Smart On-Street Parking Assistance System

Trista Lin, Frédéric Le Mouël, Hervé Rivano

INRIA, Université de Lyon, INSA-Lyon, CITI-INRIA, F-69621, Villeurbanne, France
(trista.lin, frederic.le-mouel)@insa-lyon.fr, herve.rivano@inria.fr

Context
- Traffic congestion ← cars looking for parking
- Several drivers chasing the same place (conflict)
- Informations missing or outdated (reliability)

Problems:
- Traffic congestion ← cars looking for parking
- Smart parking app - information broadcast → several drivers chasing the same place (conflict)
- Informations missing or outdated (reliability)

Objectives:
- Real-time and energy-efficiency WSN
- Parking assistance system based on distributed parking selection model
- Integration of crowdsourcing with the system to improve the information quality

Service
- Navigation

Guidance
- Information update
 - Parking availability (empty slot detection)
 - Parking occupancy

Diffusion

Statistics
- Occupancy rate
- Management

Alert
- Illegal parking
- Low battery status
- Component failure
- System abnormality
- etc

Information dissemination

Real-time WSN
- Measuring real-time information
- Battery-powered (energy constraint)
- Impact from urban environment (packet loss)
- Network performance (delay constraint) << 60s
- Sensor coverage (node density and sensing tech.)
- Traffic variation (vehicles’ arrival and departure)

Guidance

Diffusion

Statistics

Alert

Energy-delay tradeoff in WSN

- Threshold for distant and local drivers
- Crowdsourced information
- Direct com. (vehicle - GW/server)
- Information augmentation (for drivers)
 - Add the info of parking places into the packet
- Data aggregation
- Information delivery geolocalized
 - Distant drivers: statistics (time, destination)
 - Local drivers: available parking places
- Crowd sourced information