
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
90

18
--

FR
+E

N
G

RESEARCH
REPORT
N° 9018
February 2017

Project-Team Socrate

Peripheral State
Persistence For
Transiently Powered
Systems
Gautier Berthou, Tristan Delizy, Kevin Marquet, Tanguy Risset,
Guillaume Salagnac

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Peripheral State Persistence For
Transiently Powered Systems

Gautier Berthou∗, Tristan Delizy∗, Kevin Marquet∗,
Tanguy Risset∗, Guillaume Salagnac∗

Project-Team Socrate

Research Report n° 9018 — February 2017 — 41 pages

Abstract: Our society relies increasingly on digital technologies to communicate,
seek medical information, travel, or have fun. These often-invisible technologies
simplify our tasks and enrich our daily lives, while also developing the economy. Re-
cently has emerged the concept of transiently powered systems powered by harvesting
and being able to retain information between power failures using non-volatile RAM.
This report presents a software layer called sytare that permits the use of non-trivial
peripherals such as timers, serial interface or radio devices in transiently powered
systems.
Key-words: Embedded Systems, NV-RAM, Energy Harvesting, Low-power,
Wireless Sensor Networks, Internet of Things

∗ Univ Lyon, INSA Lyon, Inria, CITI, F-69621 Villeurbanne, France. e-mail: firstname.
lastname@inria.fr

firstname.lastname@inria.fr
firstname.lastname@inria.fr

Persitance de l’état des périphériques pour les
systèmes alimentés de manière intermitente

Résumé : Notre société s’appuie de plus en plus sur les technologies numériques
pour communiquer, consulter des informations médicales, voyager ou s’amuser.
ces technologies simplifient nos tâches et enrichissent notre vie quotidienne, tout
en développement de l’économie. Récemment a émergé le concept de systèmes
alimentés de manière intermitente, alimenté en energie par harvesting et qui peuvent
conserver l’information entre les coupures d’alimentation electrique en utilisant la
RAM non volatile. Ce rapport présente une couche logicielle appelée sytare qui
permet l’utilisation de périphériques non triviaux tels que les timers, les interfaces
series ou les dispositifs radio dans les systèmes alimentés de manière intermitente.
Mots-clés : Systèmes embarqués, NV-RAM, Energy Harvesting, Réseaux de
capteurs de faible puissance, Internet des objets

Peripheral State Persistence For Transiently Powered Systems 3

Contents
1 Background and Related Work 4

1.1 Tiny Embedded Systems . 4
1.2 Transiently Powered Systems . 5
1.3 Non-volatile architectures . 6
1.4 Program checkpointing . 8
1.5 Discussion and problem statement 9

1.5.1 Problem statement . 10

2 Contribution: the Sytare software 11
2.1 Sytare structure . 12
2.2 User program state persistence . 13
2.3 Solution to peripheral state volatility 13
2.4 Solution to peripheral access atomicity 16
2.5 The checkpoint image structure . 18
2.6 Simple Syscall and checkpointing operation 19
2.7 Complex Syscall and signaling example 20
2.8 Disscussion . 23

3 Implementation 24
3.1 Hardware . 24
3.2 Memory organisation . 25
3.3 System boot . 27
3.4 Implementation of the syscall wrappers 27
3.5 Device drivers . 28

4 Evaluation 30
4.1 Power supply . 30
4.2 Metrics and variables . 31
4.3 Benchmark applications . 32
4.4 Benchmark application evaluation 32

4.4.1 Computational RSA application 33
4.4.2 Leds counter application . 33
4.4.3 Sense and aggregate . 34
4.4.4 WSN (sense and send) application 34
4.4.5 Discussion . 35

4.5 Kernel evaluation . 36
4.5.1 System boot . 36
4.5.2 Syscalls evaluation . 37
4.5.3 Memory occupation . 38

5 Conclusion and Perspectives 39
RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 4

1 Background and Related Work
This report presents a software layer developed in the context of an Inria support
dedicated to the development of ultra low power devices. Transiently-powered
systems (TPS) are a new class of batteryless computing devices that are of special
interest today because the possible use of new non-volatile RAM technologie
permits to foresee non-trivial applications for these devices. However, the arrival
of these technologies imply an important shift in traditional low-level software
stack: firmware and operating system. We present the first version of a software
layer, called Sytare, that implements a generic methodology for using non-trivial
peripheral (i.e. timers, ADC, SPI, Radio, LCD...) in transiently powered systems.
Sytare could constitute the basic of future transiently powered devices operating
systems.

1.1 Tiny Embedded Systems
Ubiquitous computing, also refered to as pervasive computing or ambient intelli-
gence, is a paradigm where computing is not restricted to well-identified devices
like computers or smartphones but embedded in virtually any object around us.
With technology improving, this vision gradually becomes a reality as more and
more “things” turn into “smart things”. One typical example is that of smart cards
that are widely used in many applications domains. But economic considerations
prevent manufacturers from adding chips and software to anything: the benefits of
the service must balance the additional cost. Thus ubiquitous computing platforms
tend to be very resource-constrained microcontrollers. The architectures we are
interested in in this work typically feature a slow processor (in the range of MHz),
little memory space (a few kilobytes), and only a handful of peripheral devices.

These architectures form the low end of the “embedded systems” spectrum.
Because they lack the computing resources of high-end platforms, they are not
able to run a classical operating systems like e.g. Linux Microcontroller operating
systems like FreeRTOS [GPPT16] or even Contiki [DGV04] typically require tens
of kilobytes of memory and offer very limited functionality: interrupt processing,
thread management, and sometimes a communication stack. Thus, many applica-
tions end up being programmed in a bare-metal fashion, with no OS support. The
developer is directly in charge of managing the peripherals as well as all concurrent
activities on the platform, typically in the form of interrupt service routines. The
most common program structure of this kind of situation is the “super loop” [SG10]
architecture, where the code roughly looks like the one represented in Figure 1.
The main drawback of this programming model for our technological target is that
it does not support unexpected power failure: the system can be stopped only
when it decides to stop.

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 5

ISR deviceA_interrupt_routine()
{

...
}

ISR deviceB_interrupt_routine()
{

...
}

void main()
{

hardware_init() ;

__enable_interrupts();

while(1)
{

task1_routine();
task2_routine();
...

__enter_low_power_mode(); // wait for interrupts
}

}

Figure 1: Typical bare-metal, , i.e. with no OS support, super loop software
structure used in current ultra-low power devices. This software structure does not
support unexpected power failure.

The contribution of this report is to provide a new checkpointing technique
for transiently powered systems that includes non-volatile memory.

1.2 Transiently Powered Systems
Embedded systems traditionally rely on battery power. This is true for high-end
platforms like smartphones down to tiny nodes in a Wireless Sensor Network. The
combination of battery capacity and average power draw determines the system
operational lifetime: from a few days for a smartphone up to a few years for a
Wireless Sensor Network. However there are also some situations where using a
battery is undesirable or even impractical [JLL+14]. For instance, if the system is
to be manufactured in large quantities (e.g. smart cards) then including a battery
will significantly impact the unit cost. Also it would strongly increase the physical
size of the system, which might be unacceptable for the application scenario.

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 6

In such cases, the system must harvest energy from its environment and/or
from external sources, e.g. solar power, piezoelectricity, thermal gradients, or
electromagnetic fields [MZL+15]. One example is RFID systems, in which a (wired)
reader transmits a radio-frequency signal strong enough to power nearby tags and
have them send data back.

The last decade has seen a growing interest in designing such batteryless systems
to be programmable with software. For example, Intel’s Wireless Identification and
Sensing Platform [BPS+08] is an attempt to bridge the gap between RFID systems
and traditional sensor networks. Similar to a sensornet node, the WISP has a few
sensors connected to a programmable microcontroller. Similar to a RFID tag, it has
no battery and draws its power from the RF signal sent by a reader. More recently,
researchers have presented arguments in favor of more and more miniaturization,
and tackled the problem of miniaturizing the whole platform: the M3 [LBL+13] is a
1.0mm3, general purpose, ultra low-power , configurable sensor node platform able
to harvest energy from different sources, communicate wireless though. It embeds
a Cortex-M0, few kilobytes of SRAM and few kilobytes of persistent SRAM.

One common characteristic of these systems is that they must cope with an
unreliable power supply. Even when the energy source is active, the harvested
power level is typically low [MZL+15] compared to what the system consumes in
active mode. Storing energy in a capacitor is thus often necessary just to allow for
useful work to be done in short bursts. For instance, conctactless smart cards must
perform the whole transaction within a few hundreds of milliseconds, i.e. within
the lifecycle of the device. If the transaction to be processed is longer, this is simply
infeasible. Besides feasibility issues, the constraints imposed to the programmers
of these devices are very tough as a very strong energy consumption prototyping
must be done before releasing new software. Hence it is important to provide a
new programming model that separates application layer and low level operating
systems layer so as to implement non trivial application on transiently powered
systems.

1.3 Non-volatile architectures
One obvious nuisance of transient power is that the system will lose every volatile
state at each power failure. In a typical sensornet/TPS platform, this means losing
the contents of CPU and RAM as well as all peripheral state.

Fortuntately in the last decade there have been significant advances in non-
volatile memory (NVM) technology. Several NVM families are emerging which
promise to blur and eventually remove the distinction between slow/non-volatile
“storage” and fast/volatile “memory” [BCGL11]. Examples include magnetoresistive

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 7

RAM or phase change memory (PCM), among others. Current NVM technologies
typically still suffer from slow write times, high write energy and/or limited write
endurance [MSCT14]. It is nevertheless promising to use these technologies, but
the place where they should be used within the memory hierarchy is not definitely
decided today.

However in a transiently powered system, naively replacing RAM with NVRAM
has undesirable side-effects. Because power failures are frequent, they can occur in
the middle of a (non-volatile) data structure being modified. When the platform
reboots, the program will restart with inconsistent data [RL14].

To remedy this problem, Jayakumar et. al [JRR14] propose to detect when a
power failure is about to happen, and then save processor state to FRAM before
halting execution. When the platform reboots, reloading processor state enables
the program to resume from where it was interrupted.

A more direct approach would be to change the architecture and make the
processor itself non-volatile [LLL+15]. Indeed it is tempting to implement every
single storage element (e.g. flip-flops) in the platform with NVRAM. Because of
the performance limitations of NVRAM, most non-volatile architectures adopt a
hybrid approach : each traditional register is not replaced but complemented with
a non-volatile counterpart [MZL+15]. The result is called a non-volatile flip-flop.
In addition to the usual read and write operations, it is able to save and restore its
contents to and from non-volatile storage. By triggering these operations at the
right time, the system can appear as non-volatile without having to pay for the
performance hit of NVRAM.

For instance Bartling et al. [BKC+13] design and fabricate such a non-volatile
microcontroller. Their platform has 10 kB of ROM, 8 kB of SRAM, and 64 kB of
Ferroelectric RAM (FRAM). Upon detecting a power failure, the chip automatically
saves all CPU and peripheral registers to FRAM (∼320 bytes of data).

This kind of approach is interesting in terms of architecture but has a major
limitation in terms of software programming. On the one hand, storing a program
data structure in NVRAM makes it persistent, but also means that each access will
be slow and/or energy-expensive. On the other hand, storing data in RAM gives
good execution performance, but brings back the problem of volatility. For this
reason, most non-volatile architectures actually employ a combination [BKC+13]
of both RAM and NVRAM, such as for instance the The MSP-EXP430FR5739
board from Texas Instrument including 15kB of FRAM together with traditional
RAM. The problem of power failures and persistence is left for the programmer to
cope with. Indeed, backing every bit of RAM with a non-volatile flip-flop would
not be feasible. Not only would it be very ineffective in terms of silicon area, but
also the save operation would incur a massive current spike because of the high
write energy of NVRAM [LLL+15].

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 8

1.4 Program checkpointing
In the previous section, we discussed how hardware techniques alone are not well
suited to achieve system persistence. In this section, we review software techniques
with a similar objective and give details on these mechanisms, allowing to position
the contributions presented in the remainder of this paper. The first paper on
checkpointing for small embedded systems [ODV+09] is not about power failures
but about debugging. In the context of sensornet testbeds, the authors design a
mechanism for capturing the state of each node in the network. The user can then
load this state image in a platform emulator (e.g. to inspect program state for
debugging purposes) or inject a set of such images in all nodes of the network (e.g.
to replay a past experiment with high fidelity). The checkpointing operation is
triggered by a command received on the serial port. The capture (resp loading)
mechanism itself is implemented within the serial port interrupt handler. The state
images themselves are never stored on the node, but streamed to/from a PC host
via serial.

Another influential paper is Mementos by Ransford et al. [RSF11]. The target
of this work is the WISP “computational RFID” platform [BPS+08]. Because of
the unstable nature of RF power harvesting, the node can run out of energy at
any time. To prevent state loss, Mementos periodically interrupts the application
and measures the remaining energy level. When above a user-specified threshold,
the application is resumed. Otherwise Mementos saves the CPU registers and
the contents of RAM to flash memory. This technique does make power failures
transparent to the application program. However Mementos is designed specifically
for flash, which leads to unsatisfactory performance. Because of flash’s high write
energy and slow write time, each checkpoint save operation is very expensive.
Also, a region of flash memory cannot be overwritten and must be erased first.
This means that our previous checkpoint cannot be updated in-place but must be
re-captured entirely every time. The runtime overhead induced by Mementos is
thus quite high, sometimes taking up the majority of execution time. Still this
approach is promising and several studies have since explored similar techniques.

An obvious enhancement of this technique is to target a different non-volatile
memory technology. With Hibernus [BWM+15] Balsamo et al. propose to save
program state to FRAM, which yields significant time and energy savings compared
to Mementos. Also, instead of interrupting the application on a regular basis, they
use a hardware device to trigger the checkpointing operation only once when the
power is about to be lost. The experimental results of Hibernus confirm that using
RAM and NVRAM side by side and using checkpoints to compensate for power
failures is a viable strategy.

But using addressable NVRAM also makes it possible to design a more sophisti-
cated checkpoint data structure. To reduce the amount of NVRAM writes as much

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 9

as possible, Ait-Aoudia et al. [AAMS14] propose an incremental checkpointing
scheme. The idea is to view memory as divided in fixed-size blocks, and to only
save the blocks which have been changed since the last checkpoint to date. If the
application has a large RAM footprint, this approach can significantly reduce the
amount of data written to NVRAM at each lifecycle.

Bhatti and Mottola [BM16] take this idea one step further. Instead of copying
memory contents as opaque data, they distinguish between stack, globals, and
heap regions. Because each region has a particular internal structure, saving it
entirely is suboptimal. For instance, copying the “empty space” above the top of
stack is pointless and may be safely avoided. Another example is the heap region,
where each object can be copied individually rather than including empty space in
between. The authors devise several such checkpointing schemes with increasing
degrees of sophistication. Then they evaluate checkpointing performance against
various benchmark programs and show that no single scheme performs best.

1.5 Discussion and problem statement
Bell’s Laws states that a new class of less expensive computers is developed approx-
imately every decade by using fewer components than state-of-the-art computing
system [Bel08]. Transiently Powered Systems are a new class of tiny communi-
cating systems with no battery and little computing resources. Their small form
factor allow them to be embedded everywhere. However, harvesting energy in the
environment is unreliable and the system will frequently run out of power, typically
several times per second. This makes application programming a difficult task for
the software developer.

As discussed in the previous sections, various techniques have been proposed
to mitigate this problem and allows the program to make progress despite/across
reboots. However, these studies tend to focus on the computational angle and ignore
peripheral accesses altogether. Yet by definition no embedded program is purely
computational. If we want power failures to be transparent for the application,
then we must ensure that both program state and peripheral state persist across
reboots.

Simple access peripherals. If the state of a hardware peripheral is perfectly
mirrored in its interface registers, and if these registers are directly addressable from
the processor, then it is enough to save and restore their value just like any other
data structure. We will refer to these “simple access” peripherals as type 1. Most
papers referenced in the previous section happen to only use type 1 peripherals.
This type of peripheral is very limited, one could include leds and button of GPIOs
in it. But even on a small embedded system, the vast majority of the peripherals
require more sophisticated mechanisms.

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 10

Constrained access peripherals. For instance, a peripheral may impose a
certain protocol on the order its registers must be accessed: the configuration
registers are read-only most of the time, and must be unlocked by writing a magic
value into one particular address. Only then the other registers can be configured,
and finally the program must lock the peripheral again by writing another magic
value. No “generic” checkpointing mechanism will work correctly for this peripheral.
Another instance of access protocol is timing constraints: some peripherals have
intrinsic delays in their initialization sequence. If the program doesn’t respect
these delays, then the device may end up incorrectly configured. Depending on
the situation, we either have to wait a for fixed duration, or we have to poll a
certain signal telling us when to proceed. We will refer to such “constrained access”
peripherals as type 2. They include most traditional peripherals: timers, ADC,
serial ports, etc.

Indirect access peripherals. A third class of peripherals is not even addressable
from the processor, but must be accessed through another peripheral. For instance,
on a typical sensornet platform, the radio transciever would be connected to
the microcontroller via a serial bus. In that case, we have to restore the serial
port controller first, and then use it to talk to the radio itself. In addition to
the precedence constraint itself, accessing each configuration register of the radio
requires a serial communication. For this kind of peripheral, saving and restoring
state involves a lot more work than just memory accesses. We will refer to such
“indirect access” peripherals as type 3.

1.5.1 Problem statement

The problem we address in this paper is: how to make hardware peripherals
persistent accross reboots so that the application doesn’t notice power failures.
This problem holds two aspects, state volatility and and access atomicity.

Peripheral state volatility problem The first issue is how to cope with the
volatility of peripheral state. As discussed above, capturing and restoring the
internal state of peripherals require more complex techniques than doing so for
application state. Existing works on Transiently Powered Systems either ignore
peripherals completely, or use hard-coded workarounds [LR15] to configure the
hardware before restoring application state. In this paper, we propose a technique
to address this problem in the general case. Our approach is completely transparent
for the application, and requires little modification to driver code.

At first sight, one could argue that embedding non-volatile memory in every
component of the platform would be enough to solve this problem. However,

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 11

non-volatility in itself is not sufficient to guarantee the correct behaviour of the
system.

Peripheral access atomicity problem The second issue is how to cope with
power failures occuring in the middle of a hardware request being serviced. Even
if the state of a peripheral is non-volatile (either using non-volatile memory, or
some software technique) a power failure may not be transparent for the user
program. For instance, consider a scenario where the application wants to send
a radio packet using some send_message() function call. Now a power failure
happens, in the middle of the transmission. At next boot, it would not make
sense to “send the second half of the packet”. Not only because the receiver may
be gone, but also because the hardware has no concept of “half a packet”. This
problem may happen as soon as a hardware access cannot be simply resumed after
a shortage. This is the case even for surprisingly simple peripherals such as an
ADC (Analog-to-digital converter). In these cases, if we want the power failure to
go unnoticed by application code, then the whole hardware access must be retried.
We will refer to this issue as the peripheral access atomicity problem.

Existing works don’t address these two problems in a satisfactory fashion.
For instance, Dino [LR15] requires the programmer to manually insert chekpoint
barriers in their code and guarantees that execution will resume at one of those
points after a reboot. This approach somehow solves the atomicity problem, but
does nothing about the state volatility problem. Thus, it doesn’t allow the system
to use complex peripherals as an active RF chip. The peripheral access atomicity
problem has also been referred to as the Broken Time Machine problem [RL14]. In
the next section we present our approach to tackle both aspects of the peripheral
state persistence problem.

2 Contribution: the Sytare software
Our approach to provide peripheral state persistence revolves around the interface
between application code and the driver code. The idea is to interpose a so-called
kernel code layer between the two, so as to intercept requests and responses. This
enables the kernel to know whether the system is executing application code or
accessing the hardware, which will be useful to solve the atomicity problem. Before
returning to the application, the kernel captures the state of the driver and thus its
underlying device. This information is stored in NV memory in a data structure
we refer to as a device context.

When a power failure happens, the kernel saves a copy of application state from
RAM to NVRAM, along with all device contexts. When power comes back on it

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 12

loads these device contexts back to memory, and invokes the restore() primitive
of each driver. This primitive is responsible for reading in the device context
and bringing back the hardware in the required state. Then the kernel restores
application state to RAM and execution can resume transparently.

However this scenario is only valid if the power failure occurs while executing
application code. If a power failure occurs while executing driver code, then at next
boot it will not make sense to resume execution. Instead, the hardware request
should be retried from the beginning. We use the term system call to describe
a function call from application code to driver code. The Sytare kernel ensures
that, if a syscall is interrupted by a power failure, then at next boot it will be
re-invoked in the same conditions (arguments, hardware state, etc) To that end, the
device contexts are saved to persistent memory not upon power failures, but upon
entering/exiting syscalls. Also, system calls are executed in a volatile fashion, i.e.
nothing a syscall does is made persistent until execution returns to the application.

In this section we discuss all these mechanisms in more detail, and argue that
they produce the correct behaviour for all three types of peripherals described in
section 1.5.

2.1 Sytare structure
In bare-metal embedded software, application logic and low-level driver code may
or may not be clearly separated. In Sytare, we draw a distinction between three
possible kinds of code: application, driver, and kernel.

As expected, application code encompasses higher-level functions as well as
library code. As such, application state is composed of all the global variables
of these modules, as well as the contents of the execution stack (local variables,
control flow) and CPU registers.

The Sytare kernel is responsible for persistence management, which includes
saving and restoring application state to and from non-volatile memory.

We define driver code as being all functions which provide access to hardware
features. For instance, we forbid application code to directly use memory-mapped
registers to communicate with a hardware device. Instead, we require this service
to be encapsulated in a driver function and invoked explicitly from the application.
A driver may call primitives from other drivers, for instance our radio chip driver is
built on top of the SPI driver, which itself requires digital I/O. This is implemented
with ordinary function calls.

However, we require the application to invoke a driver function only via the
system call mechanism, implemented in the kernel. In practice, a syscall is a thin
wrapper around a driver function, adding the necessary features to address the
atomicity problem.

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 13

2.2 User program state persistence
To achieve persistence of the user program state, Sytare implements a checkpointing
mechanism. A hardware device detects an imminent power failure (cf section 3.1)
and interrupts the application. The kernel then copies application state to a
non-volatile data structure we refer to a checkpoint image. At the beginning of the
next lifecycle, the kernel loads this image back to RAM and execution resumes.

Like other similar operating systems [RSF11; AAMS14] Sytare maintains two
checkpoint images at all times for resilience. The idea is to keep the last valid
image intact while the next image is being built. This way, even if a crash (e.g.
power failure) occurs during the checkpointing operation, the system will be able
to recover at next boot.

Ensuring consistency between peripheral state and program state
The kernel must ensure consistency between peripheral persistent data and the

program checkpoint done at the power loss to avoid undefined behaviour. This
issue is addressed in Sytare by duplicating the driver data persisted in NVRAM
with the same strategy than for program checkpoints. The kernel will build the
peripheral checkpoint over time at the end of each syscall from the restored values
and when a power loss occurs it will complete this checkpoint with the user program
executional state. If the kernel lacks time to checkpoint entirely the program state,
the kernel will reboot from the last complete checkpoint (peripherals + program
state), wasting the last lifecycle to ensure consistency. This case can be encountered
when the power loss occurs during system operations, for example committing a
peripheral driver device context, or if the platform is consuming more than usual
just before power loss e.g. sending a message via RF. This approach ensures the
reliability of the system potentially facing power loss at any moment as a TPS to
be still able to continue its tasks.

2.3 Solution to peripheral state volatility
As we discussed in section 1.5, checkpointing memory contents is not enough
when the system includes hardware peripherals. Restoring the state of a hardware
device typically requires non-trivial operations like configuring some I/O pins,
communicating over a serial bus (which itself should be initialized first), respecting
certain timing constraints etc. While it may be conceivable for a persistence kernel
to perform all these operations transparently, in Sytare we require some cooperation
from the drivers developer: storing state in a device context, and implementing a
restore() function.

The device_context_t data structure In general, the state of the hardware
device is somehow reflected in program variables in the driver. For instance, a LED

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 14

driver will typically have one boolean flag for each diode, to remember whether the
diode is on or off. If the device has a more complex state space, e.g. a finite state
machine with several control modes, then the driver will keep track of the current
mode with a variable, and so on.

Rather than using global variables within the driver, in Sytare we require all
this information to be explicitly encapsulated inside a so-called device context data
structure. This change is illustrated in Figure 2 on a simple example. Thanks to
these structures, the Sytare kernel can take a snapshot of the state of each device
at various points in time. In addition to the application state, a checkpoint image
contains one device context for every hardware peripheral as it will be discussed
further.

char led_state[LED_COUNT];

void led_switch_on(int led_number)
{

HW_REGISTER_FOR_THIS_LED=1;

led_state[led_number]=1;
}

typedef struct {
char led_state[LED_COUNT];

} led_context_t ;

led_context_t *led_context;

void led_switch_on(int led_number)
{
HW_REGISTER_FOR_THIS_LED=1;

led_context->led_state[led_number]=1;
}

Figure 2: Illustration of the device_context_t data structure. On the left is some
typical driver primitive from a bare-metal application. On the right, the same
function has be modified to comply with the Sytare kernel. Note that only the
type is defined in the driver code. The actual device context instances are allocated
and managed by the kernel.

The restore() function Any device driver typically offers some init() prim-
itive which performs the correct initialization procedure. This would be invoked for
instance at the beginning of the main() function, before entering the main infinite
loop.

Sytare requires each driver to provide an additionnal restore() primitive
which will be called upon restoring a checkpoint. At boot, the kernel restores
all device contexts to memory, and then invokes the restore() function of each
driver in succession. As illustrated by Figure 2.3 on the next page, this function is
responsible for initializing the hardware and then bringing it back to the required
state as described by the device context. In the simplest scenario, this operation
may consist in simple call to init(). However for more complex peripherals which

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 15

void foo_restore(void)
{

// hardware initialization
foo_init();

// restore configuration parameters
foo_configure(foo_device_context->settings);

// restore control mode (for FSM drivers)
switch(foo_device_context->control_mode) {

case DRV_MODE_0 :
// bring back hardware in "DRV_MODE_0"
foo_switch_to_mode_0();
break;

case DRV_MODE_1 :
// bring back hardware in "DRV_MODE_1"
foo_switch_to_mode_1();
break;

...
default :

// unknown mode: can’t happen
kernel_panic();

}
return;

}

Figure 3: Illustration of the restore() primitive for a hypothetical driver. This
listing illustrates quite a complex scenario, with both configuration parameters to
be configured and some control mode to be restored. In most practical cases the
restore function will only involve a subset of these operations.

require indirect access and/or impose certain access constraints, the restore()
function will be more complex accordingly. Still it only makes use of existing
features already present in the code, so in most cases adding such a function to an
existing driver should be straightforward for the developer.

We noted earlier that some driver A may use the services of some other driver B
in the system. Thus the kernel must ensure that driver A’s restore() function is
called only after B has been restored, etc. In the general case, this would translate
to a dependency graph where nodes are drivers and edges are precedence constraints.
At each boot the kernel would need to compute a valid evaluation order and restore
drivers in that order. However in our implementation we sidestepped this issue by
ordering the drivers manually.

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 16

2.4 Solution to peripheral access atomicity
In a Transiently Powered System, application code and driver code are not to be
treated equivalently when power failures occur. Application code function can
be interrupted at any point by the checkpointing procedure. At next boot it will
be restored transparently and resume execution exactly where it left. However
if a driver operation is interrupted, then it must be considered entirely failed as
the kernel can’t ensure state consistency at lower granularity, as we discussed in
Section 1.5. We have denoted this issue as the peripheral access atomicity problem,
our solution makes use of a so-called system call layer that will ensure peripheral
access atomicity.

System call To solve this problem we draw a distinction betweem two types of
function calls. Within the application, or within driver code, ordinary function
calls happen as usual. However the application may only invoke a driver function
through a well-identified kernel interface. We denote this mechanism a system call,
by analogy with the homonymous concept in classical kernels.

The contract between the application and the Sytare kernel is that a syscall will
be executed entirely within one lifetime. If a power failure happens in the middle
of servicing a syscall, then at next boot the OS will transparently retry the call
instead of just resuming it.

Ensuring system call atomicity In cases where a power failure happens during
the execution of a driver function, we want to ensure that at next boot it will
be re-executed from the beginning. Thus we prevent anything belonging to the
drivers from being saved by the checkpointing operation described in Section 2.2.
If our target platforms offered hardware support for memory protection, we could
place the application in one protection domain and drivers in another, like is done
in classical kernels. However in tiny microcontrollers there is typically no such
support, so we have to rely on software mechanisms.

In Sytare we isolate the application from the “driver land” by clearly separating
their respective memory regions. For global variables and data structures, we have
seen in Section 2.3 how each driver is explicitly given a device context. These
are allocated separately from the application state, and considered differently for
inclusion in the checkpoint image. To isolate local variables as well as the control
flow, we switch to a separate execution stack for executing driver calls. This
so-called OS stack is never included in the checkpoint image, which guarantees
that any partial progress inside a driver is volatile. The stack switch happens in
the syscall wrapper invoked by the application. The wrapper is responsible for
switching stacks and for forwarding the function arguments to the actual driver

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 17

function. Also, it saves a copy of these arguments in the checkpoint image together
with the syscall number.

In case the system call is interrupted by a power failure, then the checkpointing
operation will be triggered, but it will only have to save application state. All
information required to retry the call is already saved to non-volatile memory. At
the next boot, the kernel restores application state to memory and checks whether
a syscall has been interrupted. In that case, the syscall arguments are repopulated
from the checkpoint image and the syscall is invoked afresh. Otherwise execution
resumes directly to application code as usual.

Of course upon successfully returning from a syscall, the kernel wrapper erases
the saved syscall number and arguments from the checkpoint image and switches
back execution to the user stack.

Restoring the correct peripheral state before retrying a syscall When
the system boots, the kernel reads the checkpoint image which contains application
state to be reloaded as well as all device contexts to be restored. But so far we have
not discussed how and when the device context are saved into the checkpoint image.
In this section, we argue that they must be saved when returning from a system
call. Two distinct boot scenarios must be considered: resuming app execution, and
retrying a syscall.

In the first case, we want to restore each peripheral to the same state it was in
just before the power failure. Thus, the saved device context has to describe the
peripheral at that point in time, in the previous lifecycle. Going further back in
time, we observe that a device context can only change as a result of executing
driver code. After the last syscall returns, all device contexts will be left untouched,
so it is safe to save them upon returning from the syscall.

In the second scenario, we want to restore each peripheral to the same state it
was just before executing the interrupted syscall. Like we did above, let’s consider
the previous lifecycle and go back in time, starting from the beginning of the
interrupted syscall. Here as well, we observe that the last time any device context
was modified is during the preceding syscall.

To accommodate both cases with a single mechanism, we choose to save a copy
of all device contexts upon returning from a syscall back to application code. This
yields correct behaviour in the first scenario, even if saving the contexts later would
work as well. In the second scenario, this approach ensures that all incomplete
hardware operations will be forgotten when the power failure happens.

Optimization: selective persistence of device contexts Obviously, saving
a copy of all device contexts to NVRAM each time a driver call returns would
imply a significant performance cost. To avoid this penalty, we introduce a selective

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 18

- variables

- user application stack

- registers value

- syscall in progress flag

- syscall address

- syscall arguments value

- driver A device context

- driver B device context

- ...

Application
state

Kernel
state

Drivers
state

Last

Next

Figure 4: Illustration of the system checkpoint image content.

persistence mechanism. The idea is to observe that each syscall will likely touch
only one or two device contexts, and as such it is useless to save them all. Also, if a
syscall does not change the state of the underlying device, or brings it back to the
same state before returning to the application, then it is useless to save anything
at all.

To support this scenario, we introduce a notification mechanism in the form of
a signal(driver_id) kernel primitive. Each driver must call this primitive when
its device context has changed. The kernel just marks the corresponding entry
as “dirty” (i.e. modified) but does nothing else just yet. If the syscall involves
serveral device drivers calling each other, then any number of device contexts may
be signalled as modified. When the syscall ends successfully, the kernel wrapper
does a commit() operation, i.e. it brings the checkpoint image up to date with all
the modified device contexts, before returning to the application.

All these updates are done in the “next” checkpoint image, which is built piece
by piece throughout the lifetime. The “previous” checkpoint image is left intact,
so that we can always resume from there if something goes wrong. To support
the case where no syscall happens during a lifetime, or if all syscalls are read-only
operations, the kernel initializes (at boot time) the “next” checkpoint image with a
copy of all device contexts from the “previous” image. In some cases, the “next”
checkpoint image will be left intact for the entire lifetime, only to be made complete
with a copy of application state when a power failure is detected.

Due to implementation specificities, the current prototype limits the arguments
of a syscall to four. Our system doesn’t rely on having a volatile memory zone for
the work variables of the kernel, as we could run only on non-volatile memory.

2.5 The checkpoint image structure
The kernel, when power comes back, will restore a complete checkpoint image to
resume the user application execution. This checkpoint image contains information

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 19

describing the application state, the kernel state and the drivers state as illustrated
in figure 4. To ensure that the system will be able to resume execution even if the
checkpointing fails, the kernel maintains two checkpoint images:

• last checkpoint image: contains the last complete checkpoint image, if the
next checkpoint is not correctly completed, this image will be resumed as
fallback.

• next checkpoint image: contains the last committed state of the drivers
device contexts and syscall status but no application state during the system
lifecycle. This part will be checkpointed when power loss occurs. This
checkpoint image is initialized at boot time with the resumed state of the
drivers device context and is incrementally built.

2.6 Simple Syscall and checkpointing operation

App OS drv A App Drivers
Modified
driver list App Drivers Kernel App Drivers Kernel

Sequence diagram SRAM state NVRAM Next Checkpoint

Image state

NVRAM Last Checkpoint

Image state

App 0

App 1

App 1 ∅

∅

∅

A 0

A 0

A 0

∅ A 0 App 0 A 0 ∅|∅

App 0 A 0 ∅|∅

App 0 A 0 ∅|∅

user main()

syt drvA fn(x)

drvA fn(x)

syt signal(A)

syt commit()

∅ A 0

∅ A 0 drvA fn|x

∅|∅

∅|∅

Modified state

Unmodified state

power loss
detection

create checkpoint

App 1 ∅A 1 App 0 A 0 ∅|∅∅ A 0 drvA fn|x

App 1 { A }A 1 App 0 A 0 ∅|∅∅ A 0 drvA fn|x

App 1 ∅A 1 App 0 A 0 ∅|∅∅ A 1 ∅|∅
App 2 ∅A 1 App 0 A 0 ∅|∅∅ A 1 ∅|∅
App 2 ∅A 1 App 2 A 1 ∅|∅App 2 A 1 ∅|∅

Hardware shutdown provoked by kernel

Figure 5: Sequence diagram of a simple Syscall with SRAM and NVRAM kernel
data structures content. A power loss is detected while running user application
after the syscall returned to application.

In the scenario described by figure 5, emphasis was put on both showing
the internal mechanisms of peripheral persistence and checkpoint consistency as
implemented in Sytare. Initially, the application state is App_0 and peripheral

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 20

“A” has state A_0. The user application requests access to peripheral “A”, which
has to be done through Sytare API. Between the beginning of the represented
user code section and the call to kernel function syt_drvA_fn(), the state of the
application has changed from App_0 to App_1, as every instruction impacts the
volatile state of the system. At this point, peripheral “A” and its associated driver
are still in state A_0.

Syscall sequence: Function syt_drvA_fn() calls its associated driver function,
named drvA_fn() as syt_drv<...>() functions are wrapper functions that refer
to drv<...>() functions. When the driver function is done with changing the state
of the peripheral, the new state itself, referred to as A_1, is naturally recorded in
volatile memory. Thus it needs to be recorded into the “Next” image for persistence
purposes. In order to notify the kernel that peripheral “A” had its state changed,
the driver calls syt_signal() primitive. Then the driver returns to the calling
kernel function which performs a commit operation using syt_commit() primitive.
The commit operation persists the new state of the peripheral into the “Next”
image. Then the kernel wrapper function returns to the calling user code, which is
still in state App_1 given the fact that no user code was executed between the
moment when the kernel started to work and the moment the kernel returned to
user application.

Checkpointing operation: User code is resumed and runs a certain amount of
instructions, changing application state from App_1 to App_2. Simultaneously a
power loss is detected and handled by a kernel interrupt routine. The interrupt
routine persists the application state into the “Next” image since application code
can only affect application state directly. Finally the kernel makes the “Last” image
pointer point to the “Next” image. Now the system is ready to shutdown and it is
ensured that application state App_2 and driver state A_1 will be restored on
the next boot, i.e. the environment will be set up for the application to resume
properly.

2.7 Complex Syscall and signaling example
In the figure 6 we detail the sequence of calls and data structure modification
resulting from a syscall done in the user application. Recall that the Sytare driver
mechanism is added to a classical checkpointing which is triggered when the power
is lost, we did not represent the power loss in figure 6 hence the application state
is not saved in NV-RAM on this sequence. The aim of the application developer
is here to call the driver’s function drvA_fn() with parameter x, accessing the
underlying hardware peripheral “A”. In order to illustrate the inter-driver call we

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 21

App OS drv A drv B App Drivers
Modified
driver list App Drivers Kernel App Drivers Kernel

Sequence diagram SRAM state NVRAM Next Checkpoint

Image state

NVRAM Last Checkpoint

Image state

App 0

App 1

App 1

App 1

App 1

App 1

App 1

App 1

App 1

App 2 ∅

∅

∅

∅

∅

{ B }

{ B, A }

{ B }

∅

∅

A 0 B 0

A 0 B 0

A 1 B 0

A 0 B 0

A 1 B 1

A 2 B 1

A 2 B 1

A 2 B 1

A 2 B 1

A 1 B 1

∅ A 0 B 0 App 0 A 0 B 0 ∅|∅

App 0 A 0 B 0 ∅|∅

App 0 A 0 B 0 ∅|∅

App 0 A 0 B 0 ∅|∅

App 0 A 0 B 0 ∅|∅

App 0 A 0 B 0 ∅|∅

App 0 A 0 B 0 ∅|∅

App 0 A 0 B 0 ∅|∅

App 0 A 0 B 0 ∅|∅

App 0 A 0 B 0 ∅|∅

user main()

syt drvA fn(x)

drvA fn(x)

drvB fn(y)

syt signal(B)

syt signal(A)

syt commit()

∅ A 0 B 0

∅ A 0 B 0 drvA fn|x

∅ A 0 B 0 drvA fn|x

∅ A 0 B 0 drvA fn|x

∅

A 0 B 0

drvA fn|x

∅

A 0 B 0

drvA fn|x

∅ drvA fn|xA 0 B 0

∅ ∅|∅A 2 B 1

∅|∅

∅|∅

∅ ∅|∅A 2 B 1

Modified state

Unmodified state

Figure 6: Sequence diagram of a complex Syscall with SRAM and NVRAM kernel
data structures content and two (nested) drivers calls.

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 22

make the supposition that in order to access peripheral “A” the system has to
access peripheral “B” hardware. The diagram describes the function call sequence
passing from the application to the kernel layer before executing some driver code.
We describe accordingly the modifications done in the system different memory
structures.

The “SRAM state” describes the volatile kernel state containing the application
currently executed, the RAM located drivers device contexts and a list of the
modified drivers device contexts compared to the last non volatile image persisted
by the kernel. The “NVRAM Next Checkpoint Image state” and “NVRAM Last
Checkpoint Image state” describe the images built by the kernel in non volatile
memory from whitch a checkpoint can be restored. The “Last” image is the state
restored at kernel boot i.e. the start of the sequence diagram time line. The “Next”
image is the checkpoint image the kernel builds during its execution to survive the
future power loss. So it does not contain any application state description as the
power loss did not yet occur but incrementally builds the device context image
waiting for the power loss to occur before completing the checkpoint image with
the application state.

The syscall can end up in three different scenarios described among the following:
it can finish without power loss, a power loss can occur and the kernel successefully
checkpoints the application state or when the power loss occurs the kernel fails to
checkpoint the application state.

Normal execution: This is the case represented in the diagram. Instead of
calling directly the driver’s function the user application uses the kernel wrapper
associated to the driver. The kernel then starts by saving the syscall that will be
tried and its arguments in the “Next” checkpoint image, switches stack and then
calls the targeted driver primitive. One of our hypotheses was that the peripheral
“A” needed the peripheral “B” to be accessed. So the driver “A” primitive itself
calls a driver “B” primitive, without using a kernel wrapper as we are already
executing on the OS stack. At the end of driver “B” primitive the syt_signal()
primitive is called signaling to the kernel that driver “B” device context has been
modified. Then the driver “A” function finishes its work and signals also to the
system that the driver “A” device context has also been modified. Returning to the
kernel wrapper, the syt_commit() primitive is called and from the modified driver
list persist into the “Next” checkpoint image the modification done to the drivers
device contexts. Then the OS switches back the execution stack to the application
stack and returns to the user application.

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 23

2.8 Disscussion
The mechanisms described previously lead to three possible power loss scenarios.
The kernel we developed must handle each of them and be able to restore a
consistent state at the start of the next lifecycle. So the power loss detection cases
always consider the possibility for the kernel to fail to checkpoint the platform
state in time.

Power loss during user program execution: At any point in time during
the user program execution, if a power loss is detected the kernel will complete
the "Next" checkpoint containing the peripherals state description with the user
program executional state. This operation should be successful most of the time
as the triggering threshold is configured to ensure it. The kernel will then restore
peripheral state and user program state at the next boot and the user program will
resume exactly at the instruction it was interrupted. Nevertheless it is still possible
for the kernel to fail to checkpoint the state of the user program, for example if
some peripheral is in a power mode consuming more than usual (e.g. radio in
reception or ADC during sampling). In that case of failure the "Last" checkpoint
image will be restored and the execution done in this lifecycle will be lost to ensure
consistency.

Power loss during driver primitive execution: Any driver primitive is ex-
ecuted by the sytare kernel on a volatile stack separated from the user program
execution. In these conditions, if a power loss is detected at any point during a
driver primitive execution the user program state to checkpoint will be be consistent.
It will be checkpointed along the peripheral state prior to the syscall and the syscall
address and arguments. This checkpointing operation, if succeeded, will alow the
kernel to restore the execution at the start of the concerned syscall by the next
boot with consistent arguments. A failure in checkpointing will force the kernel to
restore the "Last" complete checkpoint thus discarding the progress done during the
lifecycle. A way to ensure the checkpoint success in the case of a power loss occuring
during driver primitive execution could have been to checkpoint systematically the
program state execution when switching stack, however the induced overhead could
impact heavily the system performances.

Power loss during kernel execution: The only case not covered by the previ-
ously described scenarios is the occurence of a power loss detection during system
operation. If such case happens the hardware interruption triggering the check-
pointing mechanism stays masked until the kernel finishes its operation and returns
either to the user program execution or to a driver primitive execution. The
interrupt service routine will then take place as the interruptions are unmasked

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 24

when returning to the user program or to a driver primitive execution, invoking one
of the previously described scenarios. Nevertheless if the platform effectively runs
out of current during system operation, the execution done during the concerned
lifecycle will be lost and the kernel will resume to the "Last" valid checkpoint.

These choices in the system behaviour enforces the user program execution with
failure resilience given the transiently powered system hypothesis that the typical
lifecycle duration is short compared to the program main loop execution time 1,
relying on a double buffering fallback strategy under the peripheral state volatility
and access atomicity problems constraints.

3 Implementation
In this section we describe our implementation of the Sytare prototype.

3.1 Hardware
Our prototype is implemented on the Texas Instruments MSP-EXP430FR5739
FRAM Experimenter’s board1. As the name implies, this board includes a
MSP430FR5739 microcontroller. To study complex scenarios involving off-chip pe-
ripherals, we use the daughterboard connector to add a Radio Frequency transciever
chip. We use the CC2500 RF chip2 from ChipCon.

The MSP430 is a very popular architecture in the Wireless Sensor Network
litterature. But more interesting to us, the FR5739 microcontroller features 16kB
of embedded ferro-electric random access memory (FRAM). Thus it is a very
representative example of the kind of platform we target in this work.

Actually, all NVRAM-oriented TPS papers so far either target this exact chip
or the related FR5969 chip. To the best of our knowledge, no other NVRAM-based
microcontroller is commercially available to date. We picked the FR5739 because
its evaluation board features a daughterboard connector.

Memory architecture The resulting platform is an interesting mix of volatile
and non-volatile memory. As discussed in Section 1.3, NVRAM typically offers
worse performance than RAM. This is the case on the FR5739, where the 15kB
of FRAM have a 125ns access time, which translates to a maximum operating
frequency of 8MHz. On the other hand, the CPU, 1kB RAM, and all peripherals
can run up to 24MHz, so in our experiments we set the clock frequency to 24MHz.

1http://www.ti.com/lit/ug/slau343b/slau343b.pdf
2www.ti.com/lit/ds/swrs040c/swrs040c.pdf

RR n° 9018

http://www.ti.com/lit/ug/slau343b/slau343b.pdf
www.ti.com/lit/ds/swrs040c/swrs040c.pdf

Peripheral State Persistence For Transiently Powered Systems 25

Power failure detection The FR5739 microcontroller embeds a voltage com-
parison unit (Comparator_D module) which we use to implement power failure
detection. We added a voltage divisor montage composed of two resistors of 1MΩ
each connected to a Comparator_D module input pin in order to monitor the
in voltage drop indicating the power loss. Such a montage is shown in figure 7.
This montage consumes approximatively 1.6µA and allows us to trigger checkpoint-

VCC

Comp D

GND

MSP430

1MΩ

1MΩ

Transient
power supply

Figure 7: Montage of the plateform using the embedded Comparator_D module

ing with a theoric voltage monitoring precision of 53mV. Refering to the device
datasheet the minimum execution voltage of the platform is 2.0V, so we fixed

the checkpoint trigger threshold to 2.063V. When this threshold is reached
the module raises an interrupt flag and if the kernel is not running a critical
operation for example accessing checkpoint content, the checkpointing routine will
be engaged. If the system action cannot be interrupted the interruption will be
taken into account at the end of the action.

3.2 Memory organisation
Our approach does not actually require the presence of volatile memory. An
hypothetical platform with only NVRAM would be interesting to study and would
lead to simpler checkpointing mechanisms. Still, because of the hardware access
atomicity problem, we would have to save checkpoints of kernel state on syscall
boundaries. Anyhow, our hardware platform features a volatile CPU, volatile
peripherals, and also includes 1kB of RAM, so we decided to use all this volatile
memory for non-persistent data.

In our prototype implementation, the Sytare kernel, the device drivers and
application code are all linked into a single executable image which is transfered
at once on the microcontroller. Still, we use a custom linker script to allocate
various sections into distinct memory regions of the system. The resulting layout
is illustrated in Figure 8 on the following page.

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 26

KERNEL
DRIVERS and APP
.text (11.25 kB)

KERNEL
DRIVERS and APP

.rodata (192 B)

KERNEL
.data and .bss

(1.5 kB)

DRIVERS .data
(121 B)

APP .data
(10 B)

Free Space

NVRAM (16 kB)

OS Stack
(128 B)

DRIVERS
.data and .bss

(256 B)

APP
.data and .bss

(348 B)

APP Stack
(256 B)

SRAM (1 kB)

Loaded
at 1rst
Boot

Application

State

includes

Sytare

checkpoint

images

Figure 8: Sytare memory layout for WSN application: Sizes in SRAM are defined
in the linker script and fixed. The size of the application and driver .text .data
.rodata and .bss sections are functions of the target application, the kernel section
sizes are fixed, including the checkpoint images.

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 27

3.3 System boot
When the platform is powered up, execution starts directly within the kernel.
Instead of the traditional startup procedure (i.e. crt0.s) the code sets the stack
pointer on the OS stack and jumps to the persistence management logic. Because
all OS data like checkpoint images and various bookkeeping variables are kept
in NVRAM, the kernel can instantaneously know what happened before the last
power failure and react accordingly.

Very first boot When executing for the first time, there is no checkpoint to
restore. Instead, the kernel prepares the application execution by loading its .data
into RAM, and zeroing its .bss section. Then it jumps into the application’s
main() function.

Restoring a checkpoint image When booting after a power failure, we usually
find a valid checkpoint image in NVRAM (otherwise we fall back to the first boot
behaviour). The kernel loads the device contexts into RAM and then calls the
restore() function of each driver in order to initialize the hardware peripherals
to the correct state. Next the application state (i.e. stack, data and bss sections)
are reloaded to RAM. Sytare performs all these transfers using the DMA module of
the MSP430 for better performance. When the checkpoint image does not contain
any syscall ID, the kernel resumes executing application code by just restoring all
CPU registers accordingly: SP is set back to point to the user stack, and PC into
application code.

Restarting an interrupted syscall When the checkpoint image indicates a
failed syscall, then the kernel must retry it entirely. In that case, instead of
returning to application code, the syscall arguments are repopulated into CPU
registers and execution jumps to the driver routine. Note that the syscall entry
wrapper needs not be executed again. The stack pointer does not leave the OS
stack until the driver function returns, and the syscall exit wrapper switches back
to the application stack.

3.4 Implementation of the syscall wrappers
When the user application needs to use the functionality of one driver, it has
to invoke the corresponding syscall. For example to send a message it must call
the syt_cc2500_send_packet(msg,MSG_SIZE) primitive instead of the original
cc2500_send_packet(msg,MSG_SIZE) driver function. This wrapper will call the
driver function with the same arguments but before that it does the following :

• save all syscall arguments on top of the user stack

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 28

• switch the stack pointer to the (volatile) OS stack
• save the program counter into the “next” checkpoint image

These operations ensure that, in case the syscall is interrupted, at next boot we
will have all the right information to restart it.

While the driver function executes, it may modify the state of the underlying
device. In that case, the driver calls the signal() function to notify the kernel. If
several drivers are involved in servicing the syscall, then any number of them can
signal such modifications.

When the driver function returns into the kernel wrapper, the OS does the
required cleanup:

• commit() the modified device contexts (and only the modified ones) into the
checkpoint image in NVRAM,

• switch back from the OS stack to the user stack and clean it from the stored
syscall arguments,

• repopulate the registers with the return value of the driver function.

3.5 Device drivers
In this section we give details about the the device drivers implemented in the pro-
totype system. In order of increasing complexity, the peripherals are: input/output
ports, LEDs, clock system, temperature sensor, SPI controller, and RF transciever.

Simple access peripherals (type 1) e.g. I/O ports, LEDs. The I/O driver
provides an interface to configure the external pins of the MSP430 microcontroller.
Typically, each pin can be either assigned to GPIO function or connected to some
peripheral module. In GPIO mode, each pin can be configured as output or as
input, can be set to generated interrupts, etc etc. All these options are controlled
through memory-mapped registers named e.g. P1DIR (“choose input or output
direction for P1”) or P3SEL (“select either GPIO or peripheral function for P3”)
etc.

On the FR5739 experimenters board, some of these I/O pins are connected
to an array of 8 LEDs, so we also provide a device driver to control them. Even
though both drivers have a very simple structure, the LED driver is built on top of
the I/O port driver.

In the case of such simple access peripherals, adding persistence support is
straightforward. As illustrated on Figure 9 on the next page, the device context
structure of the I/O driver mimics the hardware registers exactly. The restore()
primitive just copies its values one by one into the peripheral registers. Each driver
function which actually changes something in the hardware also calls signal() to
notify the kernel of the modification.

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 29

struct hw_port_registers
{

unsigned char out;
unsigned char in;
unsigned char dir;
unsigned char sel0;
unsigned char sel1;
unsigned char ie;
unsigned char ies;
unsigned char ifg;
unsigned char ren;

};

// sytare port driver data descriptor for persistence
struct port_device_context
{

struct hw_port_registers p1;
struct hw_port_registers p2;
struct hw_port_registers p3;
struct hw_port_registers p4;
struct hw_port_registers pj;

};

struct prt_device_context_t prt_device_context;

Figure 9: Illustration of the device_context type implementation for the I/O port
driver.

In a traditional bare-metal program, these simple peripherals would typically be
controlled directly from application code. Adding explicit devices driver and porting
programs to use them does require some effort from the programmer. Also, as will
be discussed in Section 4.5.2, the overhead incurred by Sytare adds a significant
performance penalty to each operation.

Constrained access peripherals (type 2) e.g. clock system, temperature
sensor, SPI controller. Each of these devices requires the software program to
conform to certain rules when accessing its registers. For example, the clock system
has a basic protection against accidental misconfiguration. In its normal state, all
configuration registers are read-only. Before changing any of its parameters, we
must “unlock” this protection by writing a certain “password” value into the first
register. Then the configuration registers can be written to, and then the program
has to “lock” the protection again.

Our device driver for the clock system does not directly provide access to the
hardware registers but presents a higher-level interface to the user. Thus, instead

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 30

of storing the values of every registers in the device context, we only have a few
fields describing the desired frequency and operating mode for each of the three
system clocks. The other two peripherals have similar access constraints. The SPI
controller requires one particular bit of a certain configuration register to be held
low while changing configuration. The temperature sensor is implemented by the
analog to digital converter (ADC) module, which imposes some timing constraints
when initializing the hardware or when measuring a value.

In a traditional bare-metal program, these peripherals would typically be
managed by dedicated device drivers and accessed only through some API. Thus
adding persistence support to the corresponding code is quite straightforward.
However performance-wise as for type 1 peripherals, the overhead incurred by
Sytare adds a penalty to each operation.

Indirect access peripherals (type 3) e.g. RF transciever. The most com-
plex device driver we implemented in Sytare controls the cc2500 radio transciever
via SPI. The radio itself is quite a complex peripheral: it features a lot of configu-
ration registers, requires certain timings on requests, and has a non-trivial internal
finite state machine (the radio can be either idle, sleeping, receiving, transmitting)
The driver exposes high-level primitives to the user e.g. send a message or put the
radio to low-power sleep. It implements each of these actions via a series of SPI
transactions, made through the SPI driver. Note that the send primitive, although
it performs complex operations, let the peripheral in the same state after the call
than before, and therefore does not trigger a syt_commit() afterwards.

4 Evaluation
The Sytare contribution is implemented by a software system running on compatible
hardware in order to ensure its capabilities and evaluate the cost of the persistence
service provided by the kernel. This part is build on two distinct evaluation
approaches, in one hand we ran some example applications measuring the time
consumption overhead induced by the sytare layer. In other hand we analyse the
specific overheads induced in system operations by the sytare kernel. We also
details how the time is spend during kernel operation for power loss abstraction.

4.1 Power supply
Power supply is implemented with a function generator for reproducibility. We
use a square signal generator directly connected to the Vcc and Ground pins of
the target board and configure the signal with various duty cycle and frequency
parameters.

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 31

4.2 Metrics and variables
To evaluate the system performance we define here some performance metrics.

Baseline: continuous power For a given application program, we define Twired

as the time it takes to run the application from start to finish under continuous
power. The “starting point” is defined as the instant power is turned on, so the
duration we measure includes hardware boot time as well as program initialisation.
In this experiment, we build the program with Sytare completely disabled and no
persistence support. The “finish point” is defined as the instant the program reaches
some arbitrary position in the code, e.g. encrypting a given data buffer, or send
that many messages. We tuned our benchmark applications to ensure that their
Twired is in the right order of magnitude for a TPS, i.e. a few hundred milliseconds.
We use this Twired measure as a ground truth baseline for evaluating the cost of
the Sytare mechanisms when running the same program under intermittent power.

Experiment: transient power When running under intermittent power, we
could vary the two parameters describing each lifetime, namely the “on time” and
“off time”. However the “off time” is of little interest, as the platform is completely
inactive in those periods. Instead we focus on the “on time”, which we define as
the time where the supply voltage Vcc is above the minimum operating threshold
of the MSP430.

For each experiment, we set a certain Ton value and configure the power supply
to repeatedly turn on for this duration and then turn off again. In each of these
lifecycles, the platform boots, then the Sytare kernel restores kernel state and then
the application runs until power runs out.

We define Ttransient as the time it needs for the system to reach the same
executional state as in the ground truth “finish point” above. When measuring this
duration we exclude all “off time” periods as they do not contribute any information
to the experiement. However, we do include the boot time (hardware and software)
and the cost of the checkpointing operations.

To assess the performance Sytare, we are interested in the time overhead
incurred onto the execution. For a certain value of Ton, we define the effective yield
Y as the following ratio:

Y (Ton) = Twired

Ttransient

(1)

For very small values of Ton, the platform will never have a chance to boot
successfully and so it will never finish executing the application. In other words
Ttransient would be “infinite” and the effective yield will be zero.

On the other hand, when the Ton duration approaches Twired then the application
will be able run to completion in just one lifecycle with little kernel interaction.

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 32

But even if the kernel boots only once and never has to save or restore checkpoints,
execution overhead arising from the syscall wrappers still impacts performance and
the effective yield will never reach 100%.

4.3 Benchmark applications
We use 4 benchmark applications with various levels of interaction with peripheral
devices:

RSA This purely computational application encrypts a 128 bits data buffer with
the RSA algorithm. Because it uses no peripherals but has a significant
memory footprint, it allows us to study the performance of our application
checkpointing mechanism.

Diode counter The program slowly counts from 0 to max_integer and displays
the value of the counter on the platform’s diodes. This simple application
allows us to study the impact of the syscall wrappers on performance as well
as evaluate the performance of adding persistence to simple access peripherals.

Sense and aggregate Demonstrating the use of timing constrained peripherals,
this application senses the temperature 10 times using the processor ADC,
stores the numbers in an array as well as the computed mean. Between each
measurement, a delay of 5 milliseconds is observed.

WSN Typical wireless sensor network application. It senses the temperature
in the environment using the processor ADC, aggregates 10 measures and
sends this information along with others (basic computations, statistics on
the platform) to a wired powered sink via RF signal. The application then
puts RF transciever in sleep mode and waits one second by software delay.
This application demonstrates the transparent use of timing constrained
peripherals.

These applications were built without the Sytare integration to measure ground
truth reference measures on continuous power. These measurements are made
with a CPU running at 24 MHz (configured in the first executed code lines, before
program RAM initialisation).

4.4 Benchmark application evaluation
In this section we evaluate our prototype implementation on several benchmark
applications. To evaluate the performance overhead induced by Sytare, we execute
each application in two different settings. First, we build the program with no

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 33

persistence support at all, and execute it with continuous power. Then, we build
the program with Sytare enabled, and execute it with intermittent power. We
measure for each benchmark application:

• Tmin
on as the minimal time to execute successfully the application in a transient

power context.

• Y max as the maximal yield obtained for a benchmark application correspond-
ing theoretically to the condition Ton = Twired.

4.4.1 Computational RSA application

Figure 10: Temporal yield measurements in function of runtime window - RSA
demo application

• Tmin
on = 2.79 ms

• Y max = 0.98

4.4.2 Leds counter application

• Tmin
on = 2.79 ms

• Y max = 0.99

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 34

Figure 11: Temporal yield measurements in function of run time window - leds
demo application

This application uses only leds and so only uses one driver that will require to be
persisted across power losses. The persistance of that one driver though implies
no behaviour modification in the system capability to run across multiple short
lifecycles.

4.4.3 Sense and aggregate

• Tmin
on = 2.90 ms

• Y max = 0.97

The temperature sensing application uses multiple peripherals but stays efficient
in terms of minimal computation window as the different drivers used don’t have
long hardware initialisation. the ADC require to the application to wait for the
end of its measurements, but this wait is limited and don’t occur at every lifecycle.

4.4.4 WSN (sense and send) application

• Tmin
on = 9.40 ms

• Y max = 0.99

The WSN application is a realistic application used for evaluating Sytare. The
addition of a complex active RF transciever increases the minimal computation

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 35

Figure 12: Temporal yield measurements in function of run time window - sense
demo application

window supported by the system by 3 as the RF chip initialization (or restoration)
requires active polling and multiple SPI communication. Besides, the action of
sending a message consumes much more current, inducing a voltage drop increasing
the chance of failed checkpoint or to have to retry a syscall. Despite these remarks,
our system is still able to run the application on transient power under the TPS
hypothesis, validating its behaviour.

4.4.5 Discussion

These applications all succeed in running on transient power due to Sytare inte-
gration. We observe a similar behaviour in the temporal yield computed for each
one in function of the computational window given to the platform. The minimal
computational window is however different between some applications depending
on which peripheral they use, that the kernel will have to persist. Typically, an
application using the radio frequency chip in our system is limited by the restora-
tion function of the RF driver time consumption fixing the lower bound of the
accessible computational window to approximatively 10 ms. The other benchmark
applications do not use this peripheral and so their minimal computation window
is around 3 ms. This demonstrates that Sytare efficiency is dependent on the
addressed peripherals and their complexity.

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 36

Figure 13: Temporal yield measurements in function of run time window - wsn
demo application

4.5 Kernel evaluation
4.5.1 System boot

This section aims at describing the system timings and behaviour in its notable
aspects. Figure 14 represents the time spent by the system during a lifecycle and
displays the measures of sevral actions on the system boot, as described in section
3. We made these measures on the WSN sense and send application as we wanted
to show the respective restoration time of the different drivers used.

Firstly, the hardware need to startup at power on taking a fixed amount of
time. We measured 1.2 ms from the time when the power gets above the processor
lower executional voltage to the first instructions the system can execute. The
kernel then spends a fixed amount of time restoring the application RAM state via
DMA copy. The driver structures restoration via DMA and the next checkpoint
initialisation are dependent on the different drivers used as an unused driver will
not be persisted. The different peripherals take a restoration time depending on
the hardware to restore, on the way it can be accessed, if there is an active polling
phase in the hardware startup and on the size of the configuration to restore. We
can see that a significant part of the system boot time is dedicated to the hardware
state restoration by the drivers. The hardware we used was not designed to support
transient execution, thus explaining the time consumption which is mostly used
into hardware specific actions done by the drivers during their restoration primitive
call by the kernel.

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 37

A B C D A

A : Processor off

B : System boot

C : Application run

D : System checkpoint

Port Clock ADC SPI Radio

System boot (B above) :

Peripherals restoration :

Vthreshold

Voff

Time

V oltage

Hardware boot

(1.24 ms)
App state resto-

ration (45 µs)

Device context

restoration (27 µs)

Peripheral state

restoration (1.17 ms)

Next checkpoint

initialization (30 µs)

Figure 14: System boot sequence time consumption

The program checkpoint phase during the power loss is done in fixed time as
we dump the whole user RAM content into NVRAM. The time after checkpointing
and before power loss can be seen as negligible as having a fixed checkpointing time
we have tuned the Vthreshold value to have just the time to checkpoint in normal
conditions. If the power loss occurs during a syscall or during system initialisation
it will not be taken into account before the end of the concerned system action,
possibly inducing a checkpoint fail. The tradeoff between the time granted for
checkpointing and the possible checkpoint failure is not disscussed here as the
involved system time (around 45 µs per lifecycle) is low in front of the drivers and
peripheral restoration time (more than 1 ms).

4.5.2 Syscalls evaluation

It is important to note that the overtime induced by the kernel is not only the sum
of the kernel boot and the kernel checkpoint times as during the application run,
the call to drivers primitive via syscall induces time consumption by the kernel to
persist the device contexts modifications. The time overhead for several drivers

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 38

primitives is shown in figure 15.

led toggle :

sense temperature :

radio sleep :

radio wake up :

radio message send :

Syscall System time consumption (µs) Time overhead

x 14.25

x 1.27

x 2.37

x 1.08

x 1.01

3.4 1.6 17.8

2.4 75.2 17.6

2.4

2.4

2.8

23 29.2

428 31.4

3400 20.6

|syscall init. | | syscall return and commit |driver primitive

Figure 15: Kernel temporal impact on drivers primitives calls

We can observe on this diagram that depending on the complexity of the
accessed peripheral and the complexity of hardware actions achieved during a
syscall, the overtime induced by the kernel for context switch and drivers device
contexts commit varies from more than 90% of syscall time to a extremely low
value (under 1%). Nevertheless the syscalls impact on the system is low as from
the applicative point of view the time spent in syscall doesn’t drastically impact
the overtime induced by the system, mostly during restoration phase. In addition
the use of long syscalls, for example the radio send message primitive, is much
more visible in the system overall time as the total syscall duration is 2 orders of
magnitude higher than the time used for the system to toggle the state of a pin.

4.5.3 Memory occupation

The RAM overhead of Sytare is mostly imputable to the need of a separate kernel
stack. The application RAM occupation stays the same with Sytare integration as
no code modification of the application is required. The drivers memory occupation
into RAM is increased approximately by the size of the mirrored configuration. For
example the Radio Frequency chip driver used into Sytare benchmark application
used 44 additional bytes in RAM after its integration for persistence. The OS
variables and checkpoints are located in NVRAM and so do not impact the RAM
occupation of the system.

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 39

5 Conclusion and Perspectives
This report presents the first version of the Sytare software layer. Sytare offers
services for handling software running on transiently powered systems. At time of
writing, Sytare is the first tool that associates checkpointing, a classical solution to
handle transient power, with a mechanism that ensures a safe use of non trivial
peripherals such as timer, serial interface, ADC or radio transceiver. Sytare has
been implemented on the MSP-EXP430FR5739 board from Texas Instrument which
includes 15kB of FRAM together with traditional RAM. This implementation shows
the impact of Sytare in terms of performance and also validates the Sytare concept
on a real transiently powered system. This report studies the tradeoff between
the duration of the powered periods and the additional cost of the Sytare software
layer. It quantifies the impact on driver calls, it shows for instance that the time
overhead induced by Sytare in radio driver calls is less than 1%.

There are many remaining issues before getting to a tool that can be used in
industry. The main limitation of Sytare currently is that it does not allow user
interruptions. This limitation can be overcome easily but has not been implemented
yet, this is currently going on. Another important possible improvement concerns
the value of the thresholds used for checkpointing and for resuming execution.
These values have an important impact on performances and are very dependent
on architecture, application and possibly other factors such as temperature etc.
It will probably be necessary to set up an adaptive threshold choice. Finally, of
course, Sytare has to be tested on other platforms and other applications. The
possible integration in a lightweight operating system such as RIOT or Contiki has
to be studied too.

References
[AAMS14] Fayçal Ait Aoudia, Kevin Marquet, and Guillaume Salagnac. “Incre-

mental checkpointing of program state to NVRAM for transiently-
powered systems”. In: ReCoSoC 2014: 7th International Workshop
on Reconfigurable Communication-centric Systems-on-Chip. 2014.

[BCGL11] Katelin Bailey, Luis Ceze, Steven D. Gribble, and Henry M. Levy.
“Operating system implications of fast, cheap, non-volatile memory”.
In: HotOS 2011: 13th USENIX conference on Hot topics in Operating
Systems. 2011.

[Bel08] Gordon Bell. “Bell’s Law for the Birth and Death of Computer
Classes”. In: Communications of the ACM 51 (2008), pp. 86–94.

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 40

[BKC+13] Steven Bartling, Sudhanshu Khanna, Michael Clinton, Scott R. Sum-
merfelt, John A. Rodriguez, and Hugh P. McAdams. “An 8MHz
75uA/MHz zero-leakage non-volatile logic-based Cortex-M0 MCU
SoC exhibiting 100-percent digital state retention at VDD=0V with
<400ns wakeup and sleep transitions”. In: ISSCC 2013 : IEEE Inter-
national Solid-State Circuits Conference. 2013, pp. 432–433.

[BM16] Naveed Bhatti and Luca Mottola. “Efficient State Retention for
Transiently-powered Embedded Sensing”. In: EWSN’16: 13th ACM
International Conference on Embedded Wireless Systems and Net-
works. 2016.

[BPS+08] Michael Buettner, Richa Prasad, Alanson Sample, Daniel Yeager,
Ben Greenstein, Joshua R Smith, and David Wetherall. “RFID sensor
networks with the Intel WISP”. In: Sensys 2008: 6th ACM Conference
on Embedded Network Sensor Systems. ACM. 2008, pp. 393–394.

[BWM+15] Domenico Balsamo, Alex S. Weddell, Geoff V. Merrett, Bashir M.
Al-Hashimi, Davide Brunelli, and Luca Benini. “Hibernus: Sustain-
ing Computation During Intermittent Supply for Energy-Harvesting
Systems”. In: IEEE Embedded Systems Letters 7.1 (2015).

[DGV04] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. “Contiki: a lightweight
and flexible operating system for tiny networked sensors”. In: 29th
Annual IEEE International Conference on Local Computer Networks.
IEEE. 2004.

[GPPT16] Fei Guan, Long Peng, Luc Perneel, and Martin Timmerman. “Open
source FreeRTOS as a case study in real-time operating system evolu-
tion”. In: Journal of Systems and Software 118 (2016).

[JLL+14] Hrishikesh Jayakumar, Kangwoo Lee, Woo Suk Lee, Arnab Raha,
Younghyun Kim, and Vijay Raghunathan. “Powering the Internet of
Things”. In: ISPLED’14: International Symposium on Low Power
Electronics and Design. 2014.

[JRR14] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. “Quick-
Recall: A Low Overhead HW/SW Approach for Enabling Com-
putations across Power Cycles in Transiently Powered Computers”.
In: VLSID 2014: 27th International IEEE Conference on VLSI De-
sign and 13th International Conference on Embedded Systems. 2014,
pp. 330–335.

RR n° 9018

Peripheral State Persistence For Transiently Powered Systems 41

[LBL+13] Y. Lee, S. Bang, I. Lee, Y. Kim, G. Kim, M. H. Ghaed, P. Pannuto, P.
Dutta, D. Sylvester, and D. Blaauw. “A Modular 1 mm3 Die-Stacked
Sensing Platform With Low Power I2C Inter-Die Communication and
Multi-Modal Energy Harvesting”. In: IEEE Journal of Solid-State
Circuits 48.1 (2013).

[LLL+15] Yongpan Liu, Zewei Li, Hehe Li, et al. “Ambient energy harvesting
nonvolatile processors: from circuit to system”. In: DAC 2015: 52nd
Annual Design Automation Conference. 2015, 150:1–150:6.

[LR15] Brandon Lucia and Benjamin Ransford. “A simpler, safer program-
ming and execution model for intermittent systems”. In: PLDI 2015:
36th ACM SIGPLAN Conference on Programming Language Design
and Implementation. 2015.

[MSCT14] Jagan Singh Meena, Simon Min Sze, Umesh Chand, and Tseung-Yuen
Tseng. “Overview of emerging nonvolatile memory technologies”. In:
Nanoscale Research Letters 9.1 (2014).

[MZL+15] Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan,
Xueqing Li, Yongpan Liu, Jack Sampson, Yuan Xie, and Vijaykrishnan
Narayanan. “Architecture exploration for ambient energy harvesting
nonvolatile processors”. In: HPCA’15: High Performance Computer
Architecture. IEEE. 2015, pp. 526–537.

[ODV+09] Fredrik Österlind, Adam Dunkels, Thiemo Voigt, Nicolas Tsiftes,
Joakim Eriksson, and Niclas Finne. “Sensornet checkpointing: En-
abling repeatability in testbeds and realism in simulations”. In: EWSN
2009: 6th European Conference on Wireless Sensor Networks. Springer,
2009.

[RL14] Benjamin Ransford and Brandon Lucia. “Nonvolatile Memory is a
Broken Time Machine”. In: MSPC 2014: ACM SIGPLAN Workshop
on Memory Systems Performance and Correctness. 2014.

[RSF11] Benjamin Ransford, Jacob Sorber, and Kevin Fu. “Mementos: system
support for long-running computation on RFID-scale devices”. In:
ASPLOS 2011: 16th International Conference on Architectural Support
for Programming Languages and Operating Systems. 2011.

[SG10] David Stonier-Gibson. Understanding embedded microcontroller multi-
tasking RTOS alternatives. date accessed: sept 2016. SPLat Controls,
2010. url: http://www.splatco.com/rtos_1.htm.

RR n° 9018

http://www.splatco.com/rtos_1.htm

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Background and Related Work
	Tiny Embedded Systems
	Transiently Powered Systems
	Non-volatile architectures
	Program checkpointing
	Discussion and problem statement
	Problem statement

	Contribution: the Sytare software
	Sytare structure
	User program state persistence
	Solution to peripheral state volatility
	Solution to peripheral access atomicity
	The checkpoint image structure
	Simple Syscall and checkpointing operation
	Complex Syscall and signaling example
	Disscussion

	Implementation
	Hardware
	Memory organisation
	System boot
	Implementation of the syscall wrappers
	Device drivers

	Evaluation
	Power supply
	Metrics and variables
	Benchmark applications
	Benchmark application evaluation
	Computational RSA application
	Leds counter application
	Sense and aggregate
	WSN (sense and send) application
	Discussion

	Kernel evaluation
	System boot
	Syscalls evaluation
	Memory occupation

	Conclusion and Perspectives

