
Scientific Communication

Centre of Innovation in Telecommunications and Integration of services

JooFlux: Hijacking Java 7 InvokeDynamic
To Support Live Code Modifications

Julien Ponge & Frédéric Le Mouël

October 2012

Changing functional and non-functional software implementation at runtime is useful and even

sometimes critical both in development and production environments. JooFlux is a JVM agent

that allows both the dynamic replacement of method implementations and the application

of aspect advices. It works by doing bytecode transformation to take advantage of the new

invokedynamic instruction added in Java SE 7 to help implementing dynamic languages for

the JVM. JooFlux can be managed using a JMX agent so as to operate dynamic modifications

at runtime, without resorting to a dedicated domain-specific language. We compared JooFlux

with existing AOP platforms and dynamic languages. Results demonstrate that JooFlux perfor-

mances are close to the Java ones — with most of the time a marginal overhead, and sometimes

a gain — where AOP platforms and dynamic languages present significant overheads. This

paves the way for interesting future evolutions and applications of JooFlux.

University of Lyon

INSA Lyon

INRIA



JooFlux: Hijacking Java 7 InvokeDynamic

To Support Live Code Modifications

Julien Ponge and Frédéric Le Mouël

University of Lyon

INSA-Lyon, CITI-INRIA F-69621, Villeurbanne, France

julien.ponge@insa-lyon.fr and frederic.le-mouel@insa-lyon.fr

October 2, 2012

Abstract

Changing functional and non-functional software implementation at runtime is useful and even

sometimes critical both in development and production environments. JooFlux is a JVM agent

that allows both the dynamic replacement of method implementations and the application of aspect

advices. It works by doing bytecode transformation to take advantage of the new invokedynamic

instruction added in Java SE 7 to help implementing dynamic languages for the JVM. JooFlux can

be managed using a JMX agent so as to operate dynamic modifications at runtime, without resorting

to a dedicated domain-specific language. We compared JooFlux with existing AOP platforms and

dynamic languages. Results demonstrate that JooFlux performances are close to the Java ones

— with most of the time a marginal overhead, and sometimes a gain — where AOP platforms and

dynamic languages present significant overheads. This paves the way for interesting future evolutions

and applications of JooFlux.
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1 Introduction

Most applications are — to some degree — relatively static. This is especially true for software developed
using statically typed languages. Most dynamically-typed languages offer the ability to replace methods
at runtime, also coined as monkey patching. Even so, this is rarely possible to perform from outside
the program: such changes can be performed by the program, not by some out of process management
tool. Very few languages make it easy to do so from the outside, even purely functional languages with
read-eval-print loops.

Dynamically changing code implementation at runtime has many virtues though [7, 9]. In develop-
ment phases, a significant share of time is lost due to the need to restart applications to see the effect of
source code changes. In production, applying an important security or bug fix requires the same restart
procedure, this time impacting the deployed application availability and causing issues to end-user. A
full restart can take several minutes to be validated and performed, while in such cases the fix may
simply consist in replacing some method implementation without introducing any side-effect like chang-
ing methods signatures. Adding cross-cutting concerns, such as logging or security aspects, can also be
mostly useful for capturing, monitoring and managing non-functional behaviours. The ability to dynam-
ically apply and/or remove aspects in a program is especially appealing, again both in development and
production contexts.

In the case of adaptive execution environments like a Java virtual machine, this however involves
loosing potential optimizations, that can only be obtained and stabilized by a long-running process,
leading to performance deterioration.

Our proposal This paper describes a new approach to dynamically patch and weave aspects to a Java
application at run-time by transforming the whole application and making it dynamic.

Our contributions are as follows.

1. We designed and developed a Java agent that intercepts and modifies the bytecode at runtime to
replace all method invocations by the new Java 7 invokedynamic bytecode.

2. We propose a control API available through a JMX agent that allows to dynamically manage the
modifications at runtime without the need for a dedicated language or annotation/pointcut inserts.

3. We present a comparison between our JooFlux prototype, existing AOP platforms and dynamic
programming languages. Results demonstrate that JooFlux performances are close to the Java
ones — with most of the time a marginal overhead, and sometimes a gain — while AOP platforms
and dynamic languages present significant overheads.

Paper structure This paper is structured as follows. We start with a contextual overview with
brief recalls on aspect-oriented programming, the Java virtual machine and the new invokedynamic

instruction. Next, we give details on how JooFlux works before comparing its performances with other
platforms and programming languages with dynamic-dispatch. Finally, we discuss the related work and
give perspectives for future work.

2 Context

Let us present the context into which this work was conducted. This section contains 3 parts. We start
with an informal recall on aspect-oriented programming. We then continue with an overview of the Java
Virtual Machine. Finally, we focus on a significant evolution made starting from Java SE 7 to ease the
support of dynamic languages, and that is at the core of our approach.

2.1 Aspect-oriented programming

Aspect-oriented programming (AOP) aims at modularizing the cross-cutting concerns in programs with
most of these being related to non-functional code, e.g. security, validation, logging or transactions [11].
Indeed, such code often needs to be repeated across several application layers, increasing the maintenance
costs as both functional and non-functional code get mixed together.

AOP attempts to solve this problem as follows:



1. an aspect captures a cross-cutting concern as a single code unit, and

2. a point-cut specifies a set of precise points in a program, and

3. an advice materializes the application of an aspect at a point-cut.

As an example, suppose that we would like to log each invocation to a getter of the classes in package
foo. To do that, an aspect would be the code performing the logging logic, the point-cut would be
the set of calls to public methods of the classes in package foo whose names start with get. An AOP
processor, also called a code weaver, would apply the aspect to every matching pointcut specified for the
advice application.

In practice, the Eclipse AspectJ project is an established AOP framework for Java that features its
own language [22]. Other approaches exist too [19, 5, 6]. An AspectJ source code unit can define aspects,
point-cuts and advices. It can also define inter-type declarations, that is, the ability to add new field and
method members to existing types.

Technically, AspectJ works by modifying compiled bytecode either statically by transforming .class

files, or at runtime through the use of a dedicated class loader or JVM agent. In turn, aspects which are
essentially “just Java code”, get compiled into separate classes. The AspectJ weaver then applies advices
by inserting method calls from the bytecode matching a point-cut to the corresponding aspect. Back
to our example, the logging aspect would be a compiled class, and each invocation to a matched getter
method would be preceded with a invocation of the method holding the logging logic in the generated
aspect.

2.2 The Java Virtual Machine

The Java Virtual Machine (JVM) specification has been very stable since its inception [13]. A JVM
consumes bytecode that is traditionally enclosed into .class files that represent Java classes. The
format of a compiled class was designed to mimic a Java source file: a compiled .class file contains a
single Java class, a set of fields and methods. It also contains a constant pool, that is, a set of indexed
constant values that can be referred to by number in the bytecode, thus reducing the compiled bytecode
footprint by avoiding duplicates.

The execution model of the JVM lies around a stack. Opcodes may manipulate the
stack, consume element as operands, and push new elements. As an example, invoking the
int java.lang.String::indexOf(String) instance method consumes 2 elements from the stack: a
java.lang.String instance to invoke the method followed by another instance that corresponds to the
sole parameter. In return, it pushes a primitive int value as a return value.

Consider the following Java class:

public class Hello {

public static void main(String... args) {

System.out.println("Hello!");

}

}

Using a decompiler tool such as javap, the bytecode corresponding to the main() method is as
follows:

public static void main(java.lang.String...)

flags: ACC_PUBLIC, ACC_STATIC, ACC_VARARGS

Code:

stack=2, locals=1, args_size=1

0: getstatic #2

3: ldc #3

5: invokevirtual #4

8: return



The getstatic opcode is used to lookup the out field in the java.lang.System class which was the
second entry from the class constant pool. The ldc opcode then loads the third value: the "Hello"

string. Finally, the println(String) virtual method is invoked before returning, with the method
reference corresponding to the fourth entry in the constant pool.

While the Java bytecode class format was designed specifically with the requirements of the Java
programming language in mind, it is still a general-purpose bytecode. In fact, the Java bytecode is
strictly more expressive than its counterpart language, a property that has been widely exploited in
applications like obfuscation [3].

The JVM does not limit itself to running applications written in Java. There is a vibrant ecosystem
of programming languages targeting the JVM. This includes ports of previously-existing languages to the
JVM (e.g., JRuby, Jython, Rhino) or original languages that appeared first on the JVM (e.g., Groovy,
Scala, Clojure). Indeed, there has been extensive virtual machine optimization research supported by
industrial validation that make the JVM a compelling target runtime for a language [15, 12, 8].

2.3 Java SE 7 and the new invokedynamic opcode

The JVM specification provides 4 opcodes for invoking methods. invokestatic is used for static
methods. invokevirtual is used when dispatching shall be performed based on the receiver type.
This corresponds to public and protected methods in Java as they may be overridden in subclasses.
invokespecial is used to dispatch to the other types of methods such as private methods and con-
structors. Finally, invokeinterface is used to dispatch a method to a receiver instance implementing
the said interface. This set of method invocation opcodes remained stable until the release of Java SE 7
when invokedynamic was introduced [20].

A new opcode The motivation for a new method invocation opcode was to make it easier for dynamic
languages to be implemented on top of the JVM. Indeed, dynamic languages often need to resolve types,
symbols and invocation targets at runtime. Using either of the previous method invocation opcodes,
dynamic language implementors had to rely on reflection and dynamic proxy generations to delay such
tasks to the runtime. This proved to be slow in practice, as just-in-time optimizations were rarely picked
up efficiently by the virtual machines.

invokedynamic is very similar to invokeinterface and invokevirtual in the sense that the method
dispatch is performed at runtime. However, both still require a receiver type, that is, a base class or
interface declaring the target method signature. invokedynamic relaxes this and is closer to function
pointers semantics as, say, in C. More specifically, invokedynamic opcodes work with:

1. a symbolic name to designate the invocation, and

2. a type signature for the parameters and return type, and

3. a bootstrap instruction that is invoked the first time that a given invokedynamic opcode is en-
countered (a call site).

A runtime support API The role of the bootstrap instruction is to bind the call site with a target
to handle invocations. To do that, there is a new API found as part of the java.lang.invoke package,
and which defines 2 useful types. CallSite represents a call site, and is the return value of the bootstrap
process. It points to a MethodHandle which is either a direct reference to a class method or field, or a
chain of method handles called combinators [20]. Here is an usage example of the new API:

public static MethodHandle replaceSpaces(Lookup lookup) throws Throwable {

return insertArguments(lookup.findVirtual(String.class, "replaceAll",

methodType(String.class, String.class, String.class)), 1, "%20", " ");

}

public static void main(String... args) throws Throwable {

MethodHandle mh = replaceSpaces(lookup());

System.out.println((String) mh.invokeExact("A%20B%20C%20"));

}



It shows how to obtain a method handle over the String.replaceAll(String, String) method.
Once this is done, we insert an insertArguments combinator whose role is to pre-bind arguments to
constant values. In this case we bind both arguments of replaceAll() so that when invoked, the method
replaces occurrences of "%20" with " ". As this is a virtual method, the argument at index 0 is actually
the receiver object. Finally, the method handle can be invoked, in this case printing "A B C". Of course,
a wider range of combinators exists, but the point is that method handles can be manipulated to point
to concrete methods or some transformation / adaptation code as we will see later in this paper.

Call
Site

MethodHandle

MethodHandle

(...)

MethodHandle

Combinators:
    asType()
    asCollector()
    dropArguments()
    guardWithTest()
    (...)

Target

(...)
ldc "A%20B%20C"
invokedynamic replaceSpaces:(Ljava/lang/String;)Ljava/lang/String;
              bootstrap -> invokestatic Indy1.bootstrap(...)
(...)

public static CallSite bootstrap(Lookup lookup, String name, 
                       MethodType type) throws Throwable {
  return new ConstantCallSite(replaceSpaces(lookup));
}

Figure 1: Bootstrapping an invokedynamic call site.

The link between an invokedynamic opcode and the bootstrap method is usually done by invoking a
static method that obtains a method handle whose type matches those of the call site, then instantiates
a CallSite and returns it. This is illustrated in Figure 1. The call site instance is only assigned once
by invoking the bootstrap method the first time the invocation is made.

One of the main improvement in using invokedynamic is that combinator chains are assigned to
identifiable call sites and have plugs into the JVM internals. This way, optimizations can be put in
place more easily than with traditional reflective approaches [21]. Another point is that call sites may
be re-targeted to new method handles, which is useful to, say, implement instance method redefinition
at runtime as allowed in languages such as Python or Ruby. Also, method handles are type-checked only
at creation time, unlike reflection objects that need to perform such checking for each invocation. This
yields better method dispatching performance.

3 JooFlux

This section gives technical details on how JooFlux works. Specifically, we explain how it introduces
a method call indirection through bytecode rewriting and the invokedynamic instruction. Then, we
explain how aspect advices can be attached to methods, both before and after they are being executed.



Finally, we present the management layer of JooFlux that allows methods to be replaced, and aspect
advices to be injected, all at runtime.

3.1 Introducing a method call indirection

JooFlux works by introducing an indirection on method invocations, so that method replacement and
application of aspects can be performed at runtime. While JooFlux primarily focuses on bytecode emitted
by a compiler for the Java programming language, it can theoretically work with any valid JVM bytecode
produced by another language such as Scala [14].

In JooFlux, we took the approach of taking advantage of invokedynamic, as the possibility of dy-
namically rebinding call sites to new method handles chains effectively permits method implementations
to be changed. Also, the range of method handle combinators includes what to perform additional pro-
cessing on both invocation arguments and return values. As we will see, this effectively allows us to
implement aspect-oriented programming.

As of version 7, Java (the language) does not rely on invokedynamic. Compiled Java bytecode
perform method invocations using the original invokestatic, invokevirtual, invokespecial and
invokeinterface opcodes.

Figure 2: Overview of the JooFlux JVM agent.

Java virtual machines offer the possibility to attach agents. Once plugged into a JVM, an agent is
able to perform many operations, including the ability to define itself as a bytecode transforming agent.
By doing so, an agent can intercept bytecode as it is being loaded into the JVM, and it can rework it by
adding and removing instructions.

JooFlux works as a JVM agent for which Figure 2 gives an overview. When classes are being loaded,
it looks for occurrences of invokestatic, invokevirtual, invokespecial or invokeinterface and
replaces them by a semantic-preserving invokedynamic instruction. By doing so, original call sites get
bound at runtime to method handles. The bytecode transformations are being made using the ASM
library1.

Initially, the call sites point to method handles to the original classes methods. For instance, when
a invokestatic instruction is in the bytecode, it is replaced by a invokedynamic instruction whose
symbolic name is based on the original invokestatic target signature. This is useful to have a uniform
naming scheme when we later want to perform replacements and aspect injection. The type of the
original target is preserved too. The JooFlux runtime call site bootstrap class provides several static
methods depending on the original invocation type, i.e. static, virtual, special and interface. By doing
so, we only introduce a thin indirection layer.

3.2 Aspect advices using method handle combinators

In existing tools such as AspectJ, an aspect advice is injected by adding new instructions to the original
bytecode. For instance, an AspectJ advice whose pointcut is before a method invocation will be applied

1ASM 4.0: http://asm.ow2.org/

http://asm.ow2.org/


just before the said method call site. To do so, a first static method is invoked to fetch the aspect class
instance, then a second method invocation is performed on it to the method that corresponds to the
advice. This can be easily checked by decompiling bytecode. Other tools such as JBoss Byteman work
in a similar fashion, while in the case of the later new rules / advices can be injected and removed at
runtime by reloading class definitions. This is allowed by the JVM as long as the reloaded classes only
change method implementations but do not add or remove methods and fields.

JooFlux does not require adding new instructions into the transformed bytecode. Also, it
does not require reloading classes as new advices are being injected, or when method implementa-
tions are being replaced. Instead, it mainly relies on 2 method handle combinators found in the
java.lang.invoke.MethodHandles class:

1. filterArguments takes a target method handle, an argument position and an array of filter func-
tion method handles, and

2. filterReturnValue takes a target method handle and a filter function method handle.

The filter method handle function types must match those of their target methods. In our case, we
opted for a generic approach that would fit all kinds of target methods. Hence, JooFlux advices work
with arrays of objects matching the arguments when intercepting invocations, and they use objects when
intercepting returns. The following is an example class providing 2 static methods that can be used as
logging advices:

public class Dumpers {

public static Object[] onCall(Object[] args) {

System.out.println(">>> " + Arrays.toString(args));

return args;

}

public static Object onReturn(Object retval) {

System.out.println("<<< " + retval);

return retval;

}

}

In this example the advice methods simply log the invocation arguments and return values. They
could as well do other things such as throwing an exception if some argument value is invalid. Also,
because they act as filters, they can modify argument values before they are given to the target, and
they can modify the return value before the invocation client obtains it.

Advices can be stacked, that is, several of them may be applied to a given target method. For instance,
we could stack a validation and a logging advice to be executed before a method is being invoked. What
an advice can do also depends on the target method original invocation mode. In the case of static
methods, the arguments array simply contains the values corresponding to the static method signature.
However in the case of instance methods, the first argument is the receiver, that is, the instance of the
object that the method shall be invoked on.

Finally, we mentioned that target and filter method handles must match. However we opted for a
generic solution that can work with any method signature. To make this work, we took advantage of
2 further method handle combinators. The first one is asSpreader, which can wrap some arguments
into an array. The second one is asCollector, which performs the reverse operation by mapping the
values of an array to parameters. For method invocation interception, we first wrap all arguments into
a Object[] array using asSpreader. We can then pass it to the advice method, and extract the filtered
values from the resulting array back to the target method parameters using asCollector. The case of
method return interception is simpler as it does not require using such combinator chain. Instead, we
just need to loosen the return value type to Object before passing it to the advice, then narrow it again
to its original type before returning to the method invoker. Such type transformations happen with the
asType combinator.



3.3 Managing JooFlux: live method replacement and aspects injection

Call sites are being put in a central registry at bootstrap time. This registry sports no role while
application code is being executed, and there is also no lookup penalty in having it. It is used by the
management layer of JooFlux in several ways. To do so, JooFlux offers a JMX2 agent for querying and
interacting with itself.

This agent offers the following set of remotely-accessible operations:

1. replacing method implementations by changing their call site targets, and

2. plugging an aspect advice before or after certain call sites, and

3. querying for various metrics, including the number of call sites monitored by JooFlux and a list of
them.

As an example, let us see the interaction with the method replacement operation, whose signature
as a JMX interface method is

void changeCallSiteTarget(String methodType,

String oldTarget, String newTarget)

The methodType parameter specifies the type of method invocation in the original bytecode: static,
virtual, interface and special. The last 2 parameters specify an identifier for a call site to be replaced
and a new method handle to use as a target.

Figure 3: Interacting with an application through the JooFlux JMX agent.

Figure 3 features a graphical application with a button on the left pane and a text label on the right
pane. By connecting to the JooFlux JMX agent of the application using a tool such as jconsole, we can
replace the button action handler so that the next time it is clicked, a picture replaces the label. In that
specific demonstration case, we used the following input to the changeCallSiteTarget JMX operation:

virtual, // virtual method

fr/insalyon/telecom/joofluxtest/gui/switcher/

MyActionListener.counterIncrement:(MyActionListener)void, // handler id

fr/insalyon/telecom/joofluxtest/gui/switcher/

MyActionListener.pictureSwitch:()V // our new handler

2Java Management Extensions: http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html

http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html


Injecting an aspect into an existing call site works in a similar fashion:

void applyBeforeAspect(String callSitesKey,

String aspectClass, String aspectMethod)

void applyAfterAspect(String callSitesKey,

String aspectClass, String aspectMethod)

4 Experimental comparison with AOP platforms and dynamic

languages

To assess our approach, we compare the performance of the Java Virtual Machine with our JooFlux
agent to other dynamic method call dispatching approaches: AOP platforms (section 4.1) and dynamic
programming languages (sections 4.2-4.3).

All these approaches are JVM-based and have been tested with micro- and macro-benchmarks on a
MacBook Pro 2,3 GHz Intel Core2 (i5), 4 Go 1333 MHz DDR3, running Mac OS X Lion 10.7.4 (11E53)
and the OpenJDK Runtime Environment 1.7.0-u10-b06-201209063. These tests were renewed 10 times
to constitute the result set. Quartiles and median overhead were calculated on this result set.

4.1 Micro-benchmarks and AOP platforms

We compare JooFlux aspect injection functionality with two other AOP platforms: AspectJ4[10] and
Byteman5[6]. We use a classic recursive Fibonacci micro-benchmark (classicfibo)6 where we inject an
empty aspect - i.e. a redirection call to an empty method - before or/and after the Fibonacci method.
Results are presented in Table 1.

Execution times of the AspectJ generated bytecodes are close to the JVM ones, but it weaves the
aspects statically during the compilation and no modification can be performed at runtime. Byteman
allows the aspect injection at runtime by unloading the class, and modifies the bytecode during the
reloading. This technique degrades significantly the performance and implies that all optimizations
achieved by the JIT are lost. The bytecode generated by JooFlux already includes dynamic calls, so the
cost of weaving an aspect is just the cost of including a new combinator in the method handle chains,
recopying the arguments and transferring the return value. By keeping the method handle chain almost
intact, JooFlux protects the JIT optimizations.

4.2 Micro-benchmarks and dynamic languages

Several programming languages propose the dynamic method dispatch directly in the language, e.g.
with reflective APIs. To test the JooFlux dynamic method dispatch functionality, we compare it to the
main JVM-based programming languages: Java7, Clojure8, JRuby9, Groovy10, Rhino JavaScript11 and
Jython12.

We first use the same Fibonacci micro-benchmark to test the performance. According to the pro-
gramming languages, the Fibonacci method can be written in different manner: the classicfibo that
manipulates objects, the fastfibo that manipulates long-typed parameters, the fastestfibo that ma-
nipulates long-typed parameters and return long-typed results and finally the reflectivefibo where

3OpenJDK Runtime Environment 1.7.0-u10-b06-20120906: http://code.google.com/p/openjdk-osx-build/
4AspectJ 1.7.1: http://www.eclipse.org/aspectj/
5Byteman 2.1.0: http://www.jboss.org/byteman/
6Recursive Fibonacci: http://en.wikipedia.org/wiki/Recursion_(computer_science)#Fibonacci
7Java 7: http://docs.oracle.com/javase/7/docs/api/
8Clojure 1.4.0: http://clojure.org
9JRuby 1.6.7.2 (-indy), 1.7.0.preview2 (+indy): http://jruby.org

10Groovy 2.0.2 (-+indy): http://groovy.codehaus.org
11Rhino Javascript 1.7R4: https://developer.mozilla.org/en-US/docs/Rhino
12Jython 2.5.3: http://www.jython.org

http://code.google.com/p/openjdk-osx-build/
http://www.eclipse.org/aspectj/
http://www.jboss.org/byteman/
http://en.wikipedia.org/wiki/Recursion_(computer_science)#Fibonacci
http://docs.oracle.com/javase/7/docs/api/
http://clojure.org
http://jruby.org
http://groovy.codehaus.org
https://developer.mozilla.org/en-US/docs/Rhino
http://www.jython.org


Exec. Plat. Weav. Time Impl. Q1-min Q2-25% Q3-median Q4-75% Q5-max Overhead

JVM - classicfibo 611 613 615 616 636 -

compilation

classicfibo
609 613 620 621 650 +0,8%

+ before aspect

JVM +
classicfibo

609 611 620 621 693 +0,8%
AspectJ

+ after aspect
classicfibo

609 613 620 622 717 +0,8%+ before aspect
& after aspect

runtime

classicfibo
3007 3028 3051 3070 3525 +396%

+ before aspect

JVM +
classicfibo

1269 1273 1280 1295 1356 +108%
JooFlux Agent

+ after aspect
classicfibo

3804 3830 3861 3893 3950 +528%+ before aspect
& after aspect

runtime

classicfibo
79309 84998 85371 85695 86397 +13781%

+ before aspect

JVM +
classicfibo

82561 82780 82911 83040 83406 +13381%
Byteman

+ after aspect
classicfibo

179984 188088 188187 188321 188971 +30499%+ before aspect
& after aspect

Table 1: Fibo(40) micro-benchmarks for AOP platforms (in ms)

each method invocation use the reflective API. These different implementations are important because
they influence the generated bytecode and hence performance.

Java results are presented in Table 2. JooFlux overhead is insignificant for classicfibo and presents
a slowing factor of 2 for reflectivefibo. This implementation is indeed our worst case as the JVM can
hardly inline the method calls.

P. Lang. Exec. Plat. Impl. Q1-min Q2-25% Q3-median Q4-75% Q5-max Overhead

Java JVM
classicfibo 611 613 615 616 636 -

reflectivefibo 1758 1762 1782 1803 4121 -

Java
JVM + classicfibo 611 613 616 618 690 +0,001%

JooFlux Agent reflectivefibo 3668 3686 3717 3743 4273 +108%

Table 2: Fibo(40) micro-benchmarks for Java programming language (in ms)

The others programming languages results are presented in Table 3. The different classicfibo,
fastfibo and fastestfibo overheads are calculated compared to JVM+JooFlux classicfibo.
reflectivefibo implementations are still compared to JVM+JooFlux reflectivefibo one.

Even if Clojure strongly-typed implementations presents only a slowdown factor of 1.2-1.4, most other
languages are from 3 to 18 times slower than our Java+JooFlux prototype. JRuby and Groovy languages
propose earlier versions using the invokedynamic bytecode (+indy, figures in italic in the Table 3) but
even if they gain a slowing factor, they remain significantly slower than Java+JooFlux.

For AOP and dynamic languages Fibonacci micro-benchmarks, our JooFlux agent rewrites the byte-
code in 75-100ms for a transformation of 2 classes (Fibonacci and InvokeBootstrap - the bootstrap
itself is dynamic) and 1 method (classicfibo). This delay is introduced before the application launch,
so it is quite insignificant and comparable to other platforms launching times.

4.3 CPU-intensive and interception/rewrite-intensive macro-benchmarks

To test more intensively the JooFlux dynamic method dispatch, we have used 3 macro-benchmarks:



P. Lang. Exec. Plat. Impl. Q1-min Q2-25% Q3-median Q4-75% Q5-max JooFlux Diff

Clojure JVM
fastestfibo 722 732 734 740 742 +19%

fastfibo 859 862 864 875 892 +40%
classicfibo 4105 4118 4171 4265 4326 +577%

JRuby
JVM

classicfibo
6290 6333 6382 6486 7043 +936%

(3982) (4006) (4020) (4069) (4323) (+552%)
(+indy)

reflectivefibo
10226 12020 12060 12076 12288 +224%
(7545) (7561) (7581) (7621) (7737) (+104%)

Groovy JVM

fastestfibo
1383 1388 1394 1401 1417 +126%

(3061) (3077) (3092) (3150) (3165) (+402%)

fastfibo
2709 2721 2725 2749 2766 +342%

(2513) (2519) (2528) (2540) (2583) (+310%)

(+indy) classicfibo
8660 8691 8716 8726 9066 +1315%
(4461 (4488) (4522) (4584) (4656) (+634%)

reflexivefibo
57734 57892 58009 58182 58364 +1460%
(8366 (8378) (8386) (8405) (8697) (+125%)

Javascript JVM classicfibo 9052 9208 11275 11441 11764 +1730%
Jython JVM classicfibo 29053 29258 29675 30202 31871 +4717%

Table 3: Fibo(40) micro-benchmarks for JVM-based dynamic languages (in ms)

1. SCImark 2.013: SciMark 2.0 is a CPU- and memory-intensive Java benchmark for scientific and
numerical computing. It measures several computational kernels and reports a composite score in
approximate Mflops.

2. A parallel file wordcounter with Fork/Join [17]: This file wordcounter is a memory- and IO-intensive
Java benchmark that looks down a repository hierarchy and counts words inside each file.

3. The execution of Clojure runtime over JooFlux: We have used the Clojure language runtime –
written in Java – to have an Interception-intensive benchmark.

SCImark 2.0 The benchmark performs Fast Fourier Transformations (FFT), Jacobi Successive Over-
relaxation (SOR), Monte Carlo integration (MC), Sparse matrix multiply (SM), dense LU matrix fac-
torization (LU) and computes a composite score (CS). These calculations can be done with a small- or
large-memory data set.

Performance results with and without-JooFlux are presented in Table 4. Almost all calculations have
a positive or negative marginal overhead, except the Monte Carlo integration that loses 20% perfor-
mance. The Monte Carlo algorithm exercises random-number generators, synchronized function calls,
and function inlining that can explain the JIT difficulties.

FFT SOR MC SM LU CS

210 220 102
×102 103

×103 -
N=103

N=105

102
×102 103

×103 Small Large
nz=5.103

nz=106

JVM 827 178,7 1196,5 1077,6 635,4 1180,8 1227,8 2467,8 1490,2 1261,5 915,4
JVM +

824,3 178,5 1193,2 1080,3 507,2 1172,9 1249,5 2325,9 1489,7 1204,9 900,2
JooFlux

Perf. -0,3% -0,1% -0,3% +0,3% -20% -0,7% +1,8% -5,8% -0,03% -4,5% -1,7%

Table 4: SCImark2.0 small and large macro-benchmarks (in Mflops)

Parallel file wordcounter with Fork/Join We apply the file wordcounter to the HotSpotVM source
repository (2.103 files) with a mono-thread process and with a 2-threads on 2-cores parallel execution.

13SCImark 2.0: http://math.nist.gov/scimark2/

http://math.nist.gov/scimark2/


As shown in Table 5, surprisingly, the bytecode modified by JooFlux betters the performances. This
result demonstrates that synchronized method calls are not affected by the invokedynamic indirection
and the JIT can even apply a better inlining.

Exec. Plat. Impl. Q1-min Q2-25% Q3-median Q4-75% Q5-max Overhead

JVM

wordcounter
3707 3727 3733 3752 4769 -

single thread
wordcounter

1826 1934 2161 2235 5949 -
fork/join 2 threads

wordcounter
3634 3646 3658 3689 4829 -2%

JVM + single thread
JooFlux Agent wordcounter

1825 1916 2029 2070 2407 -6%
fork/join 2 threads

Table 5: Parallel file wordcounter macro-benchmarks for Java programming language (in ms)

Clojure over JooFlux The Clojure language runtime is a quite large Java application (3.103 classes)
and we use it as an interception-intensive benchmark. We have retested the Fibonacci micro-benchmark,
but this time with a total Clojure rewritten bytecode: 1325 transformed class, 26866 transformed methods
and 19646 initial interceptions. We do not log the total number of dynamic method call interceptions as
continuous loggers dramatically slow down the performance.

Table 614 presents the results. The overhead introduces is still insignificant compared to the execution
time. We can say so that having a dynamic Clojure is effectively nice15 and has no cost at runtime !
The 4s bytecode transformation time is not any more negligible but this cost is only applied one time at
launch time and it’s a low price to let the entire application becomes dynamic !

P. Lang. Exec. Plat. Impl. Q1-min Q2-25% Q3-median Q4-75% Q5-max Overhead

Clojure JVM
fastestfibo 701 702 704 708 717 -

fastfibo 839 845 848 851 855 -
classicfibo 3969 3978 3984 4010 4093 -

Clojure
JVM +

fastestfibo 695 699 702 704 713 -0,3%

JooFlux Agent
fastfibo 856 861 864 868 891 +1,9%

classicfibo 3957 3969 3980 4002 4069 -0,1%

Table 6: Fibo(40) for Clojure over a JVM+JooFlux execution plate-form (in ms)

5 Related work

Software dynamic updates The ability to dynamically update software at runtime is anything but
a new idea, and it has been investigated by many research works [7, 9]. In fact, the techniques to
be leveraged vastly dependent on target the programming language semantics and runtime. Dynamic
software updates has been investigated as low as the operating system kernel level in works such as [2]
and [16]. Closer to the context of applications running on a Java virtual machines, the work in [24]
studies applying modifications of Java code at runtime. The approach supports modification of classes,
including adding and removing fields and methods. However, this requires the usage of a modified virtual
machine. The same authors continued their approach based on virtual machine modifications in [23], and
applied it to dynamic aspect-oriented programming. It should also be mentioned that class definitions
may be reloaded in the JVM. This is what debuggers do, and JVM agents such as the one provided

14Fibo(40) in Clojure does not have exactly the same performance in Table 6 and Table 3. To allow a good comparison,
we prefer presenting Clojure+JVM results tested at the same time as Clojure+JVM+JooFlux, in the same test run.

15Why Clojure doesn’t need invokedynamic, but it might be nice:
http://blog.fogus.me/2011/10/14/why-clojure-doesnt-need-invokedynamic-but-it-might-be-nice/

http://blog.fogus.me/2011/10/14/why-clojure-doesnt-need-invokedynamic-but-it-might-be-nice/


by JBoss Byteman leverages this mechanism. This works only with stable class definitions though, and
accumulated JIT optimizations get lost on reload.

Aspect-oriented programming Many works focus on the design and implementation of aspect-
oriented programming. AspectJ is a well-known tool comprising a compiler and language [10]. While
static, it allows for efficient bytecode transformation when weaving aspects, and offers a fine-grained
language to define pointcuts. Javassist is another proposal to do AOP in Java [5]. Some works focus
on the ability to weave aspects in a dynamic fashion [19, 18]. JBoss Byteman is particularly interesting
as it features a event-condition-action rule language [6]. Also, it can attach its JVM agent to already
running applications as well as apply or remove rules dynamically. The work in [4] further illustrates
that providing modified virtual machines is a sound solution to support a complete range of modification
operations to running Java applications. This concords with the results in [23].

Virtual machines The field of virtual machines is no short of challenges. The JVM is an attrac-
tive platform for research given its open specification [13]. Many works focus on improving the JVMs
performance [15, 12, 8]. The design of the JVM has an initial bias towards favouring statically typed
languages. The rise of interest in dynamic languages running on the JVM yield to the invokedynamic

instruction and the java.lang.invoke API [20]. This facilitates the implementation of such languages,
and it also gives efficient plugs into the JVM internals so as to benefit from adaptive optimizations [21].
New usages of invokedynamic are starting to appear [1], and it is poised to serve as an implementation
technique for the support of lambdas in Java 816.

6 Conclusions and perspectives

We conclude this paper with some perspectives envisioned at this early stage of the project, and give
pointers to obtain a copy of our prototype.

6.1 Conclusion

This paper introduced JooFlux, a JVM agent that allows both the dynamic replacement of method
implementations and the application of aspect advices. Compared to existing approaches, JooFlux takes
a novel route by taking advantage of the new invokedynamic instruction added in Java SE 7. To
do so, it performs bytecode rewriting by introducing an invokedynamic-based indirection on method
invocations, which is later used to dynamically modify the intercepted call sites. As shown in the earlier
micro-benchmarks, the runtime overhead of JooFlux is marginal for method invocations, and fairly
limited when aspects are being injected. In any case, JooFlux shows interesting performance compared
to related approaches such as AOP tools or dynamic languages that rely on dynamic dispatch. More
interestingly, JooFlux does not involve reloading whole classes on either method replacement or advice
injection, which keeps a large range of just-in-time compilation optimizations valid. It does not require
a specifically-tailored virtual machine. Also, the thin indirection layer introduced by JooFlux does not
require lookups or guard checks for call site invalidation, greatly helping virtual machines in adaptive
optimization work. Finally, JooFlux works in a transparent fashion by directly operating at the method
call site level. As such, it does not require a dedicated language to specify where and what changes to
apply.

6.2 Future work

JooFlux is currently a research prototype that demonstrates how invokedynamic can be cleverly used for
other purposes than implementing dynamic languages on the JVM. While it demonstrates and validates
our approach with small testing code bases, it still needs to be tested on a wider range of applications
running on the JVM. The impact of the bytecode manipulation that we perform is significant and we
are well aware that it can break some bytecode constructions. As more testing is being made, we hope
to iron out the large share of possible corner cases. By doing so, we intend to turn JooFlux into a tool
that can be adopted at a larger scale than what our initial version allows.

16See http://openjdk.java.net/projects/lambda/
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Given the promising performance figures exhibited by JooFlux, we intend to study its application in
specialized contexts such as resource control, multi-tenant architectures or dynamic modular applications
for the Internet of Things without the need to rely on dedicated middleware platforms such as OSGi17.

In terms of general purpose features, we intend to introduce modification transactions and rollback.
The ability to statically verify the applicability of modifications is appealing. Also, we need to improve
the tooling to make it more convenient than a JMX agent. A secure remote shell interface through SSH
would be especially convenient, as it would also support new code remote transport over tunnelling.

6.3 Availability

JooFlux is available as an open source project at https://github.com/dynamid/jooflux. It is published
under the terms of the Mozilla Public License Version 2.0 18. The prototype version of JooFlux used
while writing this paper corresponds to the r0 annotated tag of the corresponding Git repository. The
source code contains build and testing instructions, and it also contains some instructions for reproducing
demonstrations such as the one related in Figure 3. It also contains the scripts or instructions to reproduce
the experiments made in Section 4.

As further developments are being made, the range of features described in this paper may have
changed, possibly also impacting performance figures. We encourage the wider researchers and practi-
tioners community to report any issue with JooFlux, and contribute bug fixes and improvements.
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