Incremental checkpointing of program state to NVRAM for transiently-powered systems

Fayçal Aït-Aoudia

Kevin Marquet

Guillaume Salagnac

IoT constraints

Small

Autonomous

Cheap

Harvesting from solar

Harvesting from RF

SMART CARD

Emerging platforms

Harvesting from unpredictable sources

* Low power

 \rightarrow Small energy buffer

Harvested energy is unpredictable

 \rightarrow Frequent outages \rightarrow Frequent <u>reboots</u>

Harvesting from chaotic sources

Mementos [ASPLOS 2011]

NVRAMs

- Retains data when not powered
- Directly addressable
- Low latencies/consumption (w.r.t. Flash)

Why not a full-NVRAM memory architecture ?

- * NVRAM not as efficient as SRAM
- * Not crash-proof

We argue for a NVRAM + SRAM architecture

 \rightarrow [TI FRAM Series, 2013]

Plan

I. Introduction

II.Contribution

III.Validation

Contribution

Goal: build a reboot-proof system for a SRAM + NVRAM memory architecture

Two tasks:

(1) Saving the system state before a power-failure

 → On a SRAM + NVRAM architecture
 (2) Doing so at the right time
 → With low overhead

(1) Incremental Checkpointing

t

(2) Monitoring system's energy

2 timer based methods:

- Linear extrapolation
- Dynamic adaptation

Plan

I. Introduction

II.Contribution

III.Validation

Evaluation platform

We want a hardware platform with :

- SRAM + NVRAM memory architecture
- Energy buffer
- Energy harvester

Evaluation platform

Preliminary results

- Benchmarks: crc 1e5 rsa
 Lifecycles 4 3 10
- Checkpointing ratio: 83% 70% 23% \rightarrow Incremental checkpointing

• Overhead: 12% 9% 53% \rightarrow Timer driven

Conclusion & Perspectives

- Incremental checkpointing
- Timer driven

- Learn the checkpointing threshold
- Improve our NVRAM models
- Improve our energetic model
- Diversify our benchmarks
- Design a real platform

NVRAM characteristics

Technology	Min. cell size(F)	Endurance (cycles)	Read latency (ns)	Write latency (ns)
SRAM	150	_	2	2
STT-MRAM	20	10 ¹⁶	5	5-30
pSTT-MTRAM			3	3
TAS-MRAM	<u></u> 23	10 ¹²	30	30
NAND	4	104	100E3	1E6
NOR	10	10 ⁵	15	1E3
FeRAM	22	10 ¹²	40	65
RRAM	30	10 ⁵	100	100
PCMM	4	10 ¹²	12	100