

IST Amigo Project
Deliverable D3.3

Amigo Middleware Core
Enhanced: Prototype

Implementation &
Documentation

IST-2004-004182

Public

October 2006 Public

Amigo IST-2004-004182 1/118

Project Number : IST-004182

Project Title : Amigo

Deliverable Type : Report + Prototype

Deliverable Number : D3.3

Title of Deliverable : Amigo Middleware Core Enhanced: Prototype
Implementation & Documentation

Nature of Deliverable : Public

Internal Document Number : amigo-d3.3-final

Contractual Delivery Date : 31 august 2006

Actual Delivery Date : 11 October 2006

Contributing WPs : WP3

Editor : INRIA: Nikolaos Georgantas
Author(s) : INRIA: Sonia Ben Mokhtar, Yérom-David Bromberg,

Nikolaos Georgantas, Noha Ibrahim, Valérie Issarny,
Wilfried Jouve, Frédéric Le Mouël, Laurent Réveillère,
Daniele Sacchetti, Ferda Tartanoglu

 FT: Anne Gérodolle, Mathieu Vallée

 ICCS-NTUA: Miltiades Anagnostou, Ioannis
Papaioannou, Ioanna Roussaki, Dimitris Tsesmetzis

 IKER: Jorge Parra

 IMS: Edwin Naroska
 Microsoft: Ron Mevissen, Stephan Tobies

 TELIN: Remco Poortinga, Pravin Prawar, Andrew
Tokmakoff

 TID: Jordi García, José María Miranda, Marc
Planagumà, Álvaro Ramos, David Roldán

 VTT: Jarmo Kalaoja, Julia Kantorovitch, Ilkka
Niskanen, Toni Piirainen

Abstract
D3.3 is the second deliverable on the prototype implementation and associated documentation
of most Amigo middleware components, while it also reports on ongoing conceptual and
design work for other Amigo middleware components. D3.3 comprises: (i) the present
document; (ii) developed source code of components; (iii) developed service description
vocabulary and language ontologies; (iv) user's guide and developer's guide documents for
components and ontologies; and (v) Javadoc-style and OWLDoc electronic documentation for
components and ontologies. Delivered material besides the present document can be
accessed – for the moment, in a restricted way – on the Amigo OSS Repository - Public Web

October 2006 Public

Amigo IST-2004-004182 2/118

site (http://amigo.gforge.inria.fr/home/index.html). D3.3 addresses: the Amigo programming
and deployment framework; service description vocabulary and language; comprehensive
service description, discovery, composition, adaptation & execution; interoperable service
discovery & interaction middleware; domotic infrastructure; security & privacy; content
distribution; data store; accounting & billing; and in-home location management.

Keyword list
ambient intelligence, networked home system, interoperability, mobile/personal
computing/consumer electronics/domotic domain, semantic concept, ontology, service
description vocabulary, service description language, semantic reasoning, service matching,
service composition, service adaptation, service execution, middleware, service discovery
protocol, service interaction protocol, programming and deployment framework, context,
quality of service, multimedia streaming, content distribution, security, privacy, data storage,
accounting & billing, location management

October 2006 Public

Amigo IST-2004-004182 3/118

Table of Contents

Table of Contents ...3

Figures ..6

Tables ..8

1 Introduction...9

2 Programming and deployment framework.....................................11
2.1 Objectives... 11
2.2 Vocabulary.. 11
2.3 Expected results .. 12
2.4 Amigo .Net programming framework... 14
2.5 Amigo OSGi programming framework .. 16

2.5.1 Context ... 16
2.5.2 Description of work ... 17
2.5.3 Components aimed to ease the development of distributed services 17
2.5.4 Changes since Deliverable 3.2 ... 18
2.5.5 Getting started with the OSGi framework ... 19

2.5.5.1 Writing an Amigo service .. 19
2.5.5.2 Discovering and using a service... 21
2.5.5.3 Deploying the HelloImpl and HelloUser components... 22

2.5.6 List of Amigo OSGi bundles.. 23
2.5.6.1 log4j Bundle (Library Bundle) ... 24
2.5.6.2 Amigo Core OSGi Bundle... 26
2.5.6.3 Amigo kSOAP Binding Factory Bundle .. 27
2.5.6.4 Amigo kSOAP Export Factory Bundle.. 29
2.5.6.5 Axis Export Factory Bundle .. 30
2.5.6.6 Axis Binding Factory Bundle... 32
2.5.6.7 SLP Bundle ... 33
2.5.6.8 UPnP bundle... 34
2.5.6.9 WS-Discovery Bundle... 36
2.5.6.10 Amigo Service Binder ... 37
2.5.6.11 Semantic Adaptation Bundles .. 38

2.6 Amigo OSGi deployment framework ... 40
2.6.1.1 Dynamic Service Deployment service.. 41

3 Service description vocabulary ontologies....................................43
3.1 Introduction .. 43
3.2 Management of vocabularies during development .. 43
3.3 Tool support for vocabulary users... 44
3.4 Changes to vocabularies from previous iteration .. 44

3.4.1 Changes supporting visualization of vocabularies.. 44

October 2006 Public

Amigo IST-2004-004182 4/118

3.4.2 Multimedia content vocabularies .. 45
3.4.3 Structural Changes to Context and QoS ontologies ... 47
3.4.4 Non-structural Changes to Context and QoS ontologies.................................... 48

3.5 Examples .. 49

4 Service description – Service discovery, composition, adaptation
& execution ...55

4.1 Introduction .. 55
4.2 High-level architecture of SD-SDCAE .. 55
4.3 Service registration and discovery .. 58

4.3.1 Efficient semantic service matching.. 59
4.3.2 Service profile hierarchy-based matching... 66
4.3.3 Context-aware service selection... 69
4.3.4 QoS-aware service selection .. 71

4.4 Service composition.. 78
4.4.1 Conversation matching and integration .. 79
4.4.2 Rule & strategy-based reasoning and integration... 82
4.4.3 A domain specific language for event-driven service composition 85

5 Interoperable service discovery & interaction middleware88

6 Domotic infrastructure ...90
6.1 Overview ... 90
6.2 Domotic Service Model ... 91
6.3 BDF Driver (Low-Level Driver).. 92
6.4 UPnP Device Builder (High-Level Driver) .. 94
6.5 WS Device Builder (High-Level Driver) .. 95

7 Security & privacy ..98
7.1 Security Framework... 98
7.2 Security Service ... 99

8 Content distribution ...102
8.1 Introduction .. 102
8.2 Content Distribution Interface .. 102
8.3 Content Adaptation Server ... 104
8.4 Content Discovery ... 105

9 Data store ..108

10 Accounting & billing ...110

11 In-home location management service.....................................112

October 2006 Public

Amigo IST-2004-004182 5/118

12 Conclusion...115

Appendix A ...116

References ..118

October 2006 Public

Amigo IST-2004-004182 6/118

Figures

Figure 2-1: The Amigo Bundle Repository contains a set of bundles that can be

deployed on a platform (OSGi or .Net). Some bundles provide a Java or C# API
that other bundles deployed on the same platform can use. Note: This figure is
only illustrative and does not indicate the Amigo bundle repository's final state. . 12

Figure 2-2: An Amigo Network with 4 physical nodes and 6 Amigo software nodes with
different configurations. The security proxies discover the security server using
WS-discovery and interact with it using SOAP. .. 13

Figure 2-3: Dynamic Service Deployment service in the Amigo Middleware 41
Figure 3-1: The management of vocabularies ... 43
Figure 3-2: Vocabulary visualization tool.. 44
Figure 3-3: A screen capture of the Amigo vocabulary visualization tool 45
Figure 3-4: MultimediaContent Ontology.. 46
Figure 3-5: The Mapping ontology ... 46
Figure 3-6: Architecture for translation to Amigo MultimediaContent Ontology concepts

... 47
Figure 3-7: The updated User and PersonalDetails classes of the Context Vocabulary

Ontology .. 48
Figure 3-8: The subclasses of the Preferences class of the Context Vocabulary

Ontology .. 49
Figure 4-1: Service discovery, composition & adaptation - Functional architecture 56
Figure 4-2: Application/service description & coding ... 56
Figure 4-3: Service discovery protocol ... 57
Figure 4-4: Service execution – Functional architecture.. 58
Figure 4-5 Describing and matching capabilities of services 60
Figure 4-6: Example of encoding a class hierarchy ... 62
Figure 4-7: Example of inserting a capability in a DAG.. 65
Figure 4-8: Example of matching a user’s requested capability 66
Figure 4-9: The part of the service capability hierarchy related to the Multimedia

Application support.. 68
Figure 4-10: The Service Selection sequence diagram for indoor services 73
Figure 4-11: The selection process for outdoor services ... 74
Figure 4-12: The Service Selection process state diagram for outdoor services 76
Figure 4-13: The Service Selection sequence diagram for outdoor services 77
Figure 4-14: Conversation integration .. 80
Figure 4-15: ECA paradigm applied to ESRR.. 83

October 2006 Public

Amigo IST-2004-004182 7/118

Figure 4-16: Strategy pattern applied to ESRR.. 83
Figure 4-17: Composite pattern applied to ESRR.. 84
Figure 4-18: Conceptual structure of ESRR... 84
Figure 4-19: A script example... 87
Figure 6-1: The Amigo domotic architecture .. 90
Figure 8-1: Content Distribution in the Amigo home .. 102
Figure 8-2: Content Discovery browsing and referencing hierarchy.......................... 106
Figure 11-1: Location Management Service high-level architecture.......................... 112

October 2006 Public

Amigo IST-2004-004182 8/118

Tables

Table 2-1: Sub-components of the OSGi framework ... 24

October 2006 Public

Amigo IST-2004-004182 9/118

1 Introduction

The present Deliverable D3.3 provides the second official prototype implementation of the
Amigo Base Middleware (or simply middleware), after the first prototype implementation
delivered by Deliverable D3.2 [Amigo-D3.2].

By title, D3.3 concerns the enhanced prototype implementation and documentation of the
Amigo middleware core; nevertheless, as in Deliverable D3.2, we deliver and document herein
implementation of both middleware core functionalities and upper middleware functionalities.
Further, we report on middleware functionalities for which conceptual and design work is still
being carried out. Thus, the level of presentation of different middleware functionalities differs
depending on their current stage of progress.

D3.3 covers almost the whole range of the Amigo middleware functionalities, as almost all the
WP3 tasks have been active since the delivery of D3.2 (some WP3 tasks specifically started
immediately after D3.2). More specifically:

− D3.3 reports on Tasks 3.1, 3.2, 3.4-3.8.

− Task 3.3 completed its objectives and was therefore terminated in Month 24. D3.3
provides final overview report on the components produced by this task.

− Task 3.9 is from now on moved to WP4, due to its affinity with WP4 work and, more
particularly, with the context management architecture being elaborated therein. D3.3
provides a – final for WP3 – overview report on the work carried out so far in this task
within WP3.

− Task 3.10 has been recently introduced in the DoW; therefore, D3.3 does not cover this
task.

Applying the same reporting model as D3.2, D3.3:

− Follows the conventional way of reporting, already employed in the previous deliverables,
for ongoing conceptual and design work.

− Follows component-oriented delivering and reporting for implementation work. This, more
specifically, includes:

o As part of the present document, an updated or extended overview with respect to
D3.2 for each component under development.

o On the Amigo OSS Repository - Public Web Site [Amigo-OSS-Pub] (see [Amigo-
D9.5]), updates with respect to D3.2 for each component under development:

 Source code of the current prototype version, if one is already available;

 User's guide and developer's guide documents, if already available;

 Javadoc1 (or equivalent for C#) documentation, if already available.

o On [Amigo-OSS-Pub], updates with respect to D3.2 for the service description
vocabulary and service description language:

 OWL specification of the current version;

 User's guide and developer's guide documents, if already available;

 OWLDoc2 (follows the same principle as Javadoc) documentation, if already
available.

1 http://java.sun.com/j2se/javadoc/

October 2006 Public

Amigo IST-2004-004182 10/118

We note here that, with regard to component/ontology implementation and documentation, our
focus during the last 6 months has been on advancing the implementation of
components/ontologies; we have, thus, released advanced versions for most of them.
Consequently, the online documentation that we provide is mostly still at an early stage and
will take a form closer to complete when the almost final, public versions of
components/ontologies will be available.

The specific Amigo middleware functionalities, components, and ontologies reported in the
chapters of the present document (and, for the latter two, further, when already available,
delivered in source along with online documentation) are:

− Programming and deployment framework. We provide update with respect to D3.2
(Chapter 2).

− Service description vocabulary ontologies. Besides the update with respect to D3.2, we
introduce a tool which allows visualizing the semantic, ontology-based descriptions of
devices that provide services in the home and associating them with visual representations
in their actual locations in the Amigo home (Chapter 3). Thus, this tool supports graphical
editing and simulation of home contexts. A first version of the tool has already been
developed.

− Service description – Service discovery, composition, adaptation & execution (SD-
SDCAE). Based on our previous work on the Amigo-S service description language and
performance evaluation of a number of aspects of service discovery, we introduce a
comprehensive approach to SD-SDCAE, as all its constituents are very much interrelated
(Chapter 4). We further elaborate on two specific constituents of SD-SDCAE, namely,
service discovery and service composition.

− Interoperable service discovery & interaction middleware. We provide a final overview
report of this set of completed components (Chapter 5).

− Domotic infrastructure. We provide a final overview report of this set of completed
components (Chapter 6).

− Security and privacy. We provide update with respect to D3.2 (Chapter 7).

− Content distribution. We provide update with respect to D3.2, further introducing the
Content Discovery component, which is in charge of discovering new media servers
connected to the network and subscribing to their events for possible changes of their
contents (Chapter 8).

− Data store. We provide update with respect to D3.2 (Chapter 9).

− Accounting & billing. We provide an overview of a component supporting accounting &
billing for concerned applications in the Amigo home (Chapter 10).

− In-home location management service. We provide a – final for WP3 – overview report of
this set of components – from now on moved under the responsibility of WP4. This service
provides responses to various queries of location-adaptive applications by aggregating
inputs from multiple location-determination technologies and services in order to quickly
locate devices or users (Chapter 11).

Finally, we conclude with a short discussion on the principal points and progress of the present
deliverable (Chapter 12).

2 http://www.co-ode.org/downloads/owldoc/co-ode-index.php

October 2006 Public

Amigo IST-2004-004182 11/118

2 Programming and deployment framework

2.1 Objectives
This chapter proposes a component model that allows clear separation of development and
deployment issues. As shown in Section 2.3, the expected result is an “Amigo bundle
repository” where components will be available for downloading and installation.

We propose general principles for using a platform like OSGi or .Net, and provide guidelines to
developers of functional blocks so that their work can be packed into components that can be
further (at deployment time) composed in an arbitrary manner with other components.

The use of this framework is not mandatory, and developers may also package Amigo-aware
services as independent applications that are to be deployed on a given system or hardware
(as they see fit). Both kinds of components will be able to interact within the same Amigo
environment through service discovery protocols (SDPs), communication protocols and (when
necessary) interoperability methods.

This chapter is organized as follows: Firstly, we define some vocabulary that we use in the rest
of the chapter (Section 2.2), and indicate the expected results of this effort (Section 2.3). We
then present the .Net Amigo programming environment (Section 2.4), and, finally, present the
OSGi Amigo programming (Section 2.5) and deployment environment (Section 2.6). For both
of these environments, this document itemizes a list of components that are either already
available or under development. A complete set of component documentation (including a
user’s guide, a developer’s guide, and tutorials) is available separately as online
documentation referenced at [Amigo-OSS-Pub].

2.2 Vocabulary
Terms like services, interfaces, and components are strongly overloaded in computer science,
and – for example – .Net and OSGi use different words to refer to similar concepts, or even
the same word to refer to the same concept. In this document, we generally adopt the
vocabulary used in OSGi specifications.

In the following:

A software node runs on a physical node. It may be a .Net platform, an OSGi platform or any
process.

More specifically, a platform is a software node where software components can be deployed.

A functional block is identified as such in the abstract Amigo architecture: For example,
Context Management is a functional block; Security is a functional block, etc.

A software component is some part of a functional block that can run on a software node. It
communicates with other components of the same functional block using some protocol stack.

A bundle is a software component that can be deployed on an OSGi platform. In this section,
the word bundle is also used to refer to deployable .Net components.

An interface defines a set of operations or methods. This word may refer to a programming
language-related abstraction (a Java or C# interface can be implemented by a Java or C#
class) or to the interface of a remote service, described in an interface description language
(IDL). For example, the interface of a Web service is described in WSDL.

A service is an artifact provided by a component that offers an interface. It may be:

• A local service: accessible from inside the same software node, in the form of an object
implementing a given interface (C# or Java).

October 2006 Public

Amigo IST-2004-004182 12/118

• A remote service: accessible from a remote client using a communication protocol
through a “service API” (SAPI).

2.3 Expected results
The expected result of this effort is a repository of bundles, which is called the “Amigo Bundle
Repository”. Two versions of the repository will be provided, one for .Net bundles, the other for
OSGi bundles. Services packed as applications could also be made available on a repository.
These repositories will be accessible through HTTP. They will provide for each functional block
the list of available bundles; and for each bundle, the documentation of the bundle, the source
code of the bundle, and the deployable bundle itself.

The current version of the Amigo OSGi repository is publicly accessible at
http://amigo.gforge.inria.fr/obr/v2 (also referenced at [Amigo-OSS-Pub]). Contents of this
repository come either from WP3 (see description below) or WP4 (context management-
related bundles).

C# C# C#
C#

Security
Server

Security
Proxy

Security
Proxy

Accounting
& Billing

Proxy

Data
Store
Proxy

User
Profiling

Proxy

.Net repository

Context
Proxy

C#

Context
Proxy

C#

Amigo
Appli 1

Amigo
Appli 3

Java Java Java Java

Accounting
& Billing

Server

User
Profiling

Server

Java

Security
Proxy

Context
Proxy

Accounting
& Billing

Proxy

Data
Store
Proxy

User
Profiling

Proxy

OSGi repository

Context
Manager

Java

soap export
factory

Amigo
Appli 2

Figure 2-1: The Amigo Bundle Repository contains a set of bundles that can be deployed on a
platform (OSGi or .Net). Some bundles provide a Java or C# API that other bundles deployed
on the same platform can use. Note: This figure is only illustrative and does not indicate the

Amigo bundle repository's final state.

Each functional block may provide one or more bundles that correspond to different parts of
the functional block. We can distinguish between three main types of bundles: “server
bundles” (e.g., the security server bundle), “proxy bundles” (e.g., the security proxy bundle),
and “local bundles” (e.g., the soap export factory).

• Server bundles will be deployed on only one or a few nodes of a network; they will be
in general developed for only one of the targeted platforms. Access to services

October 2006 Public

Amigo IST-2004-004182 13/118

provided by the server bundles is done through a remote interaction protocol. The word
“server” here does not refer to a “client-server” model but simply to the fact that a
remote service is offered.

• Proxy bundles should be available for both programming frameworks. They will allow
reusability of code among developers of components using a given functional block.
Proxy bundles do not provide remote services; but rather a local API that gives access
to the distributed functional block by means: either of simple “stubs” (local
representatives of remote services working in a client/server model), or of "smart
proxies" that offer a simplified view of a distributed system by possibly handling
complex interaction. Proxy interfaces allow developers to use a functional block without
knowing (at development time) the distributed architecture of the block. In some cases,
several implementations of a proxy may be available, and the choice of which
implementation to use could be made at deployment time. This is particularly useful
when using a complex functional block, where the functionalities offered are clearly
identified but the distribution of these functionalities over the network will depend on
the network configuration and the capabilities of the nodes.

• Local bundles are not linked to any functional block. They provide services such as
logging, protocol adapters, etc.

Figure 2-1 shows how the Amigo bundle repository could look like: if we take the example of
the security functional block, on the .Net repository a “server bundle” and a “proxy bundle” may
be available, whereas on the OSGi repository only a “proxy bundle” is available. The security
proxies offer a simple API to interact with the security functional block. They hide the details of
discovering the security server, managing the security protocol, possibly reconnecting to a
new security server in case that the current security server becomes unavailable, etc.

Pocket PC

BAPAO Node

Data
Store

Security
Server

Security
Proxy

Security
Proxy

Amigo
Appli 1

.Net platform 1

WS-Discovery / WS

Security
Proxy

Security
Proxy

Amigo
Appli 2

OSGi platform

User
Profiling

Server

soap export
factory

Context
Manager

Security
Proxy

Security
Proxy

Amigo
Appli 3

.Net platform

C#

User
Profiling

Proxy

Linux PDA

Security
Proxy

Security
Proxy

Amigo
Appli 4

.OSGi platform

Accounting
& Billing

Proxy

Other platform

Standalone
Amigo

Program

Standalone
Amigo

Appli

Figure 2-2: An Amigo Network with 4 physical nodes and 6 Amigo software nodes with
different configurations. The security proxies discover the security server using WS-discovery
and interact with it using SOAP.

Figure 2-2 shows an example of use of the Amigo Bundle Repository shown in Figure 2-1: all
server bundles are deployed on a PC (called BAPAO, for “Base Amigo Peripheral that is
Always On”), together with some proxy bundles. The security proxy is also deployed on the
OSGi platform, for local use by the user profile server proxy. Applications deployed on a
Pocket PC or Linux PDA also access the security manager thanks to the locally deployed

October 2006 Public

Amigo IST-2004-004182 14/118

security proxy. The standalone Amigo applications may also use the security manager, but
they have to manage the complete interaction protocol.

2.4 Amigo .Net programming framework

Provider
Microsoft

Introduction
The .Net (and OSGi) programming frameworks are considered an essential part for an Amigo
System since they will be used by nearly all application/component developers as a base.

The goal of the .Net programming framework is to support these developers by enabling them
to write their application or component software in a short timeframe by relieving them of time
consuming and complex tasks. In this way, developers can concentrate on their core business
logic and are not distracted/bothered by complex technologies like remote communication or
discovery protocol details.

This programming framework provides developers with a platform on top of the .Net platform
that abstracts communication and discovery details from their software. It is almost as if the
developer does not need to be concerned about these issues; he/she writes his/her software
and in the end incorporates it seamlessly into the programming framework to benefit from its
functionalities.

This programming framework will be further extended with common functionalities like logging,
configuration, versioning, remote management and software replication mechanisms that are
related to deployment. Remote interfaces like those used for configuration and management
will be aligned between the programming framework on .Net and the OSGi-based
programming framework.

Development status
An initial version was released in M18. Another updated and redesigned version was released
in M24 (that includes the compact framework version). The final version will be released in
M30.

Intended audience
The programming framework is intended for component as well as for application developers.

License
See EMIC license (Annex A).

Language
C#

October 2006 Public

Amigo IST-2004-004182 15/118

Environment (set-up) info needed if you want to run this sw (service)
This component is an SDK and, as such, part of a developer’s environment (e.g., IDE). The
source software can be compiled with any version of Visual Studio 2005. The library can be
used from any development environment with a .Net or .NetCF 2.0 language (e.g., Visual
Basic, Visual J++ etc.)

Platform
Microsoft .Net 2.0 / Microsoft .NetCF 2.0

Tools
Generic .Net tools

Visual Studio 2005

Files
See [Amigo-OSS-Pub]

Documents

Developer’s guide: See [Amigo-OSS-Pub]

User’s guide: See [Amigo-OSS-Pub]

Tasks

Final release in M30.

October 2006 Public

Amigo IST-2004-004182 16/118

Bugs
Fixed in the latest (M24) version:

Internal # Description

380 A MessageTransceiver is created in the constructor of DiscoverableService. If
this fails (no network interface available -> sockets can not be bound), an
exception is thrown which is caught in the constructor of DiscoverableService.
This however leads to a partially created class (e.g., MetaData is not created).

This behavior (no network->messagetransceiver cannot be instantiated) is
transparent to the user, but he/she suddenly has to deal with a partially intitialized
class.

Constructors should not throw exceptions. It would be better to move this
functionality to an Initialize() method returning true or false.

381 DiscoverableService was derived from MarshalByRefObject. This should be
removed since there is no reason why a DiscoverableService should cross
AppDomains.

383 The option setting (drop membership) could throw an exception if the network is
not available at that time.

Dispose methods should NOT throw any exceptions.

387 AppSequence is never deserialized due the IsEmptyElement() test.

An AppSequence is ALWAYS empty since it only contains attributes (and the
XmlReader considers an element with only attributes (but no content) still an
empty element).

410 Add a copy constructor to ServiceInfo so that users can create copies of this
object.

411 Add constructor for DiscoverableService with Types, Scopes, Location and
Endpointrefence, and remove the delegate mechanism.

Patches

Not yet available

2.5 Amigo OSGi programming framework

2.5.1 Context
An OSGi platform allows deployable elements, called "bundles", to be remotely installed from
any URL, e.g., from HTTP servers. A bundle is a jar file containing Java code, a special
manifest describing the bundle's capabilities, and possibly other resources. When started, a
bundle can provide "services". In OSGi terminology, a service may be any Java object. OSGi
platforms provide a service registry which allows:

- Registering an object as a (local) service, which means associating this object with a
list of properties described in an LDAP syntax, among which is the provided Java
interface(s).

- Look up services matching target criteria.

October 2006 Public

Amigo IST-2004-004182 17/118

Additionally, the OSGi framework takes care of the life-cycle of services, and automatically
suppresses the references of services registered by a bundle when this bundle is stopped. As
any Java object can be registered as an OSGi service, Amigo APIs developed in Java can
easily be provided as OSGi services and packed in OSGi bundles.

Many useful OSGi bundles are already available on the Web. Here, we briefly introduce some
open source bundles that the Amigo OSGi programming and deployment framework uses:

• The Oscar Bundle Repository3 bundle allows accessing a set of OSGi bundles on a
repository accessible through HTTP. When installing a new bundle, the OBR bundle
will take care of dependencies and install (if necessary) bundles that provide packages
needed by this bundle.

• The Service binder4 provides an XML language to declare services offered and
required by a Java component. Service binder is now standardized in OSGi R45 as
“declarative services”.

• Oscar6 provides an implementation of the standard OSGi HTTP service, which allows
servlet deployment on an OSGi platform. This will be the base to provide Amigo
services as Web services.

• The domoware7 UPnP base driver implements the UPnP base driver specification
standard defined by OSGi.

• Knopflerfish8 has packed the Axis9 servlet into a bundle. When the Axis bundle is
running, objects registered with the OSGi lookup with the property
“SOAP.service.name” set are automatically made available as Web services.

2.5.2 Description of work
The Amigo OSGi programming framework includes standard or legacy OSGi bundles, as
those described above. The work related to OSGi in Task 3.4 will consist of:

• Maintaining the Amigo OSGi Bundle Repository – help partners to pack Java
components in the form of an OSGi bundle and make them available on the repository.

• Provide additional bundles to ease the development of distributed services. This is
described in the following sections. Section 2.5.3 introduces the main principles;
Section 2.5.5 gives an example of code using this environment; and Section 2.5.6
details the subcomponents that are already available or are planned.

• Provide enhanced tools that ease the deployment of Amigo bundles according to
semantic criteria. This is described in Section 2.6.

2.5.3 Components aimed to ease the development of distributed services
We further rely on the fundamental concepts of "export factories" and "binding factories". An
"export factory" is a service that makes a Java object remotely available. For this purpose, an

3 http://oscar-osgi.sourceforge.net/
4 http://gravity.sourceforge.net/servicebinder/
5“OSGi Service Platform, Release 4 CORE” , http://www.osgi.org/osgi_technology/
6 http://oscar.objectweb.org/
7 http://domoware.isti.cnr.it/
8 http://www.knopflerfish.org/
9 http://ws.apache.org/axis/

October 2006 Public

Amigo IST-2004-004182 18/118

export factory provides a method (called "export"). The result of "Exporting a service" is an
"Amigo reference" that can be serialized and published using a discovery protocol. This
"Amigo reference" contains all useful information to allow a client to access the service, such
as the host name and port number where the service can be found, the communication
protocols that can be used, etc. Exporting a service may or not involve the construction of
some dedicated objects on the server. Symmetrically, a "binding factory" is used on the client
to access a given service, given an "Amigo reference". A binding factory provides a method
that takes an Amigo service description as parameter and returns a "stub". This stub can then
be used by the client to communicate with the remote object. Export factories, binding
factories and SDP implementations are packaged in OSGi bundles as follows:

- The Amigo core bundle provides Java interfaces representing the export factory,
binding factory, and lookup abstractions; together with basic mechanisms which allow
clients to export an object by using (in a transparent way) the currently deployed export
factory, or to build a stub to connect to a remote service.

- Specialized bundles (e.g., the kSOAP export bundle, the SLP bundle) provide
implementations of these interfaces based on a specific protocol and a specific
technology.

Programmers of Amigo-aware bundles that use this framework only need to know the
interfaces defined in the Amigo core bundle. The choice of the underlying protocol that an
Amigo-aware bundle uses is done at deployment time and depends on the specialized
bundles that are deployed together with this Amigo-aware bundle.

A subset of these bundles will be installed on every OSGi node, depending on which type of
application bundles the node will host, and the capacities of the hardware platform. It may be
desirable to limit the memory footprint on embedded devices. Furthermore, a specific protocol
may be preferred depending on the network configuration: in some circumstances, the HTTP
protocol may be preferred because of firewall problems, whereas, for communication between
Java nodes, JRMP (Java Remote Method Protocol) may be preferred for performance
reasons. Therefore, an OSGi platform running on a PDA and hosting only client applications
could host only binding bundles, and be limited to a single binding technology (e.g., kSOAP),
whereas a platform running on a PC and hosting a variety of server and client applications
would host several export and binding factories, so as to maximize interoperability with other
nodes.

The proposed approach facilitates the introduction of new protocols, as this involves only
writing the corresponding export and binding factories, and packing those as OSGi bundles
that register the factories as services. These bundles can then be installed on already existing
OSGi nodes, and provide the possibility for already installed applications to export their
services or access services using this new protocol. This method makes it possible to expose
a service through several protocols, keeping the overhead for the service programmer as
lightweight as possible. Exposing the same service according to various protocols reduces the
need for translation services and increases communication efficiency. A "client" can access a
service running on a remote OSGi platform, provided there is a binding factory running on the
client's OSGi platform that is compatible with one of the export factories used on the server's
OSGi platform. However, in the case of incompatible binding/export factories (e.g., an
embedded server that would provide only a SOAP export service and an embedded client that
would contain only a RMI binding service), interoperability methods developed inside Amigo
Task 3.3 will be used. Note that interoperability methods may themselves be packed as
bundles and deployed on an OSGi platform.

2.5.4 Changes since Deliverable 3.2
In the first version of the OSGi framework, the discovery was made using SLP (Service
Location Protocol). At present time, the choice has been made to support WS technologies:

October 2006 Public

Amigo IST-2004-004182 19/118

the WS-Discovery protocol for service publication/lookup, the HTTP/SOAP protocols for
synchronous communication, and the WS-Eventing protocol for asynchronous communication.

Subsequently, priority was given to the integration of WS-Discovery and WS-Eventing
protocols, with focus on interoperability with the .Net Amigo framework. No Java
implementation of WS-Discovery being at this time available, it was developed from scratch
within Amigo. Concerning WS-Eventing, although the use of this protocol was not foreseen in
the previous working plan, we decided to support it in order to facilitate the development and
interoperability of Amigo applications. The open source Apache/Jakarta “pubscribe” project
supports WS-Eventing. However, we estimated the effort needed for integrating this
implementation in our environment higher than that of developing the minimal subset useful for
Amigo needs.

Resources initially dedicated to other developments were put on the previously mentioned
points. This explains why some bundles that were planned for Month 24 or before are not yet
available or not fully functional. The UPnP Amigo bundle (initially planned for Month 24) will be
delivered in Month 26. In addition, some unexpected problems were encountered when trying
to integrate the Axis libraries into our environment. A first version of the Amigo Axis bundles
was delivered in Month 22 (initially planned for Month 20), but several problems with it remain.

Finally, the kSOAP bundle mentioned in the previous deliverable has been suppressed. The
corresponding libraries are now embedded in the amigo_ksoap_binding bundle.

2.5.5 Getting started with the OSGi framework
Apart from the Java documentation, the most useful documents for people interesting in using
this framework are three small tutorials aimed to help the developer getting started with the
OSGi framework. Each of them is associated with a sample Java project that can be
downloaded and used as a basis for new bundle development.

− http://amigo.gforge.inria.fr/obr/tutorial/tutorial_v1.htm. The first part of this document is not
specifically aimed at developers. It helps downloading and installing an OSGi platform (in
this case Oscar), and deploying and running Amigo bundles on this platform so as to
launch a client or server application. The second part shows how to develop a new bundle
using the Amigo core interface and working with “generic stubs”.

− http://amigo.gforge.inria.fr/obr/tutorial/tutorial_v2.htm. This tutorial helps the developer
using new features related to Java code generation.

− http://amigo.gforge.inria.fr/obr/tutorial/tutorial_wsevent.htm. This tutorial helps the
developer in writing a distributed application with an event source and an event subscriber.

The following code excerpts illustrate the API offered to the programmer for publication/
discovering of services and synchronous communication.

2.5.5.1 Writing an Amigo service
We suppose here that a developer writes a Java class (HelloImpl) that implements some Java
interface (Hello). This developer wishes to make the object available on the network as a
service, using the default Amigo communication and discovery protocols.

October 2006 Public

Amigo IST-2004-004182 20/118

Hereafter is the code of this component:
1 Public class HelloImpl implements Hello{
2 //implement the Hello interface
3 Public String sayHello(String argument){
4 …..
5 }
6 // define fields that reference the middleware Amigo components
7 AmigoLdapLookup lookup;
8 ServiceExporter serviceExporter;
9 // define methods that set these fields
10 public void setLookup(AmigoLdapLookup lookup){
11 this.lookup=lookup;
12 }
13 public void unsetLookup(AmigoLdapLookup lookup){
14 if (lookup==this.lookup) lookup=null;
15 }
16 public void setServiceExporter(ServiceExporter serviceExporter){
17 this.serviceExporter=serviceExporter;
18 }
19 public void unsetServiceExporter(ServiceExporter serviceExporter){
20 if (serviceExporter==this.serviceExporter) serviceExporter=null;
21 }
22
23 public void activate(){
24 // 1- create an instance of “AmigoService” that describes this object
25 AmigoService service = serviceExporter.createService(this);
26 // 2- create an “exported reference” so that this object is accessible through

the default remote protocol (e.g. SOAP)
27 service.exportMethods(AmigoReference.DEFAULT, Hello.class);
28 // 3- advertise this reference as a “Hello” service with some additional

property called nodeName
29 service.addProperty(“serviceType”,”Hello”);
30 String nodeName = System.getProperty(“nodeLocation”);
31 service.addProperty(“nodeLocation”,nodeName);
32 lookup.register(service);
33 }
34 }

In this example, the HelloImpl class uses the service binder to find instances implementing the
ServiceExporter and AmigoLdapLookup interface. To that purpose, the developer has defined
2 fields (lines 7 and 8) and written methods that set this field (lines 10 to 21). He/she defines
some metadata (shown below) that describe the dependencies of HelloImpl (it needs a
ServiceExporter and Lookup instance to work properly), and then packs this class into an
OSGi bundle together with a service binder activator.

October 2006 Public

Amigo IST-2004-004182 21/118

This metadata describes that the component needs an instance of AmigoLdapLookup and at
least one instance of ServiceExporter.

When deployed, the service binder will create an instance of HelloImpl and create an instance
manager for this component. This instance manager is in charge of calling the setLookup and
setServiceExporter method when the lookup and service exporter will be available. Once both
dependencies are resolved, the activate method is called. The service is exported (lines 25-
27), i.e., a reference allowing to access this object remotely, e.g. a HTTP URL, is created; and
then registered with SDP with two properties, serviceType and nodeLocation (lines 29-32).
Line 27 indicates that all methods defined by the Hello interface (i.e., sayHello) must be made
remotely accessible.

2.5.5.2 Discovering and using a service
The developer now wants to write a service that needs to access an instance of Hello service.
For that purpose, he/she writes a HelloUser class.

<?xml version="1.0" encoding="UTF-8"?>
<bundle>
 <component class="com.francetelecom.amigo.hello.HelloImpl">
 <requires service="com.francetelecom.amigo.core.AmigoLdapLookup"
 filter=""
 cardinality="1"
 policy="dynamic"
 bind-method="setLookup"
 unbind-method="unsetLookup"
 />
 <requires service="com.francetelecom.amigo.core.ServiceExporter"
 filter=""
 cardinality="1..n"
 policy="dynamic"
 bind-method="setServiceExporter"
 unbind-method="unsetServiceExporter"
 />
 </component>
</bundle>

October 2006 Public

Amigo IST-2004-004182 22/118

The HelloUser class also relies on the service binder to discover the instance of the lookup
middleware component. Hereafter is the metadata of this component:

When activated, the client looks for all services that have been published with a serviceType
named Hello (line 14-15). It iterates on all found elements (line 17). For each of them, it tries to
build a stub implementing the Hello interface (line 23). Then it calls the “sayHello” method of
this stub (line 24), which in turn results in calling the corresponding “sayHello” method of the
remote server.

2.5.5.3 Deploying the HelloImpl and HelloUser components
The HelloImpl and HelloUser components may be deployed on any node of the network that
runs an OSGi platform. When activated, HelloUser will discover all instances of HelloImpl and
call the sayHello method. The only conditions are that: HelloImpl is deployed together with (at

1 Public class HelloUser {
2 // defines a field that references the Amigo Lookup
3 AmigoLdapLookup lookup;
4 // define methods that set these fields
5 public void setLookup(AmigoLdapLookup lookup){
6 this.lookup=lookup;
7 }
8 public void unsetLookup(AmigoLdapLookup lookup){
9 if (lookup==this.lookup) lookup=null;
10 }
11
12 public void activate(){
13 // 1- find which “Hello” services are available on the network
14 String scope = “serviceType=Hello”;
15 AmigoService[] services = lookup.lookup(request);
16 // 2- invoke all Hello services
17 for (int i=0;i<services.length;i++){
18 // print out the location of the service
19 System.out.println(“found a hello service running at location”+
20 Services[i].getProperty(“nodeLocation”);
21 try{
22 // get a stub
23 Stub stub=services[i].getSpecificStub(Hello.class);
24 String result = stub.sayHello(“World”);
25 System.out.println(“this service answers “+result);
26 }catch(AmigoException ex){
27 System.err.println(“impossible to create a stub for
Reference “+services(i).getReference());
28 }
29)
30 }
31}

<?xml version="1.0" encoding="UTF-8"?>
<bundle>
 <component class="com.francetelecom.amigo.hello.HelloUser">
 <requires service="com.francetelecom.amigo.core.AmigoLdapLookup"
 filter=""
 cardinality="1"
 policy="dynamic"
 bind-method="setLookup"
 unbind-method="unsetLookup"
 />
 </component>
</bundle>

October 2006 Public

Amigo IST-2004-004182 23/118

least) a bundle providing an ExportFactory service and a bundle providing an
AmigoLdapLookup service; and HelloUser is deployed together with (at least) a bundle
providing an AmigoLdapLookup service and a bundle providing a BindingFactory service able
to handle the references created by the export factory used by HelloImpl.

2.5.6 List of Amigo OSGi bundles
As stated before, the OSGi-based programming & deployment framework is composed of a
series of OSGi bundles. A subset of these bundles or all these bundles may be installed on
each OSGi platform of an Amigo system. The set of bundles installed on an OSGi platform
determines the Amigo profile of this platform.

The OSGi bundles presented herein may belong to different categories:

• Encapsulation of OSS libraries developed in another open source project. Then, the
license terms should be the same as those of the original project.

• Original Amigo bundles. The license chosen by France Telecom for these bundles is
LGPL. These bundles include an Amigo core bundle (which provides interfaces and
basic mechanisms) and specialized bundles that provide adaptation to different
protocols.

These bundles are available on the Amigo OSGi bundle repository, which contains: (i) binary
bundles ready for deployment on an OSGi platform, (ii) documentation associated to these
bundles, and (iii) source code corresponding to the binary release. The source code is also
available on the Amigo source code management repository [Amigo-OSS-SCM].

The current Amigo OSGi bundle repository is available at http://amigo.gforge.inria.fr/obr/v2
(also referenced at [Amigo-OSS-Pub]).

October 2006 Public

Amigo IST-2004-004182 24/118

Table 2-1 lists the sub-components of the OSGi framework and their dependencies.

Component Type Depends on License Availability Changes

log4j Ext. library Apache Month 20

Amigo core Amigo Log4j LGPL Month 20

Amigo kSOAP
binding factory

Amigo Amigo core LGPL Month 20 see below

Amigo kSOAP
export factory

Amigo kSOAP binding
factory, Amigo
core, OSGi HTTP
service

LGPL Month 20 see below

Amigo Axis
export factory

Amigo Amigo core, Axis,
OSGi HTTP
service

LGPL Month 22 see below

Amigo Axis
binding factory

Amigo Amigo core, Axis, LGPL Month 22 see below

Amigo SLP
adapter

Amigo Log4j, Amigo core LGPL Month 20 see below

Amigo UPnP
adapter

Amigo Log4j, Amigo core,
OSGi UPnP base
driver

LGPL Month 26 initially
planned
Month 24

Amigo
WS-discovery
adapter

Amigo Log4j, Amigo core,
kSOAP

LGPL Month 21 initially
planned
Month 24

Amigo
Service Binder

Amigo Log4j, Amigo core LGPL Month 27

Amigo Semantic
adaptation
bundles

Amigo Log4j, Amigo core LGPL Month 30

Table 2-1: Sub-components of the OSGi framework

2.5.6.1 log4j Bundle (Library Bundle)

Provider
Library provided by Apache / OSGi encapsulation by France Telecom

Introduction
This bundle encapsulates the log4j library, an open flexible logging system for Java
applications. log4j is developed within the Apache project (http://logging.apache.org/log4j).

October 2006 Public

Amigo IST-2004-004182 25/118

Development status
Done: encapsulation of log4j 1.2.13

First release done in Month 18 for Amigo partners

Public release done in Month 20

Intended audience
This is general purpose software for any Java developer.

License
Apache license

Language
Java

Environment (set-up) info needed if you want to run this sw (service)
Hardware / OS: Any OS supporting Java personal profile or J2SE

Platform
Java (personal profile or J2SE), OSGi

Tools
None

Files

• log4j.jar contains the log4j bundle

• test-log4j.jar contains a bundle that uses the log4j bundle

Documents

For general documentation see http://logging.apache.org. The OSGi bundle is provided with
an example of use.

Tasks

None

Bugs

None so far

October 2006 Public

Amigo IST-2004-004182 26/118

Patches

None so far

2.5.6.2 Amigo Core OSGi Bundle

Provider
France Telecom

Introduction
This bundle provides the Java interfaces and core classes that form the Amigo programming
framework core: interfaces ExportFactory, BindingFactory, AmigoLdapLookup, etc.

Remark: This bundle provides basic mechanisms for communication and service discovery,
but is not linked with any protocol. It should be deployed together with implementing bundles
related to communication protocols (binding factories and/or export factories) or service
discovery protocols.

Development status
First version was made available in Month 18 for Amigo partners.

This initial version has been augmented (public release in Month 20) in order to define
abstractions that describe asynchronous eventing mechanisms on one hand, dynamic stub
generation on the other hand.

Intended audience

• Java developers that want to expose Java objects as remote services or event sources;

• Java developers that want to access to remote services or subscribe to events;

• Java developers that want to write an adapter for a given technology.

License
LGPL

Language
Java

Environment (set-up) info needed if you want to run this sw (service)
Hardware / OS: Any OS supporting Java personal profile or J2SE

Platform
Java (personal profile or J2SE), OSGi

October 2006 Public

Amigo IST-2004-004182 27/118

Tools
None

Files
The bundle appears on the bundle repository under a “bundle name” indicated in brackets.

• amigo_core.jar: bundle that provides the core interfaces and classes (bundle name
amigo_core);

• hello_server.jar: test bundle that exports a simple Hello service (bundle name
amigo_test_hello_server);

• hello_client.jar: test bundle that uses a Hello service using a well-known endpoint (bundle
name amigo_test_hello_client);

• hello_lookup_client: test bundle that discovers the available Hello services and uses the
first discovered (bundle name amigo_test_hello_lookup_client);

• test_pictureframe_server.jar: test bundle that provides a “picture frame” (bundle name
amigo_test_pictureFrame_server) as an Amigo service.

• test_pictureFrame_client.jar: test bundle for the Amigo test picture frame server: this
displays a graphical interface to choose an image from available images on the client’s file
system to be displayed by the “picture frame” server (bundle name
amigo_test_pictureFrame_client).

Documents

Java documentation, tutorial, developer’s and user’s guides are available on
http://amigo.gforge.inria.fr/obr/ (also referenced at [Amigo-OSS-Pub]).

Tasks
None

Bugs

None so far

Patches
None so far

2.5.6.3 Amigo kSOAP Binding Factory Bundle

Provider
France Telecom

Introduction
This bundle allows building a stub to a remote object accessible through the SOAP protocol. It
provides a local OSGi service that implements the BindingFactory interface.

October 2006 Public

Amigo IST-2004-004182 28/118

It also takes into account the client API for WS-Eventing, allowing a client to subscribe from an
event source or unsubscribe and asynchronously receive events.

Development status
Initial release was made available in Month 18 for Amigo partners.

Several changes have been made (public release in Month 20) since the initial release:

− This bundle now encapsulates the kSOAP2 and kxml2 libraries, which allow writing XML-
or SOAP-related applications for any Java target (Midp, personal profile, J2SE). kSOAP2
is developed within the kObject project (http://kobject.sourceforge.net); kXLM2 is
developed within the kXML project (http://kxml.sourceforge.net/). In the initial OSGi
framework release, these two libraries were provided in a separate bundle.

− “Complex” arguments or return types are now taken into account, up to a certain extent:
“Valid objects” are either primitive types, hash tables containing primitive types or objects
containing fields which are “valid objects”. Objects are passed by values. No reference
cycle is authorized.

− Tools for stub generation and WSDL parsing are available for the programmer.

− This bundle now implements the WS-Eventing protocol, in a way compatible with the .Net
framework implementation.

Intended audience
Network administrators who want to use HTTP/SOAP and WS-eventing as the base
communication protocols should deploy this bundle on every OSGi platform that will access
remote services or provide a remote service using the Amigo core API.

This bundle is not used at development time.

License
LGPL

Language
Java

Environment (set-up) info needed if you want to run this sw (service)
Hardware / OS: Any OS supporting Java personal profile or J2SE

Software: log4j bundle

Platform
Java (personal profile or J2SE), OSGi

Tools
The sample project related to the Amigo V2 tutorial includes two utilitary tools:

October 2006 Public

Amigo IST-2004-004182 29/118

− Java2Stub: parses a Java interface and generates additional files useful both on server
and client side.

− WSDL2Java: a variant of the WSDL2Java tool from Axis, which can be used to generate
Java interfaces from an existing WSDL description.

Files
amigo_ksoap_binding.jar

Documents

Java documentation

Tasks
None

Bugs

None so far

Patches

None so far

2.5.6.4 Amigo kSOAP Export Factory Bundle

Provider
France Telecom

Introduction
This bundle allows making a Java object available through the SOAP protocol. It provides a
local OSGi service that implements the ExportFactory interface. The choice of the kSOAP
library allows this bundle to be deployed on constrained devices.

Development status
Initial release was made available in Month 18 for Amigo partners.

Public release was made available in Month 20.

Intended audience
Network administrators who want to use HTTP/SOAP as the base communication protocol
should deploy this bundle on every OSGi platform that will provide remote services using the
Amigo core API.

This bundle is not used at development time.

October 2006 Public

Amigo IST-2004-004182 30/118

License
LGPL

Language
Java

Environment (set-up) info needed if you want to run this sw (service)
Hardware / OS: Any OS supporting Java personal profile or J2SE

Software: kSOAP binding factory bundle, log4j bundle, HTTP service, servlet

Platform
Java (personal profile or J2SE), OSGi

Tools
ant

Files
amigo_ksoap_export.jar

Documents

Java documentation

Tasks
None

Bugs

None

Patches

None

2.5.6.5 Axis Export Factory Bundle

Provider
France Telecom

October 2006 Public

Amigo IST-2004-004182 31/118

Introduction
This bundle allows making a Java object available as a Web service. It provides a local OSGi
service that implements the ExportFactory interface.

Development status
It was released in Month 22. As some interoperability problems have been detected, it is
recommended to use the kSOAP implementation instead.

Intended audience
Network administrators who want to use HTTP/SOAP as the base communication protocol
and provide WSDL service descriptions may deploy this bundle on every OSGi platform that
will publish Java object as Web services using the Amigo core API.

This bundle is not used at development time.

License
LGPL

Language
Java

Environment (set-up) info needed if you want to run this sw (service)
Hardware / OS: Any OS supporting Java J2SE

Software: HTTP service, servlet, axis bundle provided by Knopflerfish

Platform
Java (J2SE), OSGi

Tools
None

Files
amigo_axis_binding.jar

Documents

Java documentation

Tasks
None

October 2006 Public

Amigo IST-2004-004182 32/118

Bugs

None so far

Patches

None so far

2.5.6.6 Axis Binding Factory Bundle

Provider
France Telecom

Introduction
This bundle allows accessing a Web service. It provides a local OSGi service that implements
the BindingFactory interface.

Development status
First version was released in Month 22. There are still misbehaviors, and some interoperability
problems have been detected. The Knopflerfish project is no more maintaining the Axis
bundle. It is recommended to use the ksoap bundles instead.

Intended audience
Network administrators who want to use SOAP/WSDL as the base protocol for
communication/service description may deploy this bundle on every OSGi platform that will
access to Web services using the Amigo core API.

This bundle is not used at development time.

License
LGPL

Language
Java

Environment (set-up) info needed if you want to run this sw (service)
Hardware / OS: Any OS supporting Java J2SE

Software: axis bundle provided by Knopflerfish

Platform
Java (J2SE), OSGi

October 2006 Public

Amigo IST-2004-004182 33/118

Tools
None

Files
amigo_axis_export.jar

Documents

Java documentation

Tasks
None

Bugs

None so far

Patches

None so far

2.5.6.7 SLP Bundle

Provider
France Telecom

Introduction
This bundle provides an implementation of AmigoLdapLookup based on SLP (Service
Location Protocol).

Development status
Initial version (Month 20) based on mesh SLP (Columbia University) under test. Original library
can be found at http://mslp.sourceforge.net/ .

No improvements of this bundle have been made, since Amigo partners have agreed to use
WS-Discovery as the reference protocol for discovery.

Intended audience
Network administrators who want to use SLP as the base protocol for service discovery in
Amigo may deploy this bundle on every OSGi platform that will access to SLP using the Amigo
core API.

This bundle is not used at development time.

October 2006 Public

Amigo IST-2004-004182 34/118

License
LGPL

Language
Java

Environment (set-up) info needed if you want to run this sw (service)
Hardware / OS: Any OS supporting Java J2SE or personal profile

Platform
Java (personal profile or J2SE), OSGi

Tools
None

Files
amigo_meshslp.jar

Documents

Java documentation

Tasks
None

Bugs

Misbehaviors are observed when a large number of platforms using this bundle are running on
the same network (in particular on WiFi).

This bundle is no longer maintained, as the WS-Discovery protocol will be used within Amigo.

Patches
None so far

2.5.6.8 UPnP bundle

Provider
France Telecom

October 2006 Public

Amigo IST-2004-004182 35/118

Introduction
This bundle will provide an implementation of AmigoLdapLookup based on UPnP.

Development status
First release was initially foreseen for Month 24.

Release has been delayed to Month 26: we need to decide about the mapping of UPnP
models on Amigo Service abstractions.

People willing to use UPnP for communication with legacy devices / control points should
preferably use implementations of the OSGi UPnP base driver specification, which provides a
complete mapping of the UPnP model on OSGi.

Intended audience
Network administrators who want to use UPnP as the base protocol for service discovery may
deploy this bundle on every OSGi platform that will access UPnP using the Amigo core API.

This bundle is not used at development time.

License
LGPL

Language
Java

Environment (set-up) info needed if you want to run this sw (service)
Hardware / OS: Any OS supporting Java J2SE or personal profile

Software: any implementation of OSGi UPnP base driver

Platform
Java (personal profile or J2SE), OSGi

Tools
None

Files
Not yet available

Documents
Not yet available

October 2006 Public

Amigo IST-2004-004182 36/118

Tasks
None

Bugs

None so far

Patches
None so far

2.5.6.9 WS-Discovery Bundle

Provider
France Telecom

Introduction
This bundle provides an implementation of AmigoLdapLookup based on WS-Discovery.

Development status
First release made available in Month 21 for Amigo partners

Intended audience
Network administrators who want to use WS-Discovery as the base protocol for service
discovery may deploy this bundle on every OSGi platform that will access to WS-Discovery
using the Amigo core API.

This bundle is not used at development time.

License
LGPL

Language
Java

Environment (set-up) info needed if you want to run this sw (service)
Hardware / OS: Any OS supporting Java J2SE or personal profile

Software : not yet known

October 2006 Public

Amigo IST-2004-004182 37/118

Platform
Java (personal profile or J2SE), OSGi

Tools
None

Files
Not yet available

Documents
Not yet available

Tasks
None

Bugs

Under correction: bugs related to the use of distinguished names in service types

Patches
4 versions have been delivered since the initial release 1.0.0, which handled only probe and
probe match messages. The current 1.0.4 version takes into account resolve/resolvematch
messages and discovery proxy, contains some bug corrections, and allows clients to use
distinguished names in service types.

2.5.6.10 Amigo Service Binder

Provider
France Telecom

Introduction
The OSGi “declarative services” (formerly, service binder) allows to automatically manage the
dependencies between services on the same OSGi platform, by defining a declarative
language to describe dependencies and by providing a bundle that instantiates service objects
and manages dependencies using the OSGi discovery service. The Amigo Service binder will
extend this abstraction to distributed services discovered through a Service Discovery
Protocol.

Development status
First release in Month 27 for Amigo partners

October 2006 Public

Amigo IST-2004-004182 38/118

Intended audience
Developers who provide services that depend on other services.

License
LGPL

Language
Java

Environment (set-up) info needed if you want to run this sw (service)
Hardware / OS: Any OS supporting Java J2SE or personal profile

Software: not yet known

Platform
Java (personal profile or J2SE), OSGi

Tools
None

Files
Not yet available

Documents
Not yet available

Tasks
First release in Month 27

Bugs

None so far

Patches
None so far

2.5.6.11 Semantic Adaptation Bundles

Provider
France Telecom

October 2006 Public

Amigo IST-2004-004182 39/118

Introduction
These bundles will provide mechanisms for adaptation between a client requiring a service
and a server providing a service “close enough” to that required by the client. They will provide
the following functionality:

• Dynamic translation of component interfaces based on service matching description

These bundles will ease the use of enhanced service discovery for OSGi programmers. They
will highly depend on the Service description - Service discovery, composition, adaptation &
execution comprehensive approach introduced in Chapter 4.

Development status
Semantic adaptation bundles will be available in Month 30. At present time, a bundle called
“Amigo_stubgen” has been developed as a first preliminary step. This bundle is able to
dynamically generate a stub class that implements a given Java interface, assuming a direct
mapping between this interface and the provided service. The stub bytecode is generated on
the fly using the bcel library10.

Intended audience
Application service developers that seek to dynamically discover and use heterogeneous
services available in the environment.

License
LGPL

Language
Java

Environment (set-up) info needed if you want to run this sw (service)
Hardware / OS: Any OS supporting Java

These bundles will relate to the Service description - Service discovery, composition,
adaptation & execution approach.

Platform
Java (version still to be determined), OSGi

Tools
None

10 http://jakarta.apache.org/bcel/

October 2006 Public

Amigo IST-2004-004182 40/118

Files
Not yet available

Documents
Not yet available

2.6 Amigo OSGi deployment framework
The goal of the Amigo OSGi Deployment Framework is to provide a Dynamic Service
Deployment functionality that takes into account the semantic description of services and the
semantic description of the deployment itself to apply a semantically and timely local
deployment strategy.

Usually, the deployment of services is decided statically after the development of the
application. Before running an application, its components are deployed in an unchanging
way. The innovation of our approach is that it provides dynamic deployment that goes along
with the dynamic nature of the environment and semantic deployment that takes into account
the nature of devices/platforms and the nature of the context present at a time being.

The semantic deployment functionality is provided by the Dynamic Service Deployment
service (see

Figure 2-3). Our service interacts with other high-level services of the middleware that come
from the Service description - Service discovery, composition, adaptation & execution

comprehensive approach introduced in Chapter 4 (e.g., Enhanced Service Discovery, Service
Matching Tool). These high-level services rely on more classic services, the Discovery Service

and the Interoperability Service for the discovery and the protocol transformation.
Communication interfaces of these services are defined by a service API (SAPI) family, which

is a set of possible interfaces such as Amigo interfaces or legacy interfaces (UPnP, etc.).

The internal architecture of the Dynamic Service Deployment service is as follows:

• Service Container: the Service Container stores current services executing on the current
platform. This container can be filled locally by the current platform or remotely by other
Dynamic Service Deployment services.

• Deployment Strategy: the Deployment Strategy is in charge of deciding the deployment
target, i.e., a software node on a remote host, and also the duration of the deployment.

October 2006 Public

Amigo IST-2004-004182 41/118

Figure 2-3: Dynamic Service Deployment service in the Amigo Middleware

2.6.1.1 Dynamic Service Deployment service

Provider
INRIA

Introduction
The Dynamic Service Deployment service will offer two functionalities. First, uploading a
service using its reference or a semantic description from a specific URL or from an
environment description. Second, downloading a service into a context using its reference or
semantic description.

Development status
Not yet available. Development started in 2006.

Intended audience
The deployment framework is intended for component as well as for application developers.

Licence
LGPL

October 2006 Public

Amigo IST-2004-004182 42/118

Language
Java

Environment (set-up) info needed if you want to run this sw (service)
Hardware / OS: Any OS supporting Java personal profile or J2SE

Platform
Java (personal profile or J2SE), OSGi

Tools
None

Files
amigo_dynamicservicedeployment.jar

Documents
Java documentation

Component-specific documentation not yet available

Tasks
Semantic deployment bundles will be available in M30.

Bugs
None so far

Patches
None so far

October 2006 Public

Amigo IST-2004-004182 43/118

3 Service description vocabulary ontologies

3.1 Introduction
The objective of this chapter is to provide the latest updates on the work performed in the
scope of Task 3.1 on vocabulary ontologies modelling. The chapter is structured as follows.
First, the overview of the management of vocabularies from the developer’s and also the
user’s point of view is given (Section 3.2). Then, the ontology visualization tool supporting the
service developer’s work is introduced (Section 3.3). Next, the main modifications to
vocabulary ontologies in the iteration of the present deliverable are presented (Section 3.4).
Finally, some examples of using the developed ontologies are provided (Section 3.5).

3.2 Management of vocabularies during development
Figure 3-1 shows how the management of vocabularies during development has been
organized. The GForge repository [Amigo-OSS-SCM] provides a version management
operation that supports collaboration and sharing of development work between partners. The
latest release of vocabularies is provided on the public Web site that will be accessible by the
vocabulary developers, vocabulary users and Amigo applications [Amigo-OSS-Pub]. During
the modelling, the vocabularies can be imported directly from the vocabulary Web site. If
needed, it is also possible to use a local version of a specific vocabulary for testing.

Figure 3-1: The management of vocabularies

October 2006 Public

Amigo IST-2004-004182 44/118

3.3 Tool support for vocabulary users
Ontologies can be very complex, and looking at an OWL ontology in XML for the first time can
be overwhelming. The gap from beginner to intermediate OWL ontology reader is
cumbersome. There are a good number of tools available for ontology development and
visualisation, but these require at least a basic understanding of semantic models to begin
with. Even for a person with a background on the semantic models and development tools it is
often difficult to grasp the overall picture of all vocabularies related to the Amigo home.

This gap could be shortened by visualizing the semantic descriptions of devices providing
services and by associating those with visual representations in their actual locations in the
Amigo home. The idea of the proposed tool is presented in Figure 3-2.

Amigo Core Concepts

QoS.owlMultimedia .owl

ConsumerElectronics .owl Mobile.owl

Amigo.owl

Capabilities .owl

Domotics.owl

Amigo Core Domain Vocabularies

Generic Ontologies

<<Import>> <<Import>>

PC.owl

Domain Vocabularies

<<Import>>

Devices.owl Context.owl

FIPA Amigo-S

Semantic Model of
Amigo Home

Uses

Is associated with
Visualization of Amigo Home

Vocabulary ontologies
for service modelling

Amigo Core Concepts

QoS.owlMultimedia .owl

ConsumerElectronics .owl Mobile.owl

Amigo.owl

Capabilities .owl

Domotics.owl

Amigo Core Domain Vocabularies

Generic Ontologies

<<Import>> <<Import>>

PC.owl

Domain Vocabularies

<<Import>>

Devices.owl Context.owl

FIPA Amigo-S

Semantic Model of
Amigo Home

Uses

Is associated with
Visualization of Amigo Home

Vocabulary ontologies
for service modelling

Figure 3-2: Vocabulary visualization tool

This kind of tool can potentially make the vocabulary ontologies more interesting, concrete,
and easier to comprehend. Changes in context can be seen in a more illustrative manner than
observing changes in raw OWL files. Application developers can see this operation as in real
life and notice practical errors better without expensive laboratory’s tests.

The tool should also offer some querying possibilities over the semantic models, and enable
the users or service developers to define their own simple RDQL or SPARQL queries via a
convenient graphical user interface.

A proof of concept prototype of the tool has been implemented with Java Swing for graphical
UI and Jena OWL API for managing and accessing the ontologies (Figure 3-3).

3.4 Changes to vocabularies from previous iteration
This chapter describes the changes/modifications performed on vocabularies that support
semantic description of Amigo services issued for the present document with respect to the
ones released in the previous Deliverable D3.2 [Amigo-D3.2].

3.4.1 Changes supporting visualization of vocabularies
The visualization tool considers only individuals of the VisualComponent class ignoring all data
that is irrelevant or impossible to visualize. VisualComponent class has two subclasses: Item
and Area.

October 2006 Public

Amigo IST-2004-004182 45/118

These concepts used by the visualization tool can be linked, for example, to the Context
ontology concepts by subclassing Context:Object and Context:Person from the Item class, and
Context:Area from the Area Class. Using this approach, the visualization is independent of any
changes to Amigo vocabulary ontologies, and provides the developer with some control on
what kind of things should be visualized.

Figure 3-3: A screen capture of the Amigo vocabulary visualization tool

3.4.2 Multimedia content vocabularies
The Multimedia content vocabulary has been upgraded by the introduction of several
properties (see Figure 3-4). For example, the hasResource property has been introduced,
relating individuals of the MultimediaContent class (representing the abstract concept of
content) to individuals from the MultimediaResource class (representing binary files).
Furthermore, data type properties that relate individuals from MultimediaContent to different
kinds of information semantically modeling properties of content such as Title, Date, etc. have
been included in the model, thus providing a basic description of Content that may, due to
intrinsic extensibility of ontologies, be further completed and refined providing new properties
with specialized ranges. Several properties define low-level features of resources such as
hasBitRate or hasFormat that are essential for the Amigo Content Adaptation subcomponent
of the Amigo middleware (see Section 8.3).

October 2006 Public

Amigo IST-2004-004182 46/118

Figure 3-4: MultimediaContent Ontology

The MultimediaContent ontology enables semantic description of transcoding services,
providing the basic vocabulary for describing IOPEs. The Amigo Content Adaptation
subcomponent of the middleware uses semantic descriptions of transcoding plug-ins, in order
to provide for a given initial resource with given features a wider range of possible output
resources, through composition, than by considering plug-ins separately. In this component,
the semantic description of plug-ins is based on OWL-S and SWRL, and uses Multimedia
Content ontologies to model IOPEs and auxiliary XML Schema data types. An example of a
possible plug-in that can transform an audio resource with AAC format into one with MP3
format with no restrictions in other properties is given in Section 3.5.

Furthermore, a mapping ontology has been produced (see Figure 3-5), in order to provide an
extensible framework for translating – with some restrictions explained below and semi-
transparently – common properties of content expressed in any XML-based language into a
consistent MultimediaContent individual (see Figure 3-6). This enables translation to be a
transparent process, although some preprocessing of the source XML-based description is
required: the original document must be transformed into a key-value map.

Figure 3-5: The Mapping ontology

The immediate restriction derived from the key-value map is that one single element defining a
given feature of content is translated. Therefore, multiple elements defining different values for
the same feature are not considered. One exception to this is resources, which are processed
separately in order to support multiple resources for the same content. Another restriction is
the data type of the values: this must be processed by the translation engine and, therefore,
an agreement between translation engine and preprocessor must be achieved. A reference
implementation can be found in the Content Description Interoperability module included in the

October 2006 Public

Amigo IST-2004-004182 47/118

Content Adaptation subcomponent: this implementation uses: strings as base types for
communication with the preprocessor; and some enumerated derived types for some content
or resource features (e.g., MIME-type string for “format” concept), which must be explicitly
included in the ontology mapping when referring to ontology instances, rather than data type
values.

Concepts available for mapping are instances of the Mapping class, and have several
properties that enable translation and several ones that optimize it. For example,
amigoConceptUri is a data-type property specifying the concept in the Amigo
MultimediaContent ontology. This URI may represent a Class or a Property. The conceptUri
relates this concept with other concepts in the form of URIs. These URIs should be chosen so
that minimum preprocessing of the original XML document is required (i.e., some variation of
fully qualified element names), since this should be used as keys in the maps passed to the
translation engine. The hasContentDomain property enables pre-selection of mappings, once
the translation engine is able to determine the type of the content (i.e., Audio, Image, Video,
etc.) related to this metadata. The two other properties with Mapping as domain describe how
the value taken by this concept should be inserted in the resulting instance of the Amigo
MultimediaContent ontology:

• The property hasValueProperty defines the property of the new instance of the class
defined by amigoConceptUri that relates it to the value it takes.

• The property hasValueInstanceMapping relates this concept mapping to an instance of
the ValueInstanceMapping: this class represents mappings of certain enumerated
possible values of a concept to an instance in the MultimediaContent ontology. This is
the case of formats: formats are represented as instances.

Translation to
Ontology
Concepts

Mapping
Ontology

Content
Metadata

XML Document

Preprocessing units

Language
Dependent

Preprocessor
Language
Dependent

Preprocessor
Language
Dependent

Preprocessor

Content
Metadata
Key-Value

Map
MultimediaContent

Individual
Resource
Metadata
Key-Value
Tables

Resource
Metadata
Key-Value
Tables

Resource
Metadata
Key-Value

Map

Figure 3-6: Architecture for translation to Amigo MultimediaContent Ontology concepts

3.4.3 Structural Changes to Context and QoS ontologies
The changes related to Context and QoS Ontologies refer to the fact that the Language
ontology has been interrelated with the Vocabulary ontology, while in the previous version the
former was independent and unaware of the latter.

More specifically, the ContextLanguage ontology includes all the information that is required
for the instantiation of the various different vocabulary subclasses, and now imports the
ContextVocabulary ontology. Thus, a hierarchical structure has been established where the
ContextParameter (of the ContextLanguage ontology) is the super-class of all the
ContextConcept classes (of the ContextVocabulary ontology). These ContextConcept classes
are the root classes of the ContextVocabulary. Thus, the situation is as follows: the

October 2006 Public

Amigo IST-2004-004182 48/118

UserContext class, for example, is defined in the ContextVocabulary and is a subclass of the
ContextConcept, which in turn is a subclass of the ContextParameter that is the root class of
the ContextLanguage ontology. The necessary changes have been performed to both context
ontologies to guarantee the consistency of the implemented approach. As a consequence, the
ContextVocabulary ontology now imports, in addition to the Amigo core ontology, the
ContextLanguage ontology as well, while the ContextLanguage now imports the
ContextVocabulary ontology.

Similar changes have been performed to the QoSVocabulary and QoSLanguage ontologies.

3.4.4 Non-structural Changes to Context and QoS ontologies
In this subsection, the slight modifications applied to some classes of the aforementioned
ontologies are described. With regard to the classes of the User Context Domain Vocabulary
Ontology, some information has been added in the form of new object properties, datatype
properties and subclasses, in order to fulfill the requirements of the UMPS (Task 4.2: User
Modelling and Profiling Service). More specifically, apart from some object properties that
have been added to the User class, several datatype properties have been added to the
PersonalDetails class, such as the eyeColor, the imgPrint, etc. Additionally, several
subclasses of the Preferences class have been added to address the requirements of the
UMPS.

In Figure 3-7, the User and PersonalDetails classes are depicted, as designed by the OntoViz
plug-in of the Protégé ontology editor. Finally, in Figure 3-8, the subclasses of the Preferences
class are illustrated, as designed by OntoViz.

(a) (b)

Figure 3-7: The updated User and PersonalDetails classes of the Context Vocabulary
Ontology

October 2006 Public

Amigo IST-2004-004182 49/118

Figure 3-8: The subclasses of the Preferences class of the Context Vocabulary Ontology

3.5 Examples
As an example of the use of multimedia ontologies, the following is a possible plug-in that is
able to transform an audio resource with AAC format into one with MP3 format with no
restrictions in other properties:

<?xml version="1.0"?>
<!DOCTYPE owl [
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema" >
 <!ENTITY multimedia "http://www.owl-ontologies.com/Amigo/Multimedia.owl" >
]>
<rdf:RDF
 xmlns:process="http://www.daml.org/services/owl-s/1.1/Process.owl#"
 xmlns:list="http://www.daml.org/services/owl-s/1.1/generic/ObjectList.owl#"
 xmlns:swrl="http://www.w3.org/2003/11/swrl#"
 xmlns:time="http://www.isi.edu/~pan/damltime/time-entry.owl#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:expr="http://www.daml.org/services/owl-s/1.1/generic/Expression.owl#"
 xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"
 xmlns:service="http://www.daml.org/services/owl-s/1.1/Service.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:j.0="http://protege.stanford.edu/plugins/owl/protege#"
 xmlns:grounding="http://www.daml.org/services/owl-s/1.1/Grounding.owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:amigomultimedia="http://www.owl-ontologies.com/Amigo/Multimedia.owl#"
 xmlns:amigoserviceregistry="http://www.owl-ontologies.com/Amigo/ServiceRegistry.owl#"
 xmlns="http://www.owl-ontologies.com/Amigo/serviceComp1.owl#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:profile="http://www.daml.org/services/owl-s/1.1/Profile.owl#"
 xml:base="http://www.owl-ontologies.com/Amigo/serviceComp1.owl">

 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://www.daml.org/rules/proposal/swrlb.owl"/>
 <owl:imports rdf:resource="http://www.daml.org/rules/proposal/swrl.owl"/>
 <owl:imports rdf:resource="http://www.owl-ontologies.com/Amigo/Multimedia.owl"/>
 </owl:Ontology>

October 2006 Public

Amigo IST-2004-004182 50/118

 <owl:Class rdf:ID = "AudioResourceAAC">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://www.owl-ontologies.com/Amigo/Multimedia.owl#AudioResource"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="http://www.owl-ontologies.com/Amigo/Multimedia.owl#hasProperty"/>
 <owl:hasValue rdf:resource="http://www.owl-ontologies.com/Amigo/Multimedia.owl#AAC"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>

 <owl:Class rdf:ID = "AudioResourceMP3">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://www.owl-ontologies.com/Amigo/Multimedia.owl#AudioResource"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="http://www.owl-ontologies.com/Amigo/Multimedia.owl#hasProperty"/>
 <owl:hasValue rdf:resource="http://www.owl-ontologies.com/Amigo/Multimedia.owl#MP3"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>

 <service:Service rdf:ID="serviceComp1">
 <service:presents>
 <profile:Profile rdf:ID="AACtoMP3FormatConverterProfile">
 <service:presentedBy rdf:resource="#serviceComp1"/>

 <profile:hasInput>
 <process:Input rdf:ID="AudioResourceInput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
 >http://www.owl-ontologies.com/Amigo/serviceComp1.owl#AudioResourceAAC</process:parameterType>
 </process:Input>
 </profile:hasInput>

 <profile:hasInput>
 <process:Input rdf:ID="TargetAudioFormatInput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
 >http://www.owl-ontologies.com/Amigo/Multimedia.owl#AudioFormat</process:parameterType>
 </process:Input>
 </profile:hasInput>

 <profile:hasOutput>
 <process:Output rdf:ID="AudioResourceOutput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
 >http://www.owl-ontologies.com/Amigo/Multimedia.owl#AudioResource</process:parameterType>
 </process:Output>
 </profile:hasOutput>

 <profile:hasResult>
 <process:Result>
 <process:hasEffect>
 <expr:SWRL-Condition rdf:ID="MP3Effect">
 <expr:expressionBody rdf:parseType="Literal">
 <swrl:AtomList xmlns:swrl="http://www.w3.org/2003/11/swrl#">
 <rdf:first xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <swrl:ClassAtom>

October 2006 Public

Amigo IST-2004-004182 51/118

 <swrl:classPredicate
rdf:resource="#AudioResourceMP3"></swrl:classPredicate>
 <swrl:argument1 rdf:resource="#AudioResourceOutput"></swrl:argument1>
 </swrl:ClassAtom>
 </rdf:first>
 <rdf:rest xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"></rdf:rest>
 </swrl:AtomList>
 </expr:expressionBody>
 <expr:expressionLanguage rdf:resource="http://www.daml.org/services/owl-s/1.1/generic/Expression.owl#SWRL"/>
 </expr:SWRL-Condition>
 </process:hasEffect>
 </process:Result>
 </profile:hasResult>
 </profile:Profile>
 </service:presents>
 </service:Service>
</rdf:RDF>

Three examples for using the Context and QoS ontologies are provided in the following. The
first example concerns the representation of a user, which instantiates the User class of the
ContextVocabulary ontology. This first example is based on the current implementation of the
ontologies and is presented below.

<User>
<identifier>amigo_user783@Amigo</identifier>
<hasPersonalDetails>
 <PersonalDetails>
 <identifier>personal_details#347</identifier>
 </PersonalDetails>
</hasPersonalDetails>
<hasPreferences>

 <speechInterfacePrefs>
 <identifier>speechIFprefs#865</identifier>
 <speechInterfacePrefs>
 <DevicePrefs>
 <identifier>devicePrefs#341</identifier>

</DevicePrefs>
</hasPreferences>
<performsActivity>
 <Activity>

 <identifier>activity#873</identifier>
 </Activity>
</performsActivity>
<usesDevice>
 <Device>

<identifier>FSN560</identifier>
 </Device>
</usesDevice>
<isLocatedIn>
 <Building>

 <identifier>NTUA_Building#112</identifier>
 </Building>
</isLocatedIn>

October 2006 Public

Amigo IST-2004-004182 52/118

</User>

However, following the approach above does not allow us to attach to the object properties of
the ContextConcepts metadata information such as timestamp, probability or accuracy. This
requirement has been identified recently by Task 4.1 (Context Management Service). We are
currently working on producing an enhanced version of the context ontologies that addresses
this requirement. The solution proposed consists in replacing all object properties of the
ContextVocabulary classes (i.e., direct associations between ContextConcepts) by new
ContextParameter subclasses carrying object properties with the classes previously
associated directly. These new ContextParameter subclasses of the ContextLanguage
ontology bind indirectly the existing ContextConcept subclasses of the ContextLanguage
ontology and can be enriched with the necessary metadata information. As the necessary
changes on the context ontologies are not finished yet, they are not mentioned in the previous
subsection. However, we believe that an example of usage of this future version of the
ontologies is valuable at this stage of the project and should thus be included in the present
document. Such an example follows and provides the representation of the same user as
before, but this time based on the future implementation of the context ontologies. In this
example, the UserDevice, UserLocation and UserActivity classes have replaced the object
properties between the User class and the Device, Place and Activity classes respectively.

<User>
<identifier>amigo_user783@Amigo</identifier>
<hasPersonalDetails>
 <PersonalDetails>
 <identifier>personal_details#347</identifier>
 </PersonalDetails>
</hasPersonalDetails>
<hasPreferences>

 <speechInterfacePrefs>
 <identifier>speechIFprefs#865</identifier>
 <speechInterfacePrefs>
 <DevicePrefs>
 <identifier>devicePrefs#341</identifier>

</DevicePrefs>
</hasPreferences>
<performsActivity>
 <UserActivity>

 <identifier>userActivity#543</identifier>
 </UserActivity>
</performsActivity>
<usesDevice>
 <UserDevice>

<identifier>userDevice#901</identifier>
 </UserDevice>
</usesDevice>
<isLocatedIn>
 <UserLocation>

 <identifier>userLocation#161</identifier>
 </UserLocation>
</isLocatedIn>

</User>

<UserDevice>

October 2006 Public

Amigo IST-2004-004182 53/118

 <identifier>userDevice#901</identifier>
<timestamp>01-09-2006T13:39:20CET</timestamp>
<probability>0.87</probability>

 <UD_User>
 <User>

<identifier>amigo_user783@Amigo</identifier>
 </User>

 </UD_User>
 <UD_Device>
 <Device>
 <identifier>FSN560</identifier>
 </Device>
 </UD_Device>
</UserDevice>

<UserActivity>
 <identifier>userActivity#562</identifier>

<timestamp>01-09-2006T13:39:20CET</timestamp>
<probability>0.64</probability>

 <UA_User>
 <User>

<identifier>amigo_user783@Amigo</identifier>
 </User>

 </UA_User>
 <UD_Activity>
 <Activity>
 <identifier>activity#873</identifier>
 </Activity>
 </UD_Activity>
</UserActivity>

<UserLocation>
 <identifier>userLocation#754</identifier>

<timestamp>01-09-2006T13:39:20CET</timestamp>
<probability>0.73</probability>
<Accuracy>5</accuracy>

 <UL_User>
 <User>

<identifier>amigo_user783@Amigo</identifier>
 </User>

 </UL_User>
 <UD_Place>
 <Building>
 <identifier>NTUA_Building#112</identifier>
 </Building>
 </UD_Place>
</UserLocation>

Finally, the third example presented in this section concerns the representation of a service
that has a specific QoS profile; it is instantiated from the Service class and is depicted below:

<Service>
<identifier>Service#895</identifier>
<deployedOn>

October 2006 Public

Amigo IST-2004-004182 54/118

 <Device>
<identifier>FSN560</identifier>

 </Device>
</deployedOn>
<hasFunctionalCapability>

 <FunctionalCapability>ExtendedHomeSupport
</FunctionalCapability>

</hasFunctionalCapability>
 <hasQoSParameter>

 <QoSConcept>
 <MTBF>1000</MTBF>
 </QoSConcept>
 <QoSConcept>
 <ErrorRate>0.005</ErrorRate>
 </QoSConcept>
 <QoSConcept>

<ResponseTime>0.02</ResponseTime>
 </QoSConcept>

<QoSConcept>
<Availabilty>0.95</Availability>

 </QoSConcept>
<QoSConcept>

<Accessibility>0.90</Accessibility>
 </QoSConcept>

<QoSConcept>
<Accuracy>0.99</Accuracy>

 </QoSConcept>
<QoSConcept>

<Security>SSL</Security>
 </QoSConcept>

<QoSConcept>
<Cost>19.95</Cost>

 </QoSConcept>
</hasQoSParameter>

</Service>

October 2006 Public

Amigo IST-2004-004182 55/118

4 Service description – Service discovery,
composition, adaptation & execution

4.1 Introduction
The main objective of this chapter is to introduce a comprehensive approach to service
description, discovery, composition, adaptation and execution in the Amigo environment.
These aspects are very much interrelated and lead us to introduce a unified architecture called
SD-SDCAE (Service Description – Service Discovery, Composition, Adaptation & Execution).
Service description is done using the Amigo-S language [Amigo-D3.2] and the Amigo
vocabulary ontologies (see Chapter 3). Amigo-S enables to semantically describe the
functionalities offered by services, regardless of their underlying deployment and execution
framework. Nevertheless, in our approach to SD-SDCAE, we assume that possible
middleware-layer heterogeneity can be and has been tackled by applying solutions supported
by the Amigo programming & deployment framework (see Chapter 2) or based on the
middleware interoperability mechanisms (see Chapter 5); thus, we design SD-SDCAE on top
of a homogeneous middleware; for practical reasons we employ Web Services, even if our
solution is generic enough to be independent of the underlying service infrastructure. In the
following sections, we first introduce the high-level architecture of SD-SDCAE (Section 4.2).
Then, we elaborate on two specific aspects of SD-SDCAE, namely, service discovery (Section
4.3) and service composition (Section 4.4).

4.2 High-level architecture of SD-SDCAE
User applications use services deployed in the Amigo home. In the static case, we know in
advance which single or multiple services we need to invoke or to compose. We also know the
interfaces and the behavior of these services. These services may be looked up by name and
invoked employing the basic service discovery and service interaction APIs (see Chapter 2).
However, in the dynamic case, we do not know in advance which services to employ nor their
exact interfaces and behaviors. We thus rely on discovery of services based on the semantics
of required functionalities. For this, both our “approximate” request (since we do not know in
advance the services that we will finally employ) and the available provided services should be
semantically described. Then, we should carry out: semantic service discovery; service
composition if no single service satisfies our request but the composite usage of several
services does; and adaptation of our “approximate expectation” to the available service(s). We
finally execute the “adapted expectation” invoking the single or multiple composed services.
Some intermediate (less dynamic) cases may also be identified between the two above
extremes.

The general functional architecture of service discovery, composition and adaptation in the
Amigo system is illustrated in Figure 4-1. Devices in the Amigo environment may undertake
three different roles, which communicate through the common SDCAE interface. The first role
is the “user device”, which executes an application, but needs to access services on remote
devices to obtain certain functionalities. The application should describe semantically the
functionalities that it requires. This description is called ‘abstract’ because it does not refer to
any existing service; moreover, the ‘concretization’ needed for the application to actually
invoke a service offering a semantically adequate functionality can be different from one
service to another. The abstract description should then be refined – based on the discovered
services’ interfaces – to a concrete description, which can be executable within the actual
environment. The second role is the service repository, which stores all deployed services in a
given environment. It offers an interface for registering and un-registering services, and an
interface for searching for services. The third role is the one of the service provider, who is

October 2006 Public

Amigo IST-2004-004182 56/118

responsible for registering its services with the repository. Interactions between the three roles
and their related internal actions are indicated in Figure 4-1 as a sequence of functional steps
(1-9). These steps are briefly discussed in this section, while a subset of them is elaborated in
the rest of the sections of this chapter.

SDCAE on remote deviceSDCAE- service repository

Registered
services

Capability matching

Registration
Service and ontology
codification & classification for
efficient discovery

Discovery

QoS-aware
capability
selection

SDCAE on user device

Service discovery,
composition &

adaptation

Conversation matching
and integration

(possibly QoS/context-
aware)

Service
registration

Functional relation: employs

Service
description

Abstract task
description

Functional relation: produces

Context-aware
capability
selection

Task
adaptation

Concrete
task

Rules & strategy
reasoning and integration

(possibly QoS/context-
aware)

Service profile
hierarchy-based

matching

Complementary/alternative
functional blocks

1

2

3

4

2

5
6

7

8

9

1 Steps of execution of functions9…

Figure 4-1: Service discovery, composition & adaptation - Functional architecture

A user application on a user device comprises a number of parts (see Figure 4-2):

Remote device
Remote device

User device

User application

Client-like
functionalities

Declarative task:
Required remote service functionalities
- Capabilities
- Orchestration
- Context/QoS properties

Remote device

Service

Service
functionalities

Provided service functionalities
- Capabilities
- Conversation
- Context/QoS properties

Local service
functionalities

Script
- Event-driven coordination of remote
service functionalities

Figure 4-2: Application/service description & coding

Task will compose, orchestrate and adapt to remote service functionalities. It employs Amigo-
S to describe a workflow of activities corresponding to the usage of several functionalities that
should be sought on remote available services. Functionalities are described abstractly in
Amigo-S and by using vocabulary ontologies, and should be refined to concrete services
based on the discovered available services that can provide the functionalities.

October 2006 Public

Amigo IST-2004-004182 57/118

Client-like functionalities may do initialization and “glue” all the other parts. It is a hard-
coded part that is inflexible. It initiates semantic discovery, adapts the task to make it
executable, and initiates the execution of the workflow.

Script will compose remote service functionalities in an event-driven way. Events and
associated functionalities that should be executed are described in a scripting language.

Local service functionalities may conveniently be used by either task or script. They
correspond to local computation done for internal processing of data coming from remote
services.

The service discovery protocol is illustrated in Figure 4-3. The service repository is (or seen
as) a centralized entity that is accessed by service providers to register their services and by
service requestors to find deployed services. The registry itself can be found by both service
providers and requestors using a legacy service discovery protocol. Service providers register
their deployed services with the registry by sending the Amigo-S semantic description of the
service (or a URI reference to it) (Steps 1, 2 of Figure 4-1). A user application can then issue
discovery requests to the service repository to find a service based on a semantic description.
The query can be for a single functionality, or for a full task description consisting of several
functionalities described in a workflow (Step 3). In all cases, we consider that the query is an
Amigo-S document, where capabilities are “required capabilities”. The repository will then
match the query to the descriptions of the registered services (Step 4), and return the Amigo-S
documents of one or more discovered fitting services, or URI references to them, which can
then be used to invoke the services directly.

Remote device
Remote device

SDCAE

Service
registration

User device

SDCAE

Selected device

SDCAE

Service
repository

discover

Interaction over SOAP

repository
discovery

Interaction over legacy discovery protocol
(e.g., SLP, UPnP, WS-D)

User application
Remote services

Service discovery

SDCAE user interface

register

SDCAE user interface

repository
discovery

Figure 4-3: Service discovery protocol

If the whole remote functionality required by the abstract task is offered by a single service
from the discovered service set, then the abstract task is adapted to the concrete features of
this service to produce a concrete task. If no single service is sufficient, service composition is
carried out by conversation matching and integration based on the abstract task description

October 2006 Public

Amigo IST-2004-004182 58/118

(Step 7). Again then, the abstract task is adapted to the concrete features of the composed
services to produce a concrete task (Steps 8, 9). Context- and QoS-related properties are
used to refine search results (on the repository) for obtaining services that satisfy the
respective properties of the application (Steps 5, 6).

Once the abstract task description is refined to a concrete task, it can be executed: The
initialization is done by the hard-coded part, which contains calls to an orchestration execution
engine; the latter executes the produced concrete task and orchestrates the composed remote
services and the local service functionalities (see Figure 4-4). We assume further that the
event-driven script part of the user application may be separately executed by a script
execution engine, and possibly compose as well remote and local service functionalities. The
combination of the orchestration-driven and the event-driven parts of the application is an
issue that is still to be investigated.

Remote device
Remote device

User device

User application

Client-like
functionalities

Remote device

Service

Service
functionalities

SDCAE

Orchestration
execution

Functional relation: employs

Concrete
task

Event-driven
script execution

engine

Local service
functionalities

Script

SDCAE user

Figure 4-4: Service execution – Functional architecture

4.3 Service registration and discovery
Discovery of available services that provide a given capability is done by semantic matching
(Step 4 of Figure 4-1) in the service repository between the services’ capabilities that have
been registered (Step 2) and the capabilities that are sought. In the following two sections, we
propose two – partly complementary, partly alternative – approaches to efficient semantic
service matching based on a number of optimizations performed upon the registration of
services in the service repository. Specifically, we discuss capability-based matching (Section
4.3.1) and service profile hierarchy-based matching (Section 4.3.2). In these approaches, the
inputs, outputs and the category of the required capabilities are matched against the ones of
semantically equivalent capabilities offered by deployed services. Combining these
approaches to semantic service matching within SD-SDCAE is still an open issue. Following
the semantic service matching which leads to a discovered service set, this set is refined by
context-aware (Step 5) and QoS-aware (Step 6) service selection. We discuss these issues in

October 2006 Public

Amigo IST-2004-004182 59/118

Sections 4.3.3 and 4.3.4, respectively. We have to note that at the current stage, the context-
aware and QoS-aware service selection are elaborated on the basis of their proper
fundamental usage scenarios; their integration into SD-SDCAE is still an open issue and is
considered as future work.

4.3.1 Efficient semantic service matching
The semantic service discovery protocol should offer performance that makes it appropriate
for use in highly dynamic networked environments populated by resource-constrained,
wireless devices. This is a major challenge due to the poor performance and resource costs of
ontology-based semantic reasoning. This has led us to introduce a solution to lightweight
semantic matching of Web services towards the actual exploitation of semantic Web services
in AmI environments, and more particularly in the Amigo home environment. Our solution
optimizes ontology-based semantic reasoning, which is at the heart of the matching process.
Furthermore, we propose a classification of service advertisements within the service
repository towards efficient access and retrieval of services.

An example of service profiles as enabled by Amigo-S (restricted to service inputs, outputs
and category) is depicted in the upper part of Figure 4-5. Along with service descriptions, the
figure includes in its lower part two ontologies representing the concepts employed in the
service descriptions. The service on the PDA requires a capability named GetVideoStream,
which belongs to the service category VideoServer, takes as input a title of a VideoResource
and provides as output an actual Stream. The service on the workstation provides two
capabilities, SendDigitalStream and ProvideGame, which share common attributes such as
the workstation resources available to them. For the former, service category is DigitalServer,
input is DigitalResource, and output is Stream, while for the latter, service category is
GameServer, input is GameResource and output is Stream. These two capabilities are
dependent, as SendDigitalStream includes ProvideGame, but are separately accessible. Thus,
a peer service (in other words, a client) may access the former and have the option to access
a video resource, a sound resource or a game; or access the latter, asking specifically for a
game. The peer service on the PDA asking for a video resource should access
SendDigitalStream, which also includes GetVideoStream. Making the right choice is supported
by service matching, which is described in the following sections.

Semantic Matching Relation
Based on the Amigo-S service specification, we define a matching relation, i.e., Match(C1, C2),
which allows identifying whether capability C1 subsumes (is equivalent or includes) capability
C2 , i.e., if C1 can substitute C2 in the provisioning of a service capability that is semantically
characterized by C2 (see the example of SendDigitalStream and GetVideoStream in Figure
4-5). The Match relation then constitutes the basis of service discovery, as seeking a capability
characterized by C amounts to discovering any networked service advertising a capability
described by N such that Match(N, C) holds. Additionally, the Match relation may conveniently
be exploited to group similar capabilities of networked services towards efficient service
discovery, as further presented in the next section.

Specifically, the Match relation is defined using the function distance(concept1, concept2),
hereafter denoted by d(concept1, concept2), which gives the semantic distance between two
concepts concept1 and concept2 in the classified11 ontology to which the concepts belong.
Precisely, if concept1 does not subsume concept2 in the ontology to which they belong, the
distance between the two concepts does not have a numeric value, i.e., d(concept1,

11 Ontology classification is the result of semantic reasoning on ontology specifications. It allows inferring
implicit relationships between concepts from the explicit definitions of these concepts.

October 2006 Public

Amigo IST-2004-004182 60/118

concept2)=NULL. Otherwise, i.e., if concept1 subsumes concept2, the distance takes as value
the number of levels that separate concept1 from concept2 in the ontology hierarchy.

Figure 4-5 Describing and matching capabilities of services

Formally, let the provided capability C1 be defined by the set of expected inputs C1.In and set
of offered outputs C1.Out, and the required capability C2 be defined by the set of offered inputs
C2.In and the set of expected outputs C2.Out. Furthermore, let the capability C1 define a set of
provided properties C1.P, and the capability C2 define a set of required properties C2.P, where
these properties describe all the information that can be required in the user request such as
the service category and non-functional properties; currently, we only consider the former
property. The relation Match is then defined as:

From the above, the relation Match(C1, C2) holds if and only if all the expected inputs of C1 are
matched with inputs offered by C2, all the expected outputs of C2 are matched with outputs
offered by C1, and all the required properties of C2 are matched with properties provided by C1.

Furthermore, we define the function SemanticDistance(C1, C2), which gives the semantic
distance between the capability C1 and the capability C2:

October 2006 Public

Amigo IST-2004-004182 61/118

where n1 is the number of inputs expected by C1, n2 is the number of outputs expected by C2,
and n3 is the number of additional properties required by C2. The semantic distance between
capabilities corresponds to the sum of the distances between the pairs of related concepts in
the advertisement and the request. This allows scoring service advertisements with respect to
the requested capability with which they are being compared, and selecting the advertisement
whose description best fits the user’s requirements. An example of matching semantic service
capabilities is shown in the middle part of Figure 4-5. In the figure, the requested capability
GetVideoStream is matched with the provided capability SendDigitalStream, by using the two
underlying ontologies describing digital resources and servers. The relation
Match(SendDigitalStream, GetVideoStream) holds, and the semantic distance between these
capabilities is equal to 3.

Implementation and evaluation of semantic matching of service capabilities using existing
OWL reasoners has been presented in the Amigo Deliverable D3.2 [Amigo-D3.2]. Related
work has also been carried out in [BKGI06]. Results show that matching semantic service
capabilities is a computation-intensive task with high response times compared to classic
syntactic-based service discovery protocols. In particular, the most expensive phase is that of
semantic reasoning. Such poor performance and resource consumption is not acceptable for a
service discovery protocol aimed at AmI environments, where service discovery needs to be
efficient enough to ensure service availability despite the network’s dynamics, and lightweight
enough for use by thin, wireless devices. Thus, in order to enable actual deployment of
semantic Web services in AmI environments, a number of optimizations have to be introduced
in the process of matching semantic service capabilities, particularly targeting acceptable
response times. The next sections introduce such solutions, building upon recent efforts in the
area of efficient semantic service matching.

Achieving lightweight discovery of semantic Web services
Lightweight discovery of semantic Web services requires minimizing the overhead due to
semantic reasoning, possibly performing it off-line so that semantic reasoners do not need to
be used when advertising and seeking networked services; moreover, we attempt to minimize
the overhead due to service matching. Specifically, optimization can be introduced at two
levels. First, at the semantic reasoning level, by reducing the time spent to infer relationships
between concepts in ontologies. Second, at the service discovery level, by classifying services
within the service repository in a way that reduces the number of semantic matches performed
to answer a user request. Related optimizations for both ontology-based semantic reasoning
and classification of service advertisements have been proposed in the literature [CF03,
SPS04].

Using the matching relation defined in the previous section, we propose an efficient semantic
service discovery protocol for AmI environments. Efficiency is addressed in terms of response
time for both the discovery and advertisement of service capabilities. Towards this goal, we
present below a number of optimizations of the semantic matching process. First, in order to
reduce the time to load and classify ontologies, which is the most costly phase in the discovery
process, we propose to encode classified ontologies. Then, in order to reduce the number of
semantic matches performed in the querying phase, we propose to classify capabilities of
networked services into hierarchies.

October 2006 Public

Amigo IST-2004-004182 62/118

Encoding Concept Hierarchies
In order to avoid performing semantic reasoning at runtime, we propose to encode classified
ontologies, represented by hierarchies of concepts, using numeric intervals as described in
[CF03]. These hierarchies represent the subsumption relationships between all the concepts in
the ontologies used in the repository. The main idea of the encoding is that any concept in a
classified ontology is associated with a numeric interval. These intervals can be contained in
other intervals but are never overlapping. The intervals are defined using a linear inverse
exponential function:

where p and k are two parameters to be fixed. Regarding the scalability of this encoding
solution, experiments show that, for p=2 and k=5 and a system encoding real numbers as 64
bit doubles, the maximum number of entries that we can have on the first level of the hierarchy
is 1071 and the maximum number of levels that we can have on the first entries of a level is
462 levels.

Figure 4-6 taken from [CF03] shows an example of encoding a hierarchy of concepts with
intervals.

Figure 4-6: Example of encoding a class hierarchy

Under the assumption that the classified ontologies are encoded, and that service
advertisements and service requests already contain the codes corresponding to the concepts
that they involve, semantic service reasoning reduces to numeric comparison of codes.
Indeed, to infer whether a concept C1 represented by the interval I1 subsumes another concept
C2 represented by the interval I2, it is sufficient to compare whether I1 is included in I2. In order
to ensure consistency of codes along with the dynamics and evolution of ontologies, service
advertisements and service requests specify the version of the codes being used. We assume
that services periodically check the version of codes that they are using and update their
codes in the case of ontology evolution.

Semantic Service Advertisement and Matching
Based on the encoding technique defined in the previous section, we present an algorithm for
matching a requested capability with a set of capabilities of networked services. Service
capabilities could be added or deleted at any time from the existing set of capabilities. When a
request comes, the algorithm tries to find a capability that best matches the request,
minimizing the number of semantic matches performed with capabilities of networked services.
At a pre-processing phase, the algorithm classifies capabilities of networked services and
constructs directed acyclic graphs (DAGs) of related capabilities. These graphs are indexed
according to the ontologies being used in the capabilities that they contain. The relationship
between capabilities that we consider to construct a graph is given by the relation Match and

October 2006 Public

Amigo IST-2004-004182 63/118

the function SemanticDistance. Specifically, if both Match(C1, C2) and Match(C2, C1) hold and
SemanticDistance(C1, C2) = SemanticDistance(C2, C1) = 0, then C1 and C2 will be represented
by a single vertex in the graph. For all the other cases where Match(C1, C2) holds, C1 and C2
will be represented in the graph by two distinct vertices with a directed edge from C1 to C2.

When a new service comes in the network, the set of capabilities that it provides are classified
among the existing hierarchies. The algorithm of classifying new capabilities in the existing
hierarchies is described in the following section.

When a request Req arrives, the algorithm first selects among the existing DAGs, graphs that
contain services that are more likely to match the request. This is done using the indexes
given to each graph, which correspond to the set of ontologies used by the capabilities of that
graph. When a graph G is selected, the algorithm performs a matching between the request
and the most generic capabilities of this graph. These capabilities are said to be more generic
than other capabilities contained in their sub-hierarchy, because they provide a number of
outputs that is greater or equal to the number of outputs of the other capabilities, and further
because their provided outputs subsume the outputs of other capabilities (e.g., in Figure 4-5,
the capability SendDigitalStream is more generic than the capability ProvideGame). These
capabilities correspond to the capabilities represented by vertices of this graph that do not
have predecessors, i.e., the set Roots(G). Similarly, we define Leaves(G) as the set of vertices
in the graph G that do not have successors. If Match between Req and all the capabilities of
Roots(G) does not hold, the group G is filtered out, and another group is selected. While, if the
matching between the request and a capability C of Roots(G) holds, i.e., Match(C, Req) holds,
we evaluate the semantic distance between C and Req. If the distance is equal to zero, C is
selected, otherwise the algorithm tries to find a capability C from the successors of C such that
SemanticDistance(C, Req) = min in (SemanticDistance(Ci, Req)), where Ci is a successor of
C. The algorithm for answering a user request is presented in more details in the following
sections.

Adding a new service advertisement
At a pre-processing phase, a set of DAG graphs are constructed and maintained. Each time a
new service advertisement comes in the network, the graphs have to be updated with the set
of capabilities provided by the new service. The algorithm of classifying the capabilities of a
new service within a set of Graphs G1, G2,..., Gn is given below. For each capability Ci
provided by the new service, the algorithm tries to find a graph Gi in which this capability will
be integrated. A subset of graphs is pre-selected according to the ontologies being used by Ci.
The algorithm first checks whether Ci can be inserted in the sub-hierarchy of one of the root
nodes of G. This is done by verifying if there exists a node Rooti in Roots(Gi) such that
Match(Rooti, Ci) holds. If Match(Rooti, Ci) holds, then Ci will have a predecessor in Gi. The
next step is to find this node, Ni, among the successors of the node Rooti, such that the
Match(Succ(Ni), Ci) fails, and to draw an edge from Ci to Ni. Moreover, Ci could have a
successor in Gi. Thus, the algorithm tries to find among the set Leaves(Gi) if there is a node
Leafi such that Match(Ci, Leafi). If Match(Ci, Leafi) holds, then Ci will have a successor in Gi.
The next step is to find this node, Ni, among the predecessors of Leafi such that Match(Ci,
Pred(Ni)) fails, and to draw an edge from Ci to Ni. On the other hand, if Match(Rooti , Ci) does
not hold, Ci will not have a predecessor in Gi. Nevertheless, Ci could have a successor in Gi.
Thus, the algorithms checks whether there is a node Leafi in Leaves(Gi) such that Match(Ci,
Leafi) holds. The algorithm is given below:

input: C1 , C2 , ..., Cn the set of capabilities of the new service,

 G1 , G2 , ..., Gm the set of existing graphs,

output: G1 , G2 , ..., Gk the set of graphs after the insertion of the new capabilities.

October 2006 Public

Amigo IST-2004-004182 64/118

InsertCapabilities(capabilities)

For all the capabilities Ci in C1 , ..., Cn do{

 For all the graphs Gi in G1 , ..., Gm that use the same ontologies as Ci

 until the insertion of Ci do{

 For (Rooti in Roots(Gi)) do{

 If (¬Match(Rooti , Ci)) then{

 For (Leafi in Leaves(Gi)) do{

 If (¬Match(Ci , Leafi)) then

 Fail;

 Else{

 Test with Predecessors of Leafi

 until ¬Match(Ci , Predj (Leafi))

 Draw an edge from Ci to Predj+1 (Leafi)

 }}

 }Else{

 Test with Successors of Rooti

 until ¬Match(Succj (Rooti), Ci)

 Draw an edge from Succj−1 (Rooti) to Ci

 For (Leafi in Leaves(Gi)) do{

 If (¬Match(Ci , Leafi)) then

 Fail;

 Else{

 Test with Predecessors of Leafi

 until ¬Match(Ci , Predj (Leafi))

 Draw an edge from Ci to Predj+1 (Leafi)

 }}}}}}

Figure 4-7 shows an example of inserting a capability, newC, in a DAG of capabilities, G. The
first step (left part of the figure) is to match newC with capabilities from Roots(G) to find out
whether newC will have a predecessor in G. Indeed, Match(C1, newC) holds, which means
that one of the successors of C1 will be linked with newC, i.e., C3. The next step (right part of
the figure) is then to find out whether newC will have a successor in G. This is done by
matching the capabilities in Leaves(G) with newC. Indeed, Match(newC, C7) holds, which
means that newC will be linked with one of the predecessors of C7 , i.e., C5 .

October 2006 Public

Amigo IST-2004-004182 65/118

Figure 4-7: Example of inserting a capability in a DAG

Answering user requests
When a user request that contains a set of required capabilities comes, the algorithm below
finds out a set of capabilities of networked services that best match the ones required by the
user. More precisely, for each capability Ci in the user request, the algorithm tries to find a
graph that may contain capabilities that match Ci. A graph Gi is selected if it is indexed with the
ontologies used in the request and if there exist a node Rooti in the set Roots(Gi) such that
Match(Rooti , Ci) holds. In this case, a node that has the minimal semantic distance with Ci is
selected from the successors of Rooti. The algorithm is given below:

inputs: a set of capabilities required in the service description C1 , C2 , ..., Cn ,

a set of graphs G1 , G2 , ..., Gm ,

outputs: a set of capabilities of networked services that match the capabilities given as input.

MatchService(requested service)

For all the capabilities Ci required in the service description do{

 For all the graphs Gi in G1 , ..., Gm that use the same ontologies as Ci

 until Ci is matched do{

 For all Rootj in Roots(Gi) do {

 If (¬Match(Rooti , Ci)) then

 Try with the next node in Root(Gi)

 Else

 Return Succ(Rooti) from the successors of Rooti such that

 SemanticDistance(Succ(Rooti), Ci) is minimal

 }}}

An example of matching a requested capability with capabilities of networked services is given
in Figure 4-8. In this figure, the requested capability NewC uses the ontology O1 in its

October 2006 Public

Amigo IST-2004-004182 66/118

specification. This allows to filter out DAG2, as it is indexed with only the ontology O3. The
next step is to match NewC with capabilities from Roots(DAG1) and Roots(DAG3), i.e., the
capabilities C1 and C4. If the matching fails with one of these capabilities, we can infer that no
capability will match newC in the corresponding graph.

Figure 4-8: Example of matching a user’s requested capability

The benefits of using this solution to match user’s required capabilities with capabilities of
networked services is to reduce the number of semantic matches performed to answer a
query. Indeed, it is sufficient to perform a semantic match with a subset of the capabilities of
networked services rather than performing a semantic match with all the capabilities hosted by
the service repository. Furthermore, using the encoding of classified ontologies allows
reducing the semantic reasoning to a numeric comparison of codes.

We have carried out extensive performance evaluation of our overall approach to efficient
service matching and compared it with classic syntactic service matching, with highly
encouraging results. Our results show that our solution provides better response time for the
semantic matching of service capabilities than basic syntactic service matching. Furthermore,
thanks to the indexing and structuring of the service repository, our solution is more scalable
than a classic service repository. A detailed report on these results may be found in [BGI06b].

4.3.2 Service profile hierarchy-based matching
As pointed out in the OWL-S Technical Overview12, an OWL-S service profile can be either a
direct instance of the class Profile or an instance of any subclass of Profile. As a result, a
service described in OWL-S (or in Amigo-S) can be classified into certain categories by letting
its profile be an instance of any subclass of the class Profile. Based on this profile subclass
hierarchy, profile matching can easily be done to determine how good the service category of
the advertised service fits into the service category that the requested service demands. This
Profile subclass matching complements the semantic matching based on service inputs and
outputs, and can be combined with those to get more accurate results.

The Amigo functional capability hierarchy, as defined in the Amigo service modeling
vocabulary ontologies (see Chapter 3), provides a classification hierarchy for intelligent home
service profiles. This approach can be extended for classifying the capabilities introduced by a
service profile and will be studied in a later version of this matching algorithm.

12 http://www.daml.org/services/owl-s/1.1/overview/

October 2006 Public

Amigo IST-2004-004182 67/118

Profile hierarchy-based matching is best used by combining it with input and output semantic
matching for more accurate identification of a matching service. However, it is also useful in
itself by providing means for an application to use the Amigo functional capability vocabulary
to check the availability of services providing capabilities that belong to a specific category
defined by Amigo vocabularies.

A profile match can be [P02]:

1. Exact match, i.e., the advertised profile class is the same as the requested profile
class. According to the referenced article, if the requested profile class is an immediate
subclass of the advertised profile class, this is considered as well an exact match.

2. Subsumption, i.e., the advertised profile class is any of the subclasses of the requested
profile class.

3. Plug-in, i.e., the advertised profile class is a super-class of the requested profile class.

4. Fail.

The first two cases can be combined directly with other matching algorithms used by SD-
SDCAE (see Section 4.3). The third case is more challenging, but may still be useful and even
the most important case in the real world. For example, an application may request for a
service for turning on a washing machine. There may be a direct match with the service
provided by the washing machine itself; alternatively, there may exist a more advanced service
efficiently controlling the energy of all home automation devices, provided by an energy
conservation application.

As the processing of service capability hierarchies is a time and memory consuming process,
several optimization algorithms for the ontology-based service matching have been recently
proposed in the literature [CF03, SPS04]. We adopt the one introduced in [SPS04], as we
believe it fits well in the service profile hierarchy matching. The rationale behind this approach
is that the query for the service is the most time consuming process and may occur many
times. Moreover, its response time is critical. Therefore, to speed up the process of query-
response, it makes sense to process advertisements upon their publishing, i.e., to pre-
compute the degree of match between advertisements and possible requests.

More specifically, we consider that the service repository is a dynamic list of services, which
are published as records of <profile_name, concept, profile_link>, where: profile_name
corresponds to the service name and is used for the further service binding procedure;
profile_link specifies the location of the Amigo-S service profile description; and concept
represents the category of the service according to the service capability hierarchies
maintained by the matchmaker. Upon arrival of an advertisement, the pair of <profile_name,
profile_link> is saved into the repository. At publishing time, the matchmaker also annotates
each concept in the service capability hierarchies with information which specifies to what
degree (i.e., exact, subsume, etc.) any request pointing to this concept would match the profile
category found in the advertisement. At query phase, the concept which represents the
queried profile category is compared with the information pre-computed at publishing time.

For example consider the services related to an AV scenario which typically involves the
multimedia content transfer. The part of the related service capability hierarchies is presented
in Figure 4-9.

Let us assume that several services have been published in the repository providing media
server and media renderer capabilities according to specified records, as follows (URL data is
omitted as it is not essential for this example):

<HelixServer, MediaServer, url>

<WindowsMediaServer, MediaServer, url>

<AllegroMediaServer, MediaServer, url>

October 2006 Public

Amigo IST-2004-004182 68/118

<Philips37PF7320A_LCD_HDtvRenderer, MediaRenderer, url>

<Dell109721_laptopRenderer, MediaRenderer, url>

<AmigoAVControl, HomeAVControl, url>

Figure 4-9: The part of the service capability hierarchy related to the Multimedia Application
support

Then the concepts maintained by the matchmaker will be updated with the following
information specifying the respective degrees of match:

HomeAVControl (<AmigoAVControl, exact>, <HelixServer, subsum>, <WindowsMediaServer,
subsum>, <AllegroMediaServer, subsum>, <Philips37PF7320A_LCD_HDtv, subsume>,
<Dell109721_laptop, subsume>)

MediaServer (<AmigoAVControl, exact>, <HelixServer, exact>, <WindowsMediaServer,
exact>, <AllegroMediaServer, exact>)

MediaRenderer (<AmigoAVControl, exact>, <Philips37PF7320A_LCD_HDtv, exact>,
<Dell109721_laptop, exact>)

MediaControlPoint (<AmigoAVControl, exact>)

Let us now assume that the requester/application is looking for the services necessary to
present multimedia content for the user. This task would require some Media Servers to
retrieve the content and some Media Renders to present this content to the user. Then, it is
natural to specify the profile category for the query represented by the concept
HomeAVContol. If we agree to use only ‘exact’ and ‘subsumption’ degrees of match, then, by
accessing the above pre-computed service match degrees, the links to all available fitting
service profiles will be returned by the matchmaker. Then, further processing may be carried
out with more precise matching algorithms, for example, capability matching; or, filtering may
be performed with the context information specified by the client and provided by the service.

Accordingly, if the application is looking only for media renderers, the concept specified will be
the ServiceRenderer, and three services, i.e., Philips37PF7320A_LCD_HDtvRenderer,

October 2006 Public

Amigo IST-2004-004182 69/118

Dell109721_laptopRenderer and AmigoAVControl (as multi-functional service), will be
selected.

The matching algorithm can be implemented as simple keyword search within the functional
capability hierarchy, when the vocabularies used are relatively small. There are also several
ways to use this simple profile matching approach in situations where more advanced SD-
SDCAE matching services are not available.

The service capability hierarchy-based matching proof-on concept prototype has been
implemented over Jena OWL-S framework query mechanisms. Its testing with the developed
simulator (see Section 3.3) is currently in progress.

Using the OSGi platform, the semantic service capability hierarchy-based service discovery
can be implemented through the standard OSGi bundle mechanism. The semantic service
discovery bundle may work in cooperation with the existing OSGi framework LDAP-based
service registry mechanism, returning a discovered service implementation class name for
direct binding.

4.3.3 Context-aware service selection
The Context-Aware Service Selection (CASS) functionality is part of the overall SD-SDCAE
offering of Amigo. In Figure 4-1, this functionality can be seen as Step 5. In the following
sections, we provide a detailed design of the Context-Aware Service Discovery (CASD)
functionality which is more than just CASS. Note that in this design, we do not yet consider the
integration of the CASD's functionality within SD-SDCAE but, rather, start with a more
fundamental usage scenario, leaving the integration aspects as further work.

Usage scenario
A client needs to obtain a reference to the most appropriate service available within its vicinity.
The client has a semantic description of the service that it wishes to locate according to a
specified "matching constraint", and also a specification of the conditions that the client wishes
to match upon. In this scenario the client wishes to locate the "cheapest" appropriate service.

Thus, the client issues a request to the CASD service, requesting it to obtain the cheapest
matching service. The CASD processes the request (using an algorithm outlined below) and
returns the most appropriate match, taking both the semantic service description and the
matching constraint into account. If the client wishes to be notified when a different service
becomes "more appropriate", then instead of issuing a "single" lookup request to the CASD, it
issues a persistent lookup request. This results in the client being told the current most
appropriate matching service and also being notified when a different service becomes the
most appropriate. The client can cancel the callbacks if it wishes to.

Externally visible interface
The CASD publishes an externally visible service interface which contains the following
methods:

public AmigoRef lookup(SemanticServiceDescription requiredServiceDescription, AmigoRef[] clientContextSources,
String casdSelectionIdentifier);

public AmigoRef subscribePersistentLookup(SemanticServiceDescription requiredServiceDescription, AmigoRef[]
contextSources, String casdSelectionIdentifier, AmigoRef callBackServiceReference);

public void unsubscribePersistentLookup(AmigoRef callBackServiceReference);

October 2006 Public

Amigo IST-2004-004182 70/118

The lookup method is invoked by the client to perform a one-off context-aware service
discovery. The client provides the following parameters:

• SemanticServiceDescription – a description of the service the client is looking for
(using the Amigo-S service description language, see [Amigo-D3.2].

• AmigoRef[] – an array of AmigoRefs that point toward the context sources that provide
contextual information about the client.

• casdSelectionIdentifier – a statically defined string that is used by the client to
indicate what type of "contextual optimization" should be performed by the CASD.

We define casdSelectionIdentifier to take one of the following values:

public static final String CURRENT_PREFS = "…";
public static final String CLOSEST = "…";
public static final String CHEAPEST = "…";
public static final String FASTEST = "…";

The subscribePersistentLookup method is called by a client when it wishes to obtain a
reference to the most appropriate service and also would like to be informed when the service
is no longer the most appropriate according to the specified criteria. In this case, the client is
called-back with the new best matching service. The client is required to supply the same
parameters as for the lookup call, but also one additional parameter:

• callbackServiceReference – an AmigoRef that points toward the AmigoService that
should be called when the most appropriate matching service changes.

The method returns an AmigoRef which is used as a parameter to the last publicly available
method which is unsubscribePersistentLookup. This method allows a client to indicate that
it is no longer interested in receiving callbacks from the CASD when the most appropriate
matching service changes.

CASD Algorithm
The CASD performs the following sequence of steps when servicing a lookup request:

1) Interact with semantic service discovery (Step 4 in Figure 4-1) to obtain a set of
semantically matching services.

2) For each of these services, obtain a reference to their context source(s). Interact with
context sources(s) to obtain the current context of the service.

3) Interact with the client's context source(s) to obtain the client's current context.

Note: an optimization could be that the CASD only obtains context (from the services and
client) which is appropriate for the type of service matching criteria specified in the client's
request, e.g., when obtaining the "closest" service, only location context is relevant.

4) Depending on the type of service matching criteria specified by the client, hand off the
context information of the client and the service(s) to a ContextComparator service.
This service will process the service and client contexts according to the service
selection directive supplied by the client and return the same set of input services as
an ordered list of suitability.

October 2006 Public

Amigo IST-2004-004182 71/118

Context Comparator Service
This module (CCS) is used by the CASD to compare and evaluate context information. It takes
context information and a selection directive and returns an ordered set of services. It
achieves that as follows:

In the case of matching on "Fastest" and "Cheapest", the CCS pushes the contexts of the
matching services into Jena (as RDF documents) and queries it (using a SPARQL query) to
find the (id of the source of) matching contexts, ordered for example from lowest to highest.
We then determine the AmigoRef of the services which the contexts refer to and return this
ordered list of AmigoRefs back to the calling client. The client can then convert the "first"
AmigoRef into an AmigoService and invoke the service it was looking for.

Note that this approach does not work entirely for the "closest" situation, since we need to be
able to relate absolute locations towards a "map" of the home, etc. This will require a more
complex context comparator that can actually convert GPS locations into more meaningful
data. This is ingoing work and will require us to use the Task 3.9 Location Service and also the
(still missing) Amigo Configuration service.

4.3.4 QoS-aware service selection
QoS-aware service selection is depicted as Step 6 in Figure 4-1 of the overall SD-SDCAE
functionality. In the following, we address the case where the resources of a server should be
shared among concurrently submitted service requests, and, thus, a resource-aware and QoS-
aware allocation should be performed. Note that in this design, as with context-aware service
selection, we do not yet consider the integration of this functionality within SD-SDCAE, but,
rather, start with a more fundamental usage scenario, leaving the integration aspects as
further work.

A plethora of services will eventually be deployed in the Amigo home. Many of these services
will be offering similar functionality. For serving a specific service request of a user, the Amigo
home middleware should be able to select the most suitable one among services with similar
functionality and similar IOPE (Inputs-Outputs-Preconditions-Effects) parameters, all
addressing the user requirements. Thus, the selection process will depend heavily on these
functional parameters (Step 4), and will also consider the number, features and identity of the
services that are already selected and/or available. Additionally, another issue that may have a
significant impact on the performance of the Amigo system is the fact that multiple users may
concurrently submit several service requests to a server residing on a networked home device,
expecting the services to be delivered at the same time, each being compliant with the user
preferences. However, as the resources of the Amigo middleware and the server in question
will not be unlimited (e.g., with regard to capacity, bandwidth, processing capabilities, storage),
a service selection tool must be established to decide on the services that will eventually be
delivered, and on their configuration and properties, so that the system resources are used in
the best possible manner, while users enjoy the services that address their requirements as
much as possible.

Hereafter, an illustrative example concerning outdoor services (i.e., services that use the
incoming network bandwidth and are delivered to a user device via a Home Gateway) is
described, which aims to clarify the grounds of this service selection optimization problem.
Let’s assume that in the Amigo networked home there is a LAN established and that there is a
1024 kbps DSL line shared by all networked devices. Let’s further assume that there is an
incoming request of an Amigo user for playing a game on the Internet. This gaming service is
offered in various versions that require different bandwidth rates (e.g., 56 kbps, 128 kbps, 256
kbps and 384 kbps). In order for the Amigo middleware to decide which service version is the
most appropriate, it has to consider several parameters. First, it has to filter out the service
versions that do not address the user requirements (e.g., with regard to bandwidth, price,
image resolution). Then, it has to discover if other service requests are in place and which

October 2006 Public

Amigo IST-2004-004182 72/118

ones, and consider the resources that will potentially be consumed by the relevant service
deliveries. At this point, the system needs to select the services to be delivered considering
the service features, user requirements and resource constraints. Even if the system
resources are enough to satisfy all service requests, the service selection process is still
necessary in order to ensure that the Amigo users’ objectives and needs are efficiently fulfilled.

The proposed QoS-Aware Service Selection Tool (QASST) will be provided by the Amigo
Middleware, which will reside on the networked home devices. Among these devices, there is
the Home Gateway that enables the Amigo Home to be connected to the Internet. QASST
provides service selection mechanisms adequate not only for requests concerning outdoor
services, but also for services concerning in-home activities, e.g., content delivery services
that reside on Amigo home devices. Certainly, it is assumed that a base service discovery
mechanism is available (Step 4), enabling the discovery of both kinds of services (indoor and
outdoor) that match the functional requirements of the service request.

In the context of QoS-aware service selection, a client submits its service request to the
QASST. The QASST uses the base service discovery mechanism to identify the services
matching the functional requirements of the service request received. Then, it retrieves (from
the User Modeling and Profiling Service – UMPS of the WP4 Intelligent User Services layer)
the user’s QoS preferences. Subsequently, the matching mechanism of QASST takes control
and filters out the services that do not address the user’s QoS requirements. The actual
service selection process depends on whether this service request involves only indoor or also
outdoor services.

In case only indoor services match the user requirements, a selection process takes place
based on a linear utility function. This utility function is expressed by the weighted sum of the
normalized values of the QoS parameters that a user prefers to have as high as possible (for
example availability, capacity, etc.) minus the weighted sum of the normalized values of the
QoS parameters that a user prefers to have as low as possible (for example response time,
error rate, cost, etc.). The matching service maximizing the value of this utility function will be
finally selected as the most suitable one. This utility function can be expressed as follows:

∑∑
==

−=
m

j
jj

l

i
ii ywxwU

11
 (1)

where l (m) is the number of the QoS parameters that are preferred to be as high (low) as
possible, ix (jy) are the normalized values of these QoS parameters, and iw (jw) are the
normalized weights of these QoS parameters based on the user’s QoS preferences for each

service type. Thus, the following equation must hold: 1
11

=+∑∑
==

m

j
j

l

i
i ww . It should be mentioned

that the normalization of the QoS parameters is derived by dividing the actual values of the
QoS parameters offered by the services with the maximum acceptable or possible value these
parameters are limited by.

The necessary interactions of the QoS-aware Service Selection Tool components with
external actors as well as other Amigo components are depicted in the sequence diagram of
Figure 4-10 for the indoor service selection process.

On the other hand, if outdoor services match the requirements of the service request, the
selection process is more complex. In Figure 4-11, the suggested service selection process for
an outdoor service is illustrated, along with the involved modules/actors. In step (1), an
additional service request (Req. 5) is submitted by an Amigo User. Note that at that time, there
are already four on-going sessions for services that were previously requested (Req. 1 – Req.

October 2006 Public

Amigo IST-2004-004182 73/118

4). In step (2), the client selects to use the QoS-aware Service Selection mechanism. In step
(3), the QASST initially identifies a set of references for the available services that address the
functional requirements of the new service request (which are discovered through the base
service discovery mechanism). Then it determines the services that will be eventually selected
for serving all service requests of the Amigo Users (i.e., Req. 1 – Req. 5), re-evaluating the
service selection performed upon the reception of previous requests.

Internal Services Matching Functional requirementsQoS-aware Service Selection Tool

User QASST Manager QoS_Matching_Srv

Start Service

Service Response

Service Selector Service_2Base SD

Identify QoS Matching Services

Service_1

Get QoS Params

QoS Params

Get QoS Preferences

QoS Params

Get QoS Params

QoS Params

Select Service 2B delivered

Selected Service Handle

Get QoS Params

QoS Preferences

Media Manager Core Service_N...
Service Request

...

QoS Matching Services

Utility function estimation

Start Service

Service Started

Service delivery initiation.

Discover Services

Discovered Services

QoS matching

Service Selection

Figure 4-10: The Service Selection sequence diagram for indoor services

Based on the aforementioned analysis for the outdoor services’ requests, it is clear that not all
the requests can be served in a real home environment, where the available resources (e.g.,
bandwidth, capacity, etc.) are limited. Thus, we will quite often face the problem of not having
enough resources to address all the users’ requirements. Thus, not every service request is
always feasible to get served, or at least not in the most preferable service version for the
users.

The proposed QASST will depend heavily on priorities. We adopt a priority-based selection
model, as it is desired: (i) to serve as many requests as possible, in order to satisfy the
majority of Amigo users; and (ii) to firstly serve all requests carrying a higher priority. For
example, safety-related requests should be served in any case, and should thus have the
highest possible priority. The proposed priority model consists of two levels. The most
important level (first level) depends on the kind of service that is requested (e.g., safety,
gaming, information, entertainment, etc.). Of course, safety-related services are assigned with

October 2006 Public

Amigo IST-2004-004182 74/118

higher priority than entertainment-related services. So, in Figure 4-11, request 5 will be served
first with regard to requests 1 or 2. The second level (less important level) of the proposed
priority model depends on the person who submits the request. In this case, parent-originated
service requests, for example, are assigned with higher priority than children’s requests.

Figure 4-11: The selection process for outdoor services

The QASST follows a straight-forward approach in order to determine the priorities of the
service requests. To accomplish this, a binary representation of the number li of the priority
instances of each level i is used. The number of bits assigned at each level is estimated based
on the population of the priority instances of this level. For example, if we have 19 instances
under priority level 2, then the binary representation of this level’s priority will require 5 bits
(19:10011). Thus, the combined priority (combined_prio) of each service request is calculated
based on the following equation:

∑
=

=
k

i

A
i ipriopriocombined

1
2_ , ∑

+=
=

k

ij
ji aA

1
 (2)

October 2006 Public

Amigo IST-2004-004182 75/118

where prioi is the service priority for level i, ai represents the number of bits required for the
individual priority binary representation of level i, Ai indicates the number of bits required for
the combined priority binary representation of level i, and k represents the number of priority
levels.

The above are illustrated in the following example: Consider the case of four main priority
levels. The first level has 23 instances (a1 = 5), the second has 35 (a2 = 6), the third has
12 (a3 = 4), and the last has 19 instances (a4 = 5). Based on Equation (1), we have: A1 =
15, A2 = 9, A3 = 5 and A4 = 0. This model is extendible, so that additional priority levels can be
distinguished if necessary.

The steps that will be followed in the services’ selection process concerning the outdoor
services are:

1. Initially, a new request is submitted, and QASST identifies a set of references for the
services that address the user’s requirements concerning the functional requirements
of the specific service request through the base service discovery mechanism.

2. The QASST then performs further filtering aiming to exclude the services that do not
match the QoS requirements of the service request (e.g., maximum service cost
requirement).

3. The remaining services address all the user requirements, and they are recorded into a
Service Registry (SR) as matching services.

4. A check is made in order to identify whether the services that have been selected and
have started after the last enforcement of the service selection algorithm (right after the
reception of the previous service request) are still running. The ones that have stopped
are removed from the SR, while the others remain recorded as running services.

5. A check is made in order to identify whether new priorities have been added/modified
or old priorities have been removed.

6. The priority of the new service request is calculated, while – if necessary – the priority
of the requests for all on-going service sessions are re-estimated.

7. For the new request and each of the old requests related to on-going sessions, the
minimum bandwidth service is identified, which addresses the requirements of the user
request. Thus, one service per such request is identified. These services are then
ordered based on their priority. The selection of requests that will eventually be served
is made based on the overall bandwidth that can be supported by the gateway, i.e.,
higher priority requests are served (Part I).

8. In case a service that is already running has to be terminated because a new service
request having higher priority has been received, a “Terminate Service Delivery”
request is made.

9. For the selected requests to be served, the Service Selection Algorithm is triggered
again to identify the services that will serve these requests. The service selection
process now aims to minimize the overall cost for the users (Part II).

10. Once the services to be provided are selected, first, the ones that are currently running
but have not been selected are terminated, and, second, the ones that are not currently
running but have been selected are started.

The aforementioned steps of the selection process of outdoor services are illustrated in the
state diagram of Figure 4-12.

October 2006 Public

Amigo IST-2004-004182 76/118

Figure 4-12: The Service Selection process state diagram for outdoor services

The necessary interactions of the QoS-aware Service Selection Tool components with
external actors as well as other Amigo components are depicted in the sequence diagram of
Figure 4-13 for the outdoor service selection process.

October 2006 Public

Amigo IST-2004-004182 77/118

External Services Matching Functional requirementsQoS-aware Service Selection Tool

User QASST Manager QoS_Matching_Srv

Start Service

Service Response

Service Selector Service_2Base SD

Identify QoS Matching Services

Service_1

Get QoS Params

QoS Params

Get QoS Preferences

QoS Params

Get QoS Params

QoS Params

Select Services 2B delivered

Selected Service Handles

Get QoS Params

QoS Preferences

Service Registry

Register Selected Requests

Media Manager Core Service_N...
Service Request

...

Register Matching Services

Registered

QoS Matching Services

Registered

Get Running Service Handles

Active Service Handles

Request Selection

Register Selected Services

Service Selection

Registered

Start Service

Service Started

Service delivery initiation.

Discover Services

Discovered Services

Figure 4-13: The Service Selection sequence diagram for outdoor services

The presented process aims to solve the service selection problem that can formally be stated
as follows: Given N’ service requests from Amigo Users and given all the available services
that address their requirements, select the most appropriate set of services to be delivered so
that the maximum possible number N of requests is served, the total priority-weighted cost is
minimized, while the overall bandwidth of the selected services does not exceed the one
provided by the established infrastructure. This can be reduced to the following linear
programming problem:

October 2006 Public

Amigo IST-2004-004182 78/118

Objective function: min []∑ ∑
= = ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡N

i

M

j
ijijij

i

Spriocombinedc
1 1

)_/((3)

Restrictions: BSb
N

i

M

j
ijij

i

≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑ ∑
= =1 1

 (4)

 1
1

=∑
=

iM

j
ijS , Ni ,...,2,1= (5)

 }1,0{∈ijS , Ni ,...,2,1= , iMj ,...,2,1= (6)

where N is the overall number of concurrent service requests, Mi is the overall number of the
services that address the requirements of service request i, Sij is the decision variable for
service j that addresses the requirements of service request i, bij is the required bandwidth by
service j for service request i, cij is the corresponding service cost, and combined_prioij is the
combined priority of service j for service request i.

This is a minimization problem seeking to minimize the overall cost. The restrictions of this
problem suggest that: the overall bandwidth of the selected services does not exceed the
available bandwidth B (Equation 4), every request is served (Equation 5), and the decision
variables are Boolean (Equation 6), i.e., 1=ijS in case service j is selected to serve service
request i or 0=ijS otherwise.

It stands that 'NN ≤ . The number N of requests that can be served simultaneously can be
estimated based on the priority model defined above. The estimation process is as follows:
First, the priority of each service request is calculated. Then, the service requests are ordered
based on their priority (i.e., i=1 for the highest priority and i =N’ for the lowest). For each
service request i, the lowest bandwidth service l is selected in the set of services that address
the request’s requirements. N is provided by the following equation:

⎭
⎬
⎫

⎩
⎨
⎧

≤⎥
⎦

⎤
⎢
⎣

⎡
= ∑

=

BbkN
k

i
il

1
:max (7)

Of course, in case Bb
N

i
il ≤∑

=

'

1
, then N = N΄.

After having identified an initial solution to our service selection problem, we will refine our
solution in order to reduce the overall priority-weighted service delivery cost. The problem is
currently being studied.

4.4 Service composition
After service registration & advertisement in a repository and discovery & selection of services
that match the requirements of a user application – Steps 1 to 6 of Figure 4-1 discussed in the
previous sections, service composition is carried out within the SD-SDCAE approach (Step 7).
Service composition enables increased availability of functionalities and new complex
functionalities in the Amigo home. Indeed, a functionality can be provided by a single service
or by a combination of several ones that are potentially not aware of each other. We introduce

October 2006 Public

Amigo IST-2004-004182 79/118

service composition from an orchestration viewpoint, where the application (the task on the
user device, see Figure 4-2) combines functionalities offered by several remote services.

In the following three sections, we propose three – partly complementary, partly alternative –
approaches to service composition. In Section 4.4.1, we introduce an approach to integration
of services modeled as conversations towards realizing a user task also modeled as an
orchestration. Then, Section 4.4.2 presents the event strategy rule reasoning approach
towards specifying the desired service composition for a situation and its variations in the
Amigo home. Finally, section 4.4.3 introduces a scripting language for event-driven service
composition (see Figure 4-2). Combining these approaches to service composition within SD-
SDCAE is still an open issue and is considered as future work.

4.4.1 Conversation matching and integration
For the dynamic composition of services in AmI environments, and more particularly in the
Amigo home, following the semantic service discovery and selection of networked service
candidates, we introduce an algorithm (COCOA-CI) that performs the dynamic composition of
the selected services towards the realization of a target user task. Early work on this algorithm
was presented in [Amigo-D2.1]. The distinctive feature of COCOA-CI is the integration of
services modeled as conversations to realize a user task also modeled as an orchestration.
This provides a means to deal with the diversity of services in the Amigo home. Indeed,
integrating service conversations for the realization of a user task enables the same user task
to be performed in different environments under several composition schemes (e.g., using a
different number of services with different conversations). Thus, the realization of the task's
orchestration is adaptive according to the specifics of the environment in terms of available
networked services and their provided conversations. Moreover, COCOA-CI enforces a valid
consumption of the composed services as their conversations are fulfilled.

COCOA-CI operates on services’ conversations and the task’s orchestration described in
Amigo-S, which actually adopts the OWL-S process model. COCOA-CI assumes a specific
model for an Amigo-S conversation/orchestration, which is presented in the following section.

Amigo-S service conversation and task orchestration model
In this model, the central concept is the notion of capability. A capability is a functionality
provided by a service or requested by a task and is described as a set of IOPEs. A capability
is realized by either an OWL-S atomic or composite process13. We model both networked
services and user tasks as a set of capabilities coordinated in the form of a workflow. This
workflow is described using the OWL-S process model. Within the task description, the
capabilities are abstract, i.e., they do not refer to any specific networked service, as these
capabilities have to be dynamically provided by the AmI environment and may be realized by
either atomic or composite processes of networked services. Indeed, this depends on the
service implementation. The same capability can be developed as a single client/service
interaction or as a sequence of client/service interactions (e.g., the Amazon Web service14 has
been described in the form of both a single atomic process and a complex conversation).
Finally, some capabilities of the user task conversation can be specified as correlated. A set of
correlated capabilities of the task must be performed by a single networked service because of
the presence of internal/hidden dependencies between these capabilities (e.g., the reservation
and the payment of a hotel room, for which it would be inconvenient to book a room in a hotel
and to pay another hotel for this room). All the other parts of the user task are considered as
independent from each other, yet with external/explicit dataflow. For the realization of these

13 By default, if no capability is specified in the service description, atomic processes are considered as the
provided capabilities.
14 http://www.daml.org/services/owl-s/examples

October 2006 Public

Amigo IST-2004-004182 80/118

independent parts of the user task, COCOA-CI allows the interleaving of multiple services’
conversations.

Based on the above service conversation and task orchestration model, we introduce
COCOA-CI in the following section.

COCOA-CI
To integrate the conversations of the selected services towards realizing the user task’s
orchestration, COCOA-CI translates both conversations and orchestration into finite state
automata. Thus, the conversation integration problem becomes a finite state automata
analysis problem. Further details about this modeling based on automata may be found in
[Amigo-D2.1, BGI05].

COCOA-CI first integrates all the automata of selected services in one global automaton. The
global automaton contains a new start state and empty transitions that connect this state with
the start states of all service automata. The automaton also contains other empty transitions
that connect the final states of each service automaton with the new start state. Consider the
automaton representing the conversation of the target user task depicted in Figure 4-14, left
higher corner, and the automata representing the conversations of the selected services at the
right lower corner. In this figure, all the automata of the selected services are connected in a
global automaton, in which all the added transitions are represented with dashed lines.

Figure 4-14: Conversation integration

October 2006 Public

Amigo IST-2004-004182 81/118

The next step of COCOA-CI is to parse each state of the task's automaton, starting with its
start state and following its transitions. Simultaneously, a parsing of the global automaton is
carried out in order to find for each state of the task's automaton a state of the global
automaton that can simulate it; specifically, a task's automaton state is simulated by a global
automaton state when for each incoming symbol15 of the former there is at least one
semantically equivalent16 incoming symbol of the latter. For example, in Figure 4-14, the state
t1 of the task's automaton can be simulated by the state v1 of the global automaton because
the set of incoming symbols of t1 is a subset of the set of incoming symbols of v1.

COCOA-CI allows finding service compositions with possible interleaving of conversations of
the involved services. Indeed, this is done by managing service sessions. A service session
characterizes the execution state of a service conversation. A session is opened when a
service conversation starts, and ends when this conversation finishes. Several sessions with
several networked services can be opened at the same time. This allows interleaving the
interactions with distinct networked services. Indeed, a session opened with a service A can
remain opened (temporary inactive) during the interaction of the client with another service B.
An example of managing sessions is given in Step (1) of the composition of Figure 4-14. In
this step, the capability Browse of the task's automaton has been matched against the
capability Browse of the global automaton. The next step is to find the capability Search of the
task's automaton (Step (2)). However, this capability is not available in the Video Streaming
Service. This leads to open another session with the Search Service, as this service provides
the sought capability. In Step (3), after matching the capability Search, the capability Get
Stream is sought. A semantically equivalent capability, i.e., the Send Stream capability, is
accessible in the Video Streaming Service from the previously opened session.

An important condition that has to be observed when managing sessions is that each opened
session must be closed, i.e., it must arrive to a final state of the service automaton. During the
composition process, various paths in the global automaton, which represent intermediate
compositions, are investigated. Some of these paths will be rejected during the composition,
while some other will be kept (e.g., if a path involves a service in which a session has been
opened but never closed, this path will be rejected).

COCOA-CI gives a set of sub-automata of the global automaton that conform to the task's
automaton structure (one such sub-automaton is depicted in the left lower corner of Figure
4-14). Each of these automata is a composition of networked services that conforms to the
conversation of the target user task, further enforcing valid service consumption. The last step
is to select arbitrarily one among the resulting service compositions, as they all conform to the
target user task. We are further working on the definition of a benefit function adapted to the
requirements of the Amigo environment (e.g., by taking into account an estimation of the
availability of the composed services [LI05]) which will allow the selection of the most effective
composition among the eligible ones. Using the service composition that has been selected,
the Amigo-S process model description of the user task is complemented (concretized) with
information coming from the composed services. Specifically, each capability of the user task
is replaced with the corresponding capability of a networked service. This capability may
correspond to either an atomic or a composite process of the networked service. In the former
case, the capability is performed in a single client/service interaction, while in the later it will be
performed in a sequence of client/service interactions.

We have carried out extensive performance evaluation of the COCOA-CI approach to service
composition based on conversation integration, with highly encouraging results. We have
compared the response time of COCOA-CI against the time spent for the XML parsing of

15 Incoming symbols of a state correspond to the labels of the next transitions of this state.
16 We recall that the equivalence relationship between capabilities is a semantic equivalence that has already been
checked by the semantic service discovery algorithm.

October 2006 Public

Amigo IST-2004-004182 82/118

services and task descriptions, which is inherent to the use of Web services and semantic
Web technologies. Results show that in realistic cases COCOA-CI overhead is negligible
compared to XML parsing. A detailed report on these results may be found in [BGI06a].

4.4.2 Rule & strategy-based reasoning and integration
An example of a challenging situation for SD-SDCAE is when the use of a high-level service
that provides plug-in match for a discovery request is more desirable than an exact match of
the discovery request using profile matching (see Section 4.3.2). Adaptive service composition
in SD-SDCAE supports the application development by providing to the application developer
the means to define one or more intelligent strategies to solve this type of situations.

The event strategy rule reasoning (ESRR) support of SD-SDCAE helps to specify the desired
service composition for a situation in the Amigo home. The current situation can be checked
with rules using a RDQL query on the available context information, and the resulting
composite service can be specified semantically with the Amigo-S language. An optimized
solution for resource-constrained devices uses the service discovery interface of SD-CAE to
find services (see Section 4.3) and the WP4 Context Management Service (CMS) component
for obtaining associated context information. In this first iteration, the event capabilities are left
out of the ESRR realization.

An example of how ESRR and profile matching can be used in adaptive service composition is
given in the following:

1. The adaptive application requests a high-level Amigo functional capability using the
profile-based matching support of service discovery.

2. Discovery returns a set of service descriptions, using the Amigo functional capability
hierarchy for profile matching.

3. The application can use the ESRR support of adaptive service composition to select
the most suitable services and the associated composition (i.e., realization of the
application that composes its functionality from available services).

In its implementation, the approach combines several software design patterns into one, most
importantly:

• ECA (Event Condition Action) rules for reasoning about the situation in Amigo home.

• Strategy pattern for representing multiple composition choices.

• Composite pattern for hierarchic reasoning support.

The ECA paradigm is applied to the composition rules, which consist of a condition and an
action part. The event of the ECA paradigm is shared by a set of rules that are composed by
an ESRR. Using the composition rules, an application developer can define an assumption of
current situation in the Amigo home in the condition part, and express an associated service
composition in the action part (see Figure 4-15). In the first implementation of rules, the
condition part is restricted to only specifying a set of desired functional capabilities that the
associated composition in the action part needs to have available in the Amigo home.

The condition part of a rule is a query related to context in the Amigo home. The RDQL query
language can be used to simulate these queries. In this first iteration, the type of queries is
restricted to inputs and results of SD-SDCAE service discovery requests.

Actions define a composition that suits the result of successful condition query. In this first
iteration, the action part is either a Java class that implements the composite service or an
Amigo-S composite service description, possibly parameterized with the results of the
condition query.

October 2006 Public

Amigo IST-2004-004182 83/118

Action

Composition
Rule

Event

Condition

ESRR
Choices

Triggering event

Context

Is query of

Is change of

Service
N

Composes

Figure 4-15: ECA paradigm applied to ESRR

Composition strategies are mutually exclusive so that one from a set of strategies can be
selected at a time (See Figure 4-16). A strategy is a number of composition rules, so its
instances are here referred to as strategy rules. The list of strategy rules in ESRR is ordered
and all the rules share the same event.

Composition
Strategy

Strategy1 StrategyN…

ESRR

Selected stragegy

Service
N

Composes

1

Figure 4-16: Strategy pattern applied to ESRR

In future iterations, an ESRR may be composite, i.e., it can define a new reasoning activating
a new ESRR as its composition strategy (see Figure 4-17). This allows keeping the conditions
of rules simple and provides support for hierarchical reasoning.

October 2006 Public

Amigo IST-2004-004182 84/118

Composite
Strategy

Composition
Strategy

ESRR

Selected stragegy

1

Figure 4-17: Composite pattern applied to ESRR

Figure 4-18 shows the resulting conceptual information structure of ESRR. The idea is that this
same logical architecture can potentially be implemented as Java classes, SWRL rules or
XML, depending on the software platform available on an Amigo device.

During the execution of an ESRR, its composition rules are checked, and only if the condition
of a rule fails, the next rule is checked. Usually, the order of composition rules is such that, in
the condition checking, the most specific situation is executed first; rules and more generic
solutions are proposed by the latter rules if the former fail. A default strategy has to be
provided, for which the rule consists only of an action part that is executed in case all the other
rules fail.

Action

Composite
Strategy

Composition
Strategy

Composition
Rule

Strategy1 StrategyN…

Event

Condition

ESRR

Selected stragegy

Choices

Triggering event

Context

Service

N

Composes

1

Is query of

Is change of

Figure 4-18: Conceptual structure of ESRR

As an example of how ESRR can be used, we consider a simplified situation of adaptation to
the available services providing a HomeAVControl capability or one or more of its sub-
capabilities in the Amigo home. If we can discover a service providing this capability, we

October 2006 Public

Amigo IST-2004-004182 85/118

should use it. Otherwise, we search for services that provide separate MediaServer and
MediaRenderer capabilities, and can be composed into one. If that also fails, we may have
some special device-specific implementation that can be used. If everything else fails, as
default we may use a HomeAVControl capability implementation in the form of an application-
internal service that provides minimal functionality required by the application. The ESRR for
this example can be presented informally as:

ESRR: Intelligent use of available media servers has the following choices

Rule1: cond(Service1? <HomeAVControl, exact>)

action (“Composition using HomeAVControl capabilities provided
by the Service1”)

Rule2: cond(Service1? < MediaServer, exact>, Service2? <MediaRenderer,
exact>)

action(“Composition using services Service1 as MediaServer and
Service2 as MediaRenderer”)

Rule3: cond(Service1? “Philips37PF7320A_LCD_HDtv “)

action(“Use a special implementation using special capabilities of a
service provided this device and internal implementation of
supporting services”)

Default:

action(“Use an internal implementation of HomeAVControl
service.”)

The action parts specified here in comment text may be implemented, for example, as Java
code that uses the discovered services, or as composite service descriptions using the Amigo-
S language. We have simplified the situation so that multiple matches are not considered (we
assume here that a “best match” is selected). Handling multiple matches can be performed
with hierarchical reasoning using composite ESRR.

ESRR is initially provided as a Java application framework that provides the required base
classes. The application developer can use these classes to construct the reasoning object
structure that is needed for the composition problem. In later iterations, a wizard will be
provided that will guide the developer to construct implementation-independent ESRR rules
and export the structure so that it can be used by an application in suitable format (Java,
SWRL, XML, etc.).

4.4.3 A domain specific language for event-driven service composition
A scripting language for event-driven service composition will provide a means to help
developers to integrate and configure devices and services available in the Amigo home in a
transparent and useful way to achieve a safer and swifter programming process. There are
plenty of examples that can already be found in the scope of Amigo (namely in WP5, WP6 and
WP7 applications). These examples demonstrate the necessity of a scripting language
dedicated to event-driven service composition. As an illustration, the WP4 Awareness and
Notification Service (AWS) notifies the WP6 Monitoring Manager, and a warning is displayed
on the home entrance screen. In the same way, when the washing machine finishes its work,
Amigo as a housekeeper notifies Maria on the TV or by switching the lamp in the kitchen,
depending on Maria’s location and activity (WP5 Clothes Manager). Amigo is also able to
recognize visitors, notify by some means (e.g., voice or message on the TV) and open the
entrance door (WP5 Entrance Manager). In the scenes above, different simple services and
technologies are integrated in complex composite services. Some services are provided by the

October 2006 Public

Amigo IST-2004-004182 86/118

intermediary of the Amigo Intelligent User Services (e.g., the Awareness and Notification
Service, ANS). Others are discovered by using the Amigo Middleware (e.g., displays, lights).

One approach consists in describing a functional composite application in the form of an
abstract workflow that can be executed by integrating on the fly services that are available in
the home environment. Our approach relies on introducing a programming language dedicated
to the domain of ubiquitous computing. This language enables a user to express the rules that
describe the sequence of actions to be performed when an event occurs. We are designing
and developing a language dedicated to the domain of event-driven service composition to
describe scenarios of ambient intelligence. Domain-specific languages (DSLs) have been
successfully used in various application areas and have shown their benefits in terms of
accessibility to domain experts, conciseness, readability, safety and robustness.

Our DSL will offer dedicated abstractions and notations to the domain experts that rely on
Amigo ontologies (i.e., Amigo-S). This language will permit to use simple services as well as
Amigo components (e.g., ANS) to build context-aware service composition.

This scripting language will allow developers to build applications by composing remote
functionalities in an event-driven way. Therefore, tools must be provided to developers in order
to specify their requirements towards these functionalities. These requirements will be
expressed using the Amigo-S language. The service discovery will be processed by the Amigo
Service discovery component. Our approach will also rely on the service functionalities’
orchestration and composition already supplied by SD-SDCAE. These reuses will be simplified
by the use of a compiler able to map our scripting language to a targeted BPEL-based
language, which will most probably be used in SD-SDCAE for service execution. This compiler
will also ensure the robustness and the compliancy of scripts towards Amigo requirements.
This scripting language will use ANS. ANS rules will be expressed in the scripting language to
receive contextual information. The WS-Eventing mechanism supported by the Amigo
middleware (see Chapter 2) will enrich the targeted language to deal with ANS rules
subscription and notification. This scripting language will benefit from the compilation step by
performing static checking and thus ensure the robustness of the application at runtime.

An example of such script is shown in Figure 4-19. The Reminder Application subscribes to a
change of context by specifying an event-condition-action (ECA) rule (line 11). This rule is
specified according to the ANS requirements, and its correctness is statically checked by the
compiler. The Proto statement represents a requested service (line 4 and 10). The requested
service can be a simple one, such as a display, or an Amigo service such as the ANS. It
specifies the service type (e.g., Display, line 4) and refines the service definition using
properties (e.g., location, line 6). Some kinds of proto imply to implement some statements: for
instance, the Rule proto statement must implement the upon, when and do statements (line
11, 14, and 17). This Rule proto statement enables subscribing to the ANS and specifying
what actions have to be taken when receiving the corresponding notification. In our example,
the previously defined service Display is used to display a message.

October 2006 Public

Amigo IST-2004-004182 87/118

1 Application Reminder {
2 {
3 Display display1;
4 }
5 { // ----- Resource Declarations -----
6
7 proto Display display { // Display is the “serviceType”
8 filter { // set service properties
9 location = home_entrance;
10 }
11 }
12
13 proto Rule reminderRule {
14 upon {
15 TrueToFalse(isInHouse(Jerry, SmithHouse));
16 }
17 when {
18 isInHouse(lunchbox, SmithHouse);
19 }
20 do { // warn jerry
21 display1 = display.getService();
22 display1.message(“Jerry, don’t forget your lunchbox!”);
23 }
24 }
25
26
27 }
28 { // ------- Main Section --------
29 activate {
30 subscribe reminderRule;
31 }
32
33 deactivate {
34 unsubscribe reminderRule;
35 }
36 }

Figure 4-19: A script example

October 2006 Public

Amigo IST-2004-004182 88/118

5 Interoperable service discovery & interaction
middleware

Provider
INRIA

Introduction
The role of the interoperable service discovery & interaction (SD&I) middleware is to identify
the discovery and interaction middleware protocols that execute on the network and to
translate the incoming/outgoing messages of one protocol into messages of another, target
protocol. The system parses the incoming/outgoing message and, after having interpreted the
semantics of the message, it generates a list of semantic events and uses this list to
reconstruct a message for the target protocol, matching the semantics of the original message.
The interoperable SD&I middleware acts in a transparent way with regard to discovery and
interaction middleware protocols executing and services running on top of them. The
supported service discovery protocols are UPnP, SLP and WS-Discovery, while the supported
service interaction protocols are SOAP and RMI.

Development status
The final version of the interoperable SD&I middleware is available since M24.

Intended audience
System developers that seek to integrate heterogeneous middleware platforms and their
supported service-oriented architectures within dynamic environments.

License
The interoperable SD&I middleware is available under the LGPL license terms.

Language
C

Environment (set-up) info needed if you want to run this sw (service)
The interoperable SD&I middleware does not require any additional software.

Platform
Linux

Tools
None

October 2006 Public

Amigo IST-2004-004182 89/118

Files
Source code files are currently available on [Amigo-OSS-SCM] under the mdwcore/sdi_sii
structure. They will also be made available on [Amigo-OSS-Pub].

Documents

The developer’s and user’s guides are available on [Amigo-OSS-Pub].

Tasks

None

Bugs

None so far

Patches

None so far

October 2006 Public

Amigo IST-2004-004182 90/118

6 Domotic infrastructure

6.1 Overview
The Amigo Domotic Infrastructure aims at presenting heterogeneous physical hardware
devices as unified software services using standard service technologies. Nowadays, there is
a great diversity of physical device technologies and protocols. Further, there are a number of
service technologies that should be supported within the Amigo system.

Therefore, the purpose of the Amigo Domotic Infrastructure is to enable the integration of
different device technologies presenting them by means of software services, but isolating the
final users (service clients) from the specific base technologies.

Figure 6-1 depicts the proposed domotic architecture:

BDF
WM

WSUPnP

BDF
Driver

UPnP Device
Builder

EIB
Driver ...

Web Service
Builder

Lo
w

 le
ve

l
dr

iv
er

s
H

ig
h

le
ve

l
dr

iv
er

s

Domotic Service
Model Specification

... Service
Builder

BDF
Lamp

EIB
Lamp

WM Lamp Lamp

UPnP
WM

UPnP
Lamp UPnP

Lamp
WM

WebService

Lamp
WebService Lamp

WebService

UPnP Client WS Client

Physical devicesBDF
WM

WSUPnP

BDF
Driver

UPnP Device
Builder

EIB
Driver ...

Web Service
Builder

Lo
w

 le
ve

l
dr

iv
er

s
H

ig
h

le
ve

l
dr

iv
er

s

Domotic Service
Model Specification

... Service
Builder

BDF
Lamp

EIB
Lamp

WM Lamp Lamp

UPnP
WM

UPnP
Lamp UPnP

Lamp
WM

WebService

Lamp
WebService Lamp

WebService

UPnP Client WS Client

Physical devices

Figure 6-1: The Amigo domotic architecture

October 2006 Public

Amigo IST-2004-004182 91/118

The Amigo domotic architecture is based on: extracting the required information about the
physical devices by means of drivers to the base technologies like BDF (Fagor Domotic Bus),
EIB (European Instalation Bus), EHS (European Home System), X10, etc.; modeling the
services using a well-known domotic service specification; and building proxies for the domotic
model instances using standard service technologies (UPnP, Web Services, etc.).

The intermediate domotic instances decouple the low-level drivers from the high-level drivers.

Interoperability is achieved by providing several service infrastructures (UPnP, Web Services,
etc.) simultaneously to access the same device: for instance, a washing machine or a lamp
can be discovered and controlled either using UPnP or a Web Service (WS-Discovery).

The following components have been developed:

• Domotic Service Model Specification

• BDF Driver (Low-Level Driver)

• UPnP Device Builder (High-Level Driver)

• WS Device Builder (High-Level Driver)

6.2 Domotic Service Model

Provider
IKERLAN

Introduction
In order to integrate heterogeneous domotic devices, an abstract description of the available
services, not attached to specific domotic technologies, must be specified. This intermediate
description is the common element in the domotic proxy generation process.

This component provides any domotic service developer with the abstract reference of the
service description.

Development status
Development was finished in M24. Full documentation is in progress.

Intended audience
Low-Level Driver developers must translate and instantiate services from the employed legacy
technology to this generic description.

High-Level Driver developers use this reference as a starting point for the high-level proxy
generation process.

License
The abstract reference service description provided by the Domotic Service Model will be
released under a LGPL license.

October 2006 Public

Amigo IST-2004-004182 92/118

Language
C#

Environment (set-up) info needed if you want to run this sw (service)
Software: .Net for Windows

Platform
Microsoft .Net 2.0

Tools
Generic .Net tools

Visual Studio 2005

Files
Files are available on [Amigo-OSS-SCM] under the mdwcore/domotics structure. They will
also be made available on [Amigo-OSS-Pub].

Documents

Documentation (only developer’s guide, because it’s not a user-oriented component) will be
made available on [Amigo-OSS-Pub].

• Developer’s Guide: Design principles and UML diagrams

Tasks

None

Bugs

None yet, but, if any, they will be reported on [Amigo-OSS-SCM] under the mdwcore/domotics
structure.

Patches

None yet, but, if any, they will be reported on [Amigo-OSS-SCM] under the mdwcore/domotics
structure.

6.3 BDF Driver (Low-Level Driver)

Provider
IKERLAN

October 2006 Public

Amigo IST-2004-004182 93/118

Introduction
A Low-Level Driver is a base technology-dependent (in this case, BDF) driver that generates
and instantiates proxies for the devices that it supports (BDF washing machine, BDF oven,
BDF plug, etc.) in a generic (base technology-independent) way.

Development status
Development was finished in M24. Full documentation is in progress.

Intended audience
Low-Level Driver developers. This component is a sample implementation of a Low-Level
Driver. New Low-Level Drivers for other domotic base technologies (EIB, X10, etc.) can be
developed following the principles described by this module.

License
The software developed will be released under a LGPL license.

The base technology employed (BDF native driver) is under a proprietary license.

Language
C#

Environment (set-up) info needed if you want to run this sw (service)
Hardware: BDF domotic devices, BDF bridge to RS232, PC/Laptop

OS: Windows XP / Windows Server 2003

Software: .Net for Windows

Platform
Microsoft .Net 2.0

Tools
Generic .Net tools

Visual Studio 2005

Files
Files are available on [Amigo-OSS-SCM] under the mdwcore/domotics structure. They will
also be made available on [Amigo-OSS-Pub].

Documents

Documentation (only developer’s guide, because it’s not a user-oriented component) will be
made available on [Amigo-OSS-Pub].

October 2006 Public

Amigo IST-2004-004182 94/118

• Developer’s Guide: Design principles

Tasks

None

Bugs

None yet, but, if any, they will be reported on [Amigo-OSS-SCM] under the mdwcore/domotics
structure.

Patches

None yet, but, if any, they will be reported on [Amigo-OSS-SCM] under the mdwcore/domotics
structure.

6.4 UPnP Device Builder (High-Level Driver)

Provider
IKERLAN

Introduction
This High-Level Driver instantiates high-level proxies (UPnP proxies) starting from the generic
instances described by the Domotic Service Model component. The proxy instantiation is a
dynamic runtime process.

Development status
Development was finished in M24. Full documentation is in progress.

Intended audience

− High-Level Driver developers. This component is a sample implementation of a High-Level
driver. New High-Level Drivers (SLP, Jini, etc.) can be developed following the principles
described by this module.

− Domotic service clients (UPnP clients).

License
The module will be released under a LGPL license.

Language
C#

October 2006 Public

Amigo IST-2004-004182 95/118

Environment (set-up) info needed if you want to run this sw (service)
Hardware: PC/Laptop

OS: Windows XP / Windows Server 2003

Software: .Net for Windows, Intel UPnP tools

Platform
Microsoft .Net 2.0

Tools
Generic .Net tools

Visual Studio 2005

Files
Files are available on [Amigo-OSS-SCM] under the mdwcore/domotics structure. They will
also be made available on [Amigo-OSS-Pub].

Documents

Documentation will be made available on [Amigo-OSS-Pub].

• User’s Guide: UPnP device and service description XML files.

• Developer’s Guide: Design principles

Tasks

None

Bugs

None yet, but, if any, they will be reported on [Amigo-OSS-SCM] under the mdwcore/domotics
structure.

Patches

None yet, but, if any, they will be reported on [Amigo-OSS-SCM] under the mdwcore/domotics
structure.

6.5 WS Device Builder (High-Level Driver)

Provider
IKERLAN

October 2006 Public

Amigo IST-2004-004182 96/118

Introduction
The goal of the WS Device Builder component is to instantiate high-level proxies (Web
services) starting from the generic instances described by the Domotic Service Model
component. This component uses the discovery mechanism of the Amigo .Net programming
framework (see Section 2.4); thus, the instantiated services can be discovered using WS-
Discovery. Services automatically advertise themselves on the network when they are
instantiated (WS-Discovery: Hello) and announce their departure (WS-Discovery: Bye) when
they are discarded. They also respond to queries (WS-Discovery: Probe and Resolve).

Reflection emit is a run-time feature that allows code to create dynamic assemblies, modules,
and types. Instances representing the domotic services – according to the Domotic Service
Model component specification – are dynamically created using this feature.

Development status
Development was finished in M24. Full documentation is in progress.

Intended audience

− High-Level Driver developers. This component is a sample implementation of a High-Level
driver. New High-Level Drivers (SLP, Jini, etc.) can be developed following the principles
described by this module.

− Domotic service clients (Web Service clients).

License
The module will be released under a LGPL license.

Language
C#

Environment (set-up) info needed if you want to run this sw (service)
Hardware: PC/Laptop

OS: Windows XP / Windows Server 2003

Software: .Net for Windows, Amigo .Net programming framework – discovery mechanism

Platform
Microsoft .Net 2.0

Tools
Generic .Net tools

Visual Studio 2005

October 2006 Public

Amigo IST-2004-004182 97/118

Files
Files are available on [Amigo-OSS-SCM] under the mdwcore/domotics structure. They will
also be made available on [Amigo-OSS-Pub].

Documents

Documentation will be made available on [Amigo-OSS-Pub].

• User’s Guide: WSDL files for domotic device examples

• Developer’s Guide: Design principles

Tasks

None

Bugs

None yet, but, if any, they will be reported on [Amigo-OSS-SCM] under the mdwcore/domotics
structure.

Patches

None yet, but, if any, they will be reported on [Amigo-OSS-SCM] under the mdwcore/domotics
structure.

October 2006 Public

Amigo IST-2004-004182 98/118

7 Security & privacy

7.1 Security Framework

Provider
Microsoft, IMS

Introduction
This component provides access to the Amigo authentication and authorization service (see
Security Services, Section 7.2). It encapsulates the communication and cryptographic
primitives that are used for device/user registration, authentication, and authorization with the
centralized Amigo security service, which is released as a separate component.

The Amigo security system is based on a centralized Security Service, which may be
replicated to achieve higher system reliability. The employed protocol is a simplified Web-
service version of Kerberos: shared secrets are established during registration and are
subsequently used for mutual authentication. Authorization by the security service is granted
following a role-based authorization scheme, and is transmitted securely using encrypted
tickets.

The current framework provides convenient abstractions of this underlying protocol, and
enables programmers to participate in the security scheme without having to understand the
details of the security mechanism. It includes a discovery mechanism that allows automatic
fail-over in case of unavailability of a particular instance of the security service, based on WS-
Discovery.

Development status
The first prototype version (C# implementation) was distributed to the Amigo partners in M18.
Another intermediate version was released in M24.

The Java implementation is still under development; a first prototype version will be made
available in M27 on [Amigo-OSS-Pub].

Intended audience
Service and application developers that need to control access to their service/application.

License
C# version: See EMIC license (Annex A).

Java version: The Java libraries will be made available under the LGPL license terms.

Language
C# / Java

October 2006 Public

Amigo IST-2004-004182 99/118

Environment (set-up) info needed if you want to run this sw (service)
The security framework will support/employ:

• Hardware: PC/Laptop/PDA/Smartphone

• OS: Windows XP / Windows Server 2003 / Pocket PC 2003 / Smartphone 2003 / Linux

• Software: .Net for Windows / .NetCF for Windows / OSGi / JRE 1.5

Platform
Microsoft .Net 2.0

Microsoft .NetCF 2.0

JVM

Tools
Generic .Net tools, Visual Studio 2005

Eclipse

Files
See [Amigo-OSS-Pub]

Documents

See [Amigo-OSS-Pub]

Tasks

For .Net, there is an intermediate release in M24 and a full release in M30.

The first Java version will be available in M27.

Bugs

None so far

Patches

None so far

7.2 Security Service

Provider
Microsoft

October 2006 Public

Amigo IST-2004-004182 100/118

Introduction
The Amigo security system is based on a centralized Security Service, which may be
replicated to achieve higher system reliability. The employed protocol is a simplified Web-
service version of Kerberos: shared secrets are established during registration and are
subsequently used for mutual authentication. Authorization by the security service is granted
following a role-based authorization scheme, and is transmitted securely using encrypted
tickets.

The role-based authorization scheme works by assigning each registered device/user/service
to a specific class, like domotic, admin, mobile, etc. Access to a service of a specific class is
granted based on an access matrix, which captures which service class may be used by which
device and/or user class.

Development status
The first prototype version was distributed to the Amigo partners in M18 (as a minimal
implementation of a security service). Another intermediate version was released in M24.

Intended audience
Service developers as well as application developers that need to control access to their
service/application.

License
See EMIC license (Annex A).

Language
C#

Environment (set-up) info needed if you want to run this sw (service)
Security services will support/employ:

• Hardware: PC / Laptop

• OS: Windows XP / Windows Server 2003

• Software: .Net for Windows

Platform
Microsoft .Net 2.0

Microsoft .Net 3.0

Tools
Generic .Net tools, Visual Studio 2005

October 2006 Public

Amigo IST-2004-004182 101/118

Files
See [Amigo-OSS-Pub]

Documents

See [Amigo-OSS-Pub]

Tasks

Intermediate release in M24 and full release in M30.

Bugs

None so far

Patches

One so far

October 2006 Public

Amigo IST-2004-004182 102/118

8 Content distribution

8.1 Introduction
The Content Distribution service (see Figure 8-1) will provide available content in the Amigo
home to Amigo services and applications according to the DLNA standard. This is done by
gathering available content descriptions (not the actual content to avoid time-consuming and
unnecessary copying of content) from UPnP Digital Media Servers (like Windows Media
Connect, etc.). Moreover, it has the ability to provide content in a format which suits the
renderer’s capabilities in the best possible way. For this, copying content might become
necessary. Content Distribution will be able to render content to UPnP Digital Media
Renderers (DMR). When content is subjected to adaptation some delay might be expected,
otherwise rendering will start directly. For other non-UPnP DMRs, like Windows Media Player,
etc., an application will need to take care of transferring content to the rendering device via
HTTP-GET. The same is applicable for offline consumption.

· Search / browse
content

· Render content
· Make (adapted)

content available
· AV controls

Device Capabilities
known by Content

Delivery

UPnP Digital
Media Renderers

Content Selection

Other sources

Usual DMS

Content
Adaptation

Enabled DMS

Inhabitant

Offline /
Non-UPnP

Content
Discovery

http-get

UPnP controlled
(http-get,

RTSP, etc.)

Figure 8-1: Content Distribution in the Amigo home

8.2 Content Distribution Interface

Provider
Microsoft

October 2006 Public

Amigo IST-2004-004182 103/118

Development status
Development started in Q1 2006. There was an initial version released in M24. The final
version will be released in M30.

Intended audience
Service developers as well as application developers that need (entertaining) content to be
rendered or delivered to devices in the Amigo home.

License
See EMIC license (Annex A).

Language
C#

Environment (set-up) info needed if you want to run this sw (service)
Hardware: PC/Laptop

OS: Windows XP / Windows Server 2003

Software: .Net for windows

Platform
Microsoft .Net 2.0 runtime.

Microsoft .Net 3.0 runtime.

Tools
None so far

Files
See [Amigo-OSS-Pub]

Documents

Developer’s guide: See [Amigo-OSS-Pub]

User’s guide: See [Amigo-OSS-Pub]

Tasks

Development started in Q1 2006. Subsequent releases are/will be available as listed below:

• M24: first prototype.

• M30: final prototype.

October 2006 Public

Amigo IST-2004-004182 104/118

Bugs

None so far

Patches

None so far

8.3 Content Adaptation Server

Provider
TID

Development status
Development started in Q1 2006. The final prototype will be provided at the end of M30.

• A media server compliant with the UPnP AV DMS template has been developed based
on Cyberlink’s basic implementation.

• Optional and extended actions have been implemented and created in order to provide
a useful server in the content adaptation framework.

• Content Description Interoperability has been implemented providing some reference
metadata extraction plugins (for ID3, AVI, MOV and some other format dependent
tags) and translating key-value pairs into ontology concepts.

• A semantic registry is provided, enabling RDQL queries to the Content Model.

• Adaptation Interface has been specified. Internal composition at description level has
been achieved with some restrictions.

Intended audience
System designers/software maintainers that need to fix bugs/enhance the Content Adaptation
subcomponent or developers/integrators of transcoding plugins for Amigo.

License
Content adaptation will be made available under the LGPL license terms.

Language
Java

Environment (set-up) info needed if you want to run this sw (service)
The Content Adaptation subcomponent requires JRE1.5.

Platform
Any system capable of running JRE 1.5

October 2006 Public

Amigo IST-2004-004182 105/118

Tools
None so far

Files
CADMS.jar on [Amigo-OSS-SCM].

Documents

Java documentation

Tasks

Development started in Q1 2006. Subsequent releases are/will be available as listed below:

• M24: first prototype.

• M30: final prototype.

Bugs

None so far

Patches

None so far

8.4 Content Discovery
The upcoming generation of new media server devices impels management and control of all
the resources that would become available through many different devices.

Every time a new server is connected to the network, the newly shared resources must be
centrally controlled and referenced; thus, browsing for a single device is needed in order to
have all the media at one’s disposal. This handling must be carried out by an engine that is
capable of discovering, registering and referencing new resources.

The Content Discovery subsystem (see Figure 8-2) is in charge of discovering new media
servers connected to the network and subscribing to their events for possible changes. Once
located and identified, the Content Discovery Service will navigate through their contents,
exploring and classifying the new available media and referencing them into a central content
directory service, which will be aware of all the content resources published on the network.

Provider
TID

Development status
Development started in Q2 2006. The final prototype will be provided at the end of M30.

Discovery of and subscription to UPnP AV DMS’s on the network has been implemented,
together with: recursive browsing of their contents; and reference creation, update and

October 2006 Public

Amigo IST-2004-004182 106/118

deletion in a central content directory service (temporarily located at the Content Adaptation-
enabled DMS) implementing UPnP AV ContentDirectory Service with two extended actions.

Content 2
(Music)

Content 1 Content 2 Content 3
(Movies) (Music) (Pictures)

Brow
sin

g /
 R

efe
ren

cin
g Browsing / Referencing

B
ro

w
si

ng
 /

R
ef

er
en

ci
ng

Content 1
(Movies / Music)

Media Server 1 Media Server 2

Content 3
(Music / Pictures)

Media Server 3

Browse

Central Content Directory

Figure 8-2: Content Discovery browsing and referencing hierarchy

Intended audience
System designers/software maintainers that need to fix bugs/enhance the Content Discovery
subcomponent or developers/integrators of transcoding plugins for Amigo.

License
Content adaptation will be made available under the LGPL license terms.

Language
Java

Environment (set-up) info needed in order to run this software (service)
The Content Discovery subcomponent requires JRE1.5 and the OSGi framework.

Platform
Any system capable of running JRE 1.5 and the OSGi framework.

October 2006 Public

Amigo IST-2004-004182 107/118

Tools
None so far

Files
amigo-content-discovery.jar on [Amigo-OSS-SCM].

Documents

Java documentation

Tasks

Development has started in Q2 2006. Subsequent releases are/will be available as listed
below:

• M24: first prototype.

• M30: final prototype.

Bugs

None so far

Patches

None so far

October 2006 Public

Amigo IST-2004-004182 108/118

9 Data store

Provider
Microsoft

Introduction
This component offers a generic storage service to other components and applications inside
an Amigo system. There is no restriction on the kind of content that can be stored, and each
component or application can open and control access to a sub-store inside the Data Store. It
supports also notifications on changes in a sub-store. Data is automatically backed up and
restored when necessary.

The Data Store uses a concept of individual compartments that are created on behalf of an
owner. The owner of a compartment specifies:

− The structure of each data element;

− The user group and their access rights (planned for future release);

− The events that are generated when elements are modified.

Operations on a compartment include addition, deletion, modification and querying of data
elements.

The Data Store is a centralized solution, performing automatic backup and restoration
functions when needed to allow a maintenance-free operation.

Development status
There was an initial version released in M24. The final version will be released in M30.

Intended audience
System designers/software maintainers that need to fix bugs/enhance the Data Store
component.

License
See EMIC license (Annex A).

Language
C#

Environment (set-up) info needed if you want to run this sw (service)
The Data Store requires the Microsoft .Net 2.0 and 3.0 runtime
(http://download.microsoft.com), and the Microsoft SQL database (e.g., Microsoft SQL
Express edition).

October 2006 Public

Amigo IST-2004-004182 109/118

Platform
Microsoft .Net 2.0 runtime.
Microsoft .Net 3.0 runtime.

Tools
None so far

Files
See [Amigo-OSS-Pub]

Documents

See [Amigo-OSS-Pub]

Tasks

Development started in Q1 2006. Subsequent releases are/will be available as listed below:

• M24: first (intermediate) version.

• M30: final version.

Bugs

None so far

Patches

None so far

October 2006 Public

Amigo IST-2004-004182 110/118

10 Accounting & billing

Provider
TID

Introduction
The Accounting and Billing middleware service will provide several functionalities:

• Mediator as defined in the IPDR standard: normalizes to IPDR.

• Data retrieval from (standard and non-standard) metering services (PUSH and PULL).

• Authorized entities may introduce and consult data in a non-standardized way.

• Authorized entities may consult data following the IPDR standard.

Development status
Final prototype at the end of M30. Also: M19 refined architecture, M22 early prototype, M24
first prototype.

Intended audience
Developers of applications requiring Accounting and Billing services.

License
LGPL

Language
Java

Environment (set-up) info needed if you want to run this sw (service)
Software:

• IPDR.org reference libraries

Platform
Any system capable of running JRE 1.5

Tools
None so far

Files
None so far

October 2006 Public

Amigo IST-2004-004182 111/118

Documents

None so far

Tasks

Development started in Q2 2006. Subsequent releases are/will be available as listed below:

• M24: first prototype.

• M30: final prototype.

Bugs

None so far

Patches

None so far

October 2006 Public

Amigo IST-2004-004182 112/118

11 In-home location management service

Provider
TELIN, FT, PAE, PHI

Introduction
The in-home location management service provides responses to various queries of location-
adaptive applications. Inputs of multiple location-determination technologies and services are
used and aggregated in order to quickly locate devices or users.

From a WP4 Context Management Service (CMS) perspective, the location management
service is a Context Interpreter. Since this is a specialization of a Context Source, this also
means that applications can use the location management service as a context source.

The different inputs are context sources to which the location management service is
subscribed. By combining the different types of location information, the location determination
of users and devices can potentially be more accurate than using a single source of location
information. Figure 11-1 shows the high-level architecture of the Location Management
Service.

The location management service also simplifies getting location information for location-
aware applications and services by providing a single point of contact for location information.

Currently identified as inputs to this service are: an Acoustic Position Estimation Sensor, a raw
Bluetooth context source, an RF positioning context source, and an integrated location
management system (AmiLoc). Additional context sources for location information can be
added if they become available within the Amigo project.

Location
Management

Service

Configuration
Service

Bluetooth
CS

Acoustic
Positioning

RF
Positioning RFID

CS CS CS CS

CS

 Figure 11-1: Location Management Service high-level architecture.

An example of the information that the location management service provides is given below.
This example indicates that a person identified as p.erson@office.company.eu is located in the
room known as A2.05@office.company.eu, with a 70% probability. Note that namespace and
type information is omitted from this example for clarity.

October 2006 Public

Amigo IST-2004-004182 113/118

<?xml version="1.0"?>
<rdf:RDF>
<UserLocation>
 <probability>0.7</probability>
 <timestamp>2006-09-18T00:00:00</timestamp>
 <isLocatedIn>
 <Office>
 <floorNumber>2</floorNumber>
 <identifier>A2.05@office.company.eu</identifier>
 </Office>
 </isLocatedIn>
 <isLocationOf>
 <User>
 <identifier>p.erson@office.company.eu</identifier>
 </User>
 </isLocationOf>
</UserLocation>
</rdf:RDF>

Development status
Development of the location management service started in Q1 of 2006 with focus on the
lower-level Context Sources that have to provide the input for the Location Management
Service.

The lower-level Context Sources are in various stages of development, but most are now
available from the repository, such as a raw Bluetooth context source, RF positioning, and
Acoustic positioning. AmiLoc is available for RDQL queries, and is currently undergoing further
work to support SPARQL queries, which is the query language for the CMS.

For the next release, the lower-level Context Sources have to be connected to the location
integration component.

Intended audience
Service and application developers that need to locate users and or track the location of users
and/or devices.

License
The location management service itself will be released under a LGPL license. The context
sources that may provide input to the location management service have different licenses.
Note that not all possible inputs are developed within the Amigo project. The known license
forms of the different input components are:

- Acoustic Position Estimation Sensor: proprietary license

- RF Positioning: proprietary license

- AmiLoc: proprietary license

- Raw Bluetooth context source: LGPL

- Bluetooth Place Lab : GPL

October 2006 Public

Amigo IST-2004-004182 114/118

Language
Java and C#

Environment (set-up) info needed if you want to run this sw (service)
The location management service needs a standard (Java) run-time environment with an
application server. Note that the context sources that provide the input may have additional
requirements, such as a (set of) microphone array(s) for the Acoustic Position Estimation
Sensor.

Platform
Windows/Linux, OSGi

Tools
None yet

Documents
Minimal

Tasks
First release using only AmiLoc as input: M24;

An intermediate release combining more inputs into one location: M27;

The final release of the location management service is scheduled for M30.

Bugs
None known yet

Patches
None yet

October 2006 Public

Amigo IST-2004-004182 115/118

12 Conclusion

D3.3 is the second deliverable on the prototype implementation and associated documentation
of the Amigo middleware. It comprises the present document and a multitude of other
delivered material:

• Developed source code of most Amigo middleware components;

• Developed ontologies in OWL constituting the service description vocabulary and
language;

• User's guide and developer's guide documents for components and ontologies; and

• Accompanying Javadoc-style and OWLDoc electronic documentation.

Delivered material besides the present document can be accessed – for the moment, in a
restricted way – on the Amigo OSS Repository - Public Web site [Amigo-OSS-Pub]. While we
deliver advanced or early implementation versions of most Amigo middleware components, we
also report on ongoing conceptual and design work for other middleware components.

D3.3 specifically addresses: the Amigo programming and deployment framework (advanced
implementation available); service description vocabulary and language (advanced
specification in OWL available); comprehensive service description, discovery, composition,
adaptation & execution (conceptual and experimental work, but also early implementations
available); interoperable service discovery & interaction middleware (final implementation
available); domotic infrastructure (final implementation available); security & privacy (advanced
implementation available); content distribution (pretty advanced implementation available);
data store (advanced implementation available); accounting & billing (early implementation
available); and in-home location management (early implementation available).

Our prototype implementation of the Amigo middleware is currently at a pretty advanced
stage, enabling developers of Amigo intelligent user services (WP4) and applications (WP5,
WP6, WP7) to already employ most middleware functionalities in their developments. As the
application work packages WP5, WP6, WP7 have now pretty much concretized their target
application demonstrators, the next step is to start integrating the Amigo middleware
components into the development of these demonstrators. At the same time, we continue our
work on improving the current versions of Amigo middleware components and on developing
new components that reflect our latest conceptual and design work.

October 2006 Public

Amigo IST-2004-004182 116/118

Appendix A
MICROSOFT EMIC AMIGO SHARED SOURCE LICENSE FOR NONCOMMERCIAL USE

"The Amigo partners are licensed to use the Deliverable in accordance with the Amigo
Consortium Agreement and EU Contract. If and when the Deliverable is released for
use by the general public on the terms of the licence below, the Amigo partners (as well
as the general public) may also use the Deliverable upon the terms of such licence.
However, their use of the Deliverable upon the terms of such licence shall not limit their
rights under the Amigo Consortium Agreement or EU Contract."

This License governs use of the accompanying Software (including source code), and
your use of the Software constitutes acceptance of this license. If you do not accept all
the terms of this license, you must not use the Software.

You may use this Software for any non-commercial purpose, subject to the restrictions
in this License. Some purposes which can be non-commercial are teaching, academic
research, and personal experimentation. You may also distribute this Software with books or
other teaching materials, or publish the Software on websites, that are intended to teach the
use of the Software.

You may not use or distribute this Software or any derivative works in any form for commercial
purposes. Examples of commercial purposes would be running business operations, licensing,
leasing, or selling the Software, or distributing the Software for use with commercial products.

You may modify this Software and distribute the modified Software for non-commercial
purposes, however, you may not grant rights to the Software or derivative works that are
broader than those provided by this License. For example, you may not distribute
modifications of the Software under terms that would permit commercial use, or under terms
that purport to require the Software or derivative works to be sublicensed to others.

You may use any information in intangible form that you remember after accessing the
Software. However, this right does not grant you a license to any of Microsoft's
copyrights or patents for anything you might create using such information.

In return, you agree:

1. Not to remove any copyright or other notices from the Software.

2. That if you distribute the Software in source or object form, you will include a verbatim
copy of this License.

3. That if you distribute derivative works of the Software in source code form you do so
only under a license that includes all of the provisions of this License, and if you
distribute derivative works of the Software solely in object form you shall do so only
under a license that complies with this License.

4. That if you have modified the Software or created derivative works, and distribute such
modifications or derivative works, you will cause the modified files to carry prominent
notices so that recipients know that they are not receiving the original Software. Such

October 2006 Public

Amigo IST-2004-004182 117/118

notices must state: (i) that you have changed the Software; and (ii) the date of any
changes.

5. THAT THE SOFTWARE COMES "AS IS", WITH NO REPRESENTATIONS,
WARRANTIES OR CONDITIONS. THIS MEANS NO EXPRESS, IMPLIED OR
STATUTORY REPRESENTATION, WARRANTY OR CONDITION, INCLUDING
(WITHOUT LIMITING THE SCOPE OF THIS EXCLUSION), WARRANTIES OR
CONDITIONS CONCERNING THE QUALITY OF OR FITNESS FOR ANY PURPOSE
OF THE SOFTWARE OR ANY REPRESENTATION OR WARRANTY OF TITLE OR
THAT THE USE OF THE SOFTWARE WILL NOT RESULT IN THE INFRINGEMENT
OF ANY PERSON’S RIGHTS. ALSO, YOU MUST PASS THIS DISCLAIMER ON
WHENEVER YOU DISTRIBUTE THE SOFTWARE OR DERIVATIVE WORKS.

6. THAT NEITHER MICROSOFT NOR ANY PERSON OR CORPORATION
CONNECETD WITH IT WILL BE LIABLE FOR ANY LOSS OR DAMAGE RELATED
TO THE SOFTWARE OR THIS LICENSE. THIS MEANS NO LIABILITY FOR ANY
DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL OR INCIDENTAL LOSS OR
DAMAGE, NO MATTER WHAT LEGAL THEORY IT IS BASED ON, TO THE
MAXIMUM EXTENT THE LAW PERMITSTHIS EXCLUSION. ALSO, YOU MUST
PASS THIS LIMITATION OF LIABILITY ON WHENEVER YOU DISTRIBUTE THE
SOFTWARE OR DERIVATIVE WORKS.

7. THAT THE EXCLUSIONS IN PARAGRAPHS 5 AND 6 ABOVE ARE REASONABLE
IN THE CIRCUMSTANCES. IN PARTICULAR, YOU ACKNOWLEDGE (1) THAT
THIS SOFTWARE HAS BEEN MADE AVAILABLE TO YOU FREE OF CHARGE, (2)
THAT THIS SOFTWARE IS NOT "PRODUCT" QUALITY, BUT HAS BEEN
PRODUCED BY A RESEARCH GROUP WHO DESIRE TO MAKE THIS SOFTWARE
FREELY AVAILABLE TO PEOPLE WHO WISH TO USE IT FOR NONCOMMERCIAL
PURPOSES ONLY, AND (3) THAT BECAUSE THIS SOFTWARE IS NOT OF
"PRODUCT" QUALITY (BUT IS THE RESULT OF BASIC RESEARCH), IT IS
INEVITABLE THAT THERE WILL BE BUGS AND ERRORS, AND POSSIBLY MORE
SERIOUS FAULTS, IN THIS SOFTWARE.

8. That no technical support will be provided in relation to the Software.

9. That if you sue anyone over patents that you think may apply to the Software or
anyone's use of the Software, your license to use the Software under the terms of this
License shall end automatically.

10. That your rights under this License shall end automatically if you breach it in any way.

11. That Microsoft reserves all rights not expressly granted to you in this License.

12. That, except to the extent that local laws necessarily apply, this license shall be
governed and construed in all respects in accordance with the laws of England and
Wales.

October 2006 Public

Amigo IST-2004-004182 118/118

References

[Amigo-D2.1] Amigo Consortium. Deliverable D2.1: Specification of the Amigo
Abstract Middleware Architecture. April 2005.

[Amigo-D3.2] Amigo Consortium. Deliverable D3.2: Amigo Middleware Core -
Prototype Implementation & Documentation. March 2006.

[Amigo-D9.5] Amigo Consortium. Deliverable D9.5: Web site for sharing open
source software developed within Amigo. March 2006.

[Amigo-OSS-
Pub]

Amigo Consortium. Amigo OSS Repository - Public Web Site.
http://amigo.gforge.inria.fr/home/index.html

[Amigo-OSS-
SCM]

Amigo Consortium. Amigo OSS Repository - Source Code
Management (SCM). http://gforge.inria.fr/projects/amigo/

[BGI05] S. Ben Mokhtar, N. Georgantas, and V. Issarny. Ad hoc
composition of user tasks in pervasive computing environments. In
Proceedings of the 4th Workshop on Software Composition
(SC’05), 2005.

[BGI06a] S. Ben Mokhtar, N. Georgantas, V. Issarny. COCOA:
COnversation-based Service COmposition in PervAsive Computing
Environments. In Proc. IEEE International Conference on Pervasive
Services (ICPS'06), Lyon, France, June 2006.

[BGI06b] S. Ben Mokhtar, A., N. Georgantas, V. Issarny. Efficient Semantic
Service Discovery in Pervasive Computing Environments. In Proc.
ACM/IFIP/USENIX 7th International Middleware Conference,
Melbourne, Australia, November 2006.

[BKGI06] Sonia Ben Mokhtar, Anupam Kaul, Nikolaos Georgantas, and
Valerie Issarny. Towards efficient matching of semantic web service
capabilities. In Proceedings of the workshop of Web Services
Modeling and Testing (WS-MATE’06), 2006.

[CF03] Ion Constantinescu and Boi Faltings. Efficient matchmaking and
directory services. In Proceedings of the IEEE International
Conference on Web Intelligence (WI’03), 2003.

[LI05] J. Liu and V. Issarny. Signal strength-based service discovery (s3d)
in mobile ad hoc networks. In Proceedings of the IEEE personal
indoor mobile radio communication (PMRC’05)), 2005.

[P02] M. Paolucci et al., Semantic matching of Web Services capabilities,
In Proceedings of the 1st International Semantic Web Conference
(ISWC 2002)

[SPS04] Naveen Srinivasan, Massimo Paolucci, and Katia Sycara. Adding
owl-s to uddi, implementation and throughput. In Proceedings of the
Workshop on Semantic Web Service and Web Process
Composition, 2004.

