swrl/

[UPnPAV] UPnP AV Architecture 0.83.
http://upnp.org/standardizeddcps/documents/UPnPAvArchtiecture0.83.pdf

[UPnPCD] ContentDirectory:1 Service Template Version 1.01.
http://www.upnp.org/standardizeddcps/documents/ContentDirectory1.0.pdf

[UPnPF] UPnP Forum. http://www.upnp.org

[UPnPQoS] UPnP QoS Standards. http://upnp.org/standardizeddcps/qualityofservice.asp

