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Abstract—Transiently-powered devices are a class of small
devices powered by energy harvesting. Because such devices are
subject to frequent power outages, many recent works propose
to checkpoint data residing in volatile RAM into non-volatile
RAM. In this article, we propose a new incremental checkpoint-
ing mechanism supported by a common hardware component,
namely a Memory Protection Unit (MPU). This mechanism
leverages the hardware interrupts of the MPU: volatile RAM
is read-only on boot and is progressively unlocked as soon
as protection violations occur. The MPU interrupt handler is
designed to flag the corresponding volatile RAM blocks as dirty,
i.e., modified. When a power outage is foreseen to be imminent,
the software simply has to copy the dirty blocks from volatile
RAM into the non-volatile RAM to ensure application progress
over power outages. We validate our approach analytically and
in cycle-accurate simulation, and we show that the proposed
solution can be easily implemented on real hardware.

Index Terms—Low-power, NVRAM, Checkpointing,
Transiently-Powered Systems

I. INTRODUCTION

Intermittent computing is a new computation paradigm
for IoT sensors and ultra-low power devices where power
outage is the norm rather than the exception. Sensors are not
powered by a traditional battery but by a capacitor charged by
harvesting energy from the environment. Program execution
can be interrupted at any time, leaving the device with no
power at all for an unknown duration.

In intermittent computing, program progress is ensured by
the presence of some form of non-volatile memory. Emerging
non-volatile RAMs [1] are much more efficient to frequently
checkpoint program state (i.e., save a consistent program state
in case of future power loss) than classical Flash-based storage.
In some applications where the energy source can only provide
low power to the platform (e.g., radio harvesting), reboots can
be extremely frequent and it is crucial to optimize the energy
consumed by the shutdown/reboot processes.

The research community has focused its attention on smart
checkpointing, i.e., performing checkpoints only when they are
really necessary. Some other works propose to decrease the
amount of RAM copied to NVRAM, either by considering
the role of each region of the RAM [2] or by considering in-
cremental checkpointing [3]. We propose a novel technique of
incremental checkpointing which uses a hardware component
that is present on most low-power micro-controllers today: the
memory protection unit (MPU). An MPU can be configured to
avoid costly checksums formerly used to check that a memory
region has changed. This work proposes to investigate MPU

write-access violation interrupts in order to flag volatile RAM
regions as modified, to be saved into non-volatile RAM before
the platform runs out of power.

After presenting our mechanism in Section III, we propose,
in Section IV, an analytical model of the energy consump-
tion of this mechanism and a comparison to a classical
checkpointing mechanism. This analysis shows that even for
short amounts of RAM (e.g., 20 kB), MPU-based incremental
checkpointing is much less energy consuming. We imple-
mented our MPU-based incremental checkpointing mechanism
and we ran it on a cycle-accurate simulator of the FRAM-
based MSP430FR5739 micro-controller. The cycle-accurate
simulations, presented in Section V, confirm the interest of this
new technique for transiently-powered devices checkpointing.

II. RELATED WORK: TRANSIENTLY-POWERED SYSTEMS
AND CHECKPOINTING

A. Transiently-Powered Devices

Following the recent development of IoT [4], [5], it appears
that low-power consumption is a crucial issue for IoT devices.
Recent advances in low-power radio transmission [6], [7]
allow high form factor reduction for sensors [8], but using
battery remains an important problem because of battery
charge process and battery size.

Harvesting technologies have evolved to extend the energy
source to other power sources than light [9], [10], [11],
[12]. These new energy harvesting technologies enable a
possible scenario where sensors would survive for decades
without maintenance, simply by harvesting energy from the
environment. This gave rise to the notion of Transiently-
Powered Systems (TPS) [13] and their computing paradigm:
intermittent computing. Transiently-powered systems are tiny
devices powered by energy harvesting, supporting frequent
unexpected power losses and ensuring progress by saving
program state to a non-volatile storage element [14], [15], [16],
[17].

The first studies on intermittent computing TPSs used Flash
memory as non-volatile storage [13], but most recent works
rely on new non-volatile RAM (NVRAM) technologies [15],
[18], [16], [19], [20], [17], [21], [22]. The use of NVRAM
offers many possibilities: it can be used to save and restore
program state much more efficiently than Flash, but can also
be used as regular RAM by the program. Various memory
hierarchies can be designed. Storing data in NVRAM makes
each access slower and/or more energy-expensive and brings



new consistency problems [23], but reduces the time for check-
pointing. Many intermittent computing systems use hybrid-
memory models (volatile and non-volatile RAM).

For several years, the only commercial CPUs using
NVRAM and RAM were those of the MSP430FR family from
Texas Instruments which use FRAM technology. Hence many
of the aforementioned intermittent computing experiments
leveraged these platforms. For instance, the MSP430FR5739
CPU contains 16 kB of NVRAM (FRAM) and 1 kB of SRAM.

B. Checkpointing Mechanisms
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Fig. 1: Ideal checkpointing On/Off cycles of a platform
supplied by energy harvesting. Checkpoint operations are
performed when voltage drops below Vsave. Checkpoint can
succeed or fail, application and devices are always restored in
a consistent state but no progress is made if checkpoint fails.

Checkpointing consists in saving the program state and
restoring it, usually after a crash occurrence. We are studying
checkpointing in the context of intermittent computing for low-
power embedded devices. This context is quite different from
the usual context of checkpointing, i.e., distributed systems
and high performance computing. In TPS, checkpointing must
solve three problems: program state persistence (proposed by
all works), peripheral state persistence [20], [21], [22], [24]
and persistent-time keeping [25]. In this paper we focus on
the first problem: saving the program state into NVRAM and
restoring it, with a minimal energy cost. Fig. 1 illustrates
an ideal situation where checkpointing is done solely before
power outage1. In general, it might be difficult to predict
exactly when checkpointing should be performed. The copy
from RAM to NVRAM is, on most devices, performed by a
DMA peripheral in efficient burst copies of memory blocks.

Mementos [14], running on Intel WISP [26] proposes to pe-
riodically interrupt the application and measures the remaining
energy level. If the energy level is below a certain threshold,
Mementos saves the CPU registers and copies the contents of
RAM to flash memory, making checkpointing transparent to

1We refer to the period within which the platform is continuously powered-
on and computes normally as life-cycle.

the application program. Hibernus [15] introduced a hardware
device to trigger the checkpoint operation only when needed
(in order to get close to the ideal situation depicted in Fig. 1).

Some works proposed static insertion of checkpoints, [18],
or dynamic insertion [17], [27], [16]. The IBIS tools [28]
ensure memory consistency when computing directly in non-
volatile RAM.

Several works have proposed solutions for improving check-
pointing efficiency, i.e., minimizing energy spent for check-
pointing. Aı̈t-Aoudia et al. [3] propose incremental check-
pointing scheme to reduce the number of NVRAM writes
as much as possible. Bhatti and Mottola [29] improved this
proposition by distinguishing RAM regions (stack, heap, etc.)
and other [30], [31] proposed further improvements. These
works define incremental checkpointing. In order to selectively
save memory regions from volatile to non-volatile memory, the
entire volatile RAM must be mirrored in the checkpointing
image at least once (or more in case of double-buffering for
instance), which is always the case since a checkpoint image
must enable the system to repopulate its RAM, amongst others,
upon restoration process.

Few works leverage hardware for checkpointing. Bartling et
al. [2] propose to design a non-volatile micro-controller which
automatically saves all CPU and peripheral registers to FRAM,
upon detecting a power loss.

In this article, we propose a new checkpointing mechanism
that relies on a very common hardware component present in
every low-power device for isolation purposes: the Memory
Protection Unit (MPU).

III. A NEW MPU-BASED CHECKPOINTING MECHANISM

Our proposal is to use an MPU to optimize the quantity of
data saved into NVRAM, i.e., to get as close as possible to the
ideal case where only data that have been modified during the
life-cycle are saved into NVRAM. We first recall the principle
of MPUs which are provided in many embedded devices,
then we explain our proposal of incremental checkpointing
mechanism and we review the parameters that might change
from one MPU to another.

A. Memory Protection Units

Ultra low-power embedded systems do not have hardware
support for memory virtualization through Memory Manage-
ment Units (MMU). An MMU is energy-expensive, mainly
because of the presence of the Translation Lookaside Buffers,
made of associative memory. However, many embedded sys-
tems include hardware support for memory isolation thanks to
MPUs which enable to manage access rights to some memory
region.

The characteristics of an MPU substantially vary from one
platform to another but their goal is the same: guarantee
memory integrity and fire interrupts upon access violation.
Table I gives the characteristics of MPUs present on the
MSP430FR5739 and ARM Cortex-M platforms. The criterion
“Tunable for Checkpointing” indicates whether our technique
will be easy to implement on that MPU, as precised hereafter.



TABLE I: Characteristics of the MPUs from two low-power
architectures.

MSP430FR5739 ARM Cortex M3&M4
Working range NVRAM range Entire memory
Region count 3 8 with 8 subregions

per region
Region size Customizable Customizable

One region at a time
Tunable No Yes

void application_main(void)
{

compute_1();
*((int*) 0x668) = 42;
compute_2();
*((int*) 0x01068) = 24;
compute_3();

}

Fig. 2: C code serving the explanation.

B. Incremental Checkpointing Mechanism

The proposal of this paper is to use MPU as hardware
support for incremental checkpointing. But we do not regu-
larly compute checksums on memory regions as in previous
works [3]. The idea is to keep track of whether a region has
been modified since last checkpoint or not. Let us note D the
set of dirty regions, i.e., regions that have been modified since
the last checkpoint.

When the platform starts executing, D is empty (D = ∅)
and all regions of volatile RAM are write-protected by the
MPU. When a write occurs in the region Ri of RAM, the
MPU triggers an interrupt. The interrupt handler marks the
region dirty: D := D ∪ {Ri} and unprotects the region. The
interrupt handler then returns to the faulting instruction, i.e.,
the instruction that caused the write violation access. Now
that the region is unprotected, the write access can complete
without further interrupt and the execution resumes as usual.
In practice, D may be implemented as a bitfield.

The code sequence in Fig. 2 illustrates this mechanism with
a RAM of 8 kB and an MPU capable of protecting 8 different
regions R1 to R8:

1) Initialization and execution of the system. D = ∅.
2) The program performs a write in RAM at address 0x668

(address in region R2). This triggers an MPU interrupt.
3) The interrupt handler is executed. D = {R2} and the

MPU is configured to stop protecting R2.
4) The failed write to address 0x668 is now executed cor-

rectly. This is possible only if the MPU is “Tunable ” for
checkpointing. Indeed, when an interrupt is raised by the
MPU by instruction i, the execution flow returns – after
interrupt handler execution – to the instruction following
instruction i. Here, we need to execute i again. This can
be parameterized on an ARM MPU as indicated in Table I
but not on an MSP430FR MPU.

5) The program continues its normal execution after the
write.

6) Then the program writes in RAM at address 0x1068 (in
region R5). Again, this triggers an MPU interrupt.

7) The interrupt handler is executed. D = {R2, R5} and the
MPU is configured to stop protecting R5.

8) The write at address 0x1068 is actually executed.
9) The program continues its execution and at some point,

the energy subsystem triggers an interrupt leading the OS
to checkpoint volatile memory: only regions 2 and 5 are
copied to NVRAM.

This technique requires the MPU to be able to protect the
RAM. The energy gain, compared to saving the entire RAM,
will depend on characteristics of the MPU and of the executed
applications. In the following, we give details on all these
characteristics, and we explore their impact in the next section.

IV. ANALYTICAL ANALYSIS OF CHECKPOINTING
PERFORMANCE

In this section, we focus on the energy required to check-
point memory from volatile RAM to non-volatile RAM.
The energy consumed by this process depends on several
parameters. The model depicted in this section, as well as the
results that come out of it, may be used as a base for design
space exploration, in terms of hardware specifications and/or
software specifications.

A. Modeling MPU-based Incremental Checkpoint

The performance of our proposal heavily depends on some
parameters, listed in Table II. The amount of RAM used
Swords is important because the bigger the memory is, the
more vital it becomes to save energy by selectively check-
pointing fractions of memory to NVRAM. The performance of
the DMA fDMA directly impacts the time needed to perform
a checkpoint.

We call α the average dirtiness ratio, i.e., the average
proportion of regions that have been modified since last
checkpoint when a new checkpoint arrives. This parameter α
is important: a small value gives our proposal better results.
In many transiently-powered systems, little energy is available
between consecutive checkpoints, allowing the execution of a
few thousands or millions of instructions each time, hence
α is indeed expected to be low. The amount of regions, the
application behavior and the frequency of power loss (or
equivalently the duration of life cycle), influence also the
performance of our proposal.

The amount of regions Nreg that the MPU can handle is
also crucial: if this number is too high, the platform will spend
a lot of time handling interrupts. But on the other hand, with a
small number of regions, the checkpointing is less incremental
and closer to a full copy of the RAM contents.

Our proposal relies on a standard micro-controller equipped
with an MPU. Although the MPU is a hardware component,
it is driven by software, which means that there is some
time overhead due to running instructions. This overhead is
specific to incremental checkpointing. There are two sources



TABLE II: Model parameters and their default values (used in Section V).

Symbol Description Unit Typical value
Swords Amount of RAM used by the application Word 213

fDMA DMA bandwidth Word/second 8× 106

Pplat Power drawn by the whole platform, without CPU,
DMA nor MPU

Watt 1.65× 10−2

PDMA Power drawn by the (active) DMA Watt ε

PMPU Power drawn by the (active) MPU Watt ε

PCPU Power drawn by the CPU (in active mode) Watt 3.96× 10−3

α Average ratio of dirty regions during one life-cycle - 0.1
Nreg Number of regions handled by the MPU - 16
toverhead Time to check if a region must be copied Second 3× 10−6

tint Execution time of the MPU interrupt handler Second 5× 10−6

Ecritical Average amount of energy wasted due to re-
executing code if the MPU interrupt occurred during
a critical section

Joule ε

of software-related time overhead. First, this mechanism is
interrupt-based which introduces an overhead, named here
tint, that is the time to handle the MPU interrupt. The interrupt
handler must simply flag the concerned memory region as
dirty, and unlock that region to allow further modifications
from the software until the memory is saved in the checkpoint-
ing process. Second, during the checkpointing process, the
software must check every region dirtiness flag to determine
whether they must be copied or not, this overhead is called
toverhead. Both overheads are expected to be small, but not
negligible, within the order of a few microseconds for each.

This model also needs insight about some electronics as-
pects of the platform. We distinguish four parts: the micro-
controller itself that consumes PCPU ; the DMA that con-
sumes PDMA apart from the micro-controller; the MPU that
consumes PMPU ; and the rest of the platform, including
peripherals, that consumes Pplat. The power consumption
of the MPU, PMPU , is only accounted in the incremental
checkpointing since the full copy does not need the MPU and
thus it can be turned off. The different power consumptions
are platform-dependent and furthermore, Pplat also depends
on the application since the amount and the nature of enabled
peripherals depend on the state of the application at a given
point in time. When yielding our results for the analytical
part, we chose to arbitrarily set Pplat to 16.5 mW which
corresponds to a consumption of 5 mA under a 3.3 V supply;
PDMA and PMPU to be negligible; and PCPU to be 3.96 mW,
which corresponds to 1.2 mA, the consumption of the active
mode of the MSP430FR5739 – in which words are 2 bytes
long – as we measured it.

From these parameters, we describe below the equations that
analytically compute the energy spent using our incremental
checkpointing solution (Einc) and the energy spent doing a
copy of all RAM (Ecopy).

As checkpointing is done using a DMA, i.e., without using
the CPU, the energy required to checkpoint the whole RAM
(of size Swords) is simply computed with equation (1):

Ecopy =
Swords

fDMA
× (PDMA + Pplat) (1)

The power consumption of the MPU is not accounted in Equa-
tion (1) since Ecopy represents the non-incremental check-
pointing.

To compute the energy used by our mechanism, we now
introduce the necessary terms. To save a single region using
DMA (CPU off), the required energy is expressed as:

Eregion =
Rwords

fDMA
× (PDMA + PMPU + Pplat)

with Rwords = dSwords

Nreg
e the number of words in a region.

The energy consumed by MPU interrupt handling corre-
sponds to the energy spent by the MPU interrupt handler
plus the energy needed to re-run a portion of code, if for
instance the interrupt occurred during an atomic section (e.g.,
a “syscall”, see [20], [21], [22] for details on peripheral
handling in TPS). This energy is abstracted by Ecritical which
is averaged over all the MPU interrupts. It is important to
model this energy because in some cases, frequent interrupts
might prevent the application from efficiently making progress.
In the analysis presented in Section V, we have not taken
this parameter into account (Ecritical = ε in Table II), but in
the cycle-accurate simulation in Section V-A, it is simulated.
Hence the energy of dirtiness detection is expressed as:

Edetect = tint × (PCPU + PMPU + Pplat) + Ecritical

The energy to checkpoint only dirty regions corresponds to:

Edirty = Ndirty×Eregion+toverhead×(PCPU+PMPU+Pplat)

with Ndirty = dα×Nrege the average amount of dirty regions
per checkpoint.

Finally, the energy dedicated to incremental checkpointing
during an entire life-cycle energy is given by:

Einc = Edirty +Ndirty × Edetect (2)

B. Comparison with Classical Complete RAM Copy

In this section, we evaluate the benefits of our proposal us-
ing the analytical estimation provided in previous section. The
parameters that are not indicated in the following figures have
default values mentioned in Table II. These values have been
obtained by informal measurement on the MSP430FR5739.
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Fig. 3: Energy consumption of checkpointing mechanism with
respect to size of RAM for different values of Nreg .

The precision of these values is not very important, what is
important is the aspect of the evolution of energy consumption
when some parameter (e.g., the size of the RAM) changes.

a) Impact of RAM size: Fig. 3 shows the energy con-
sumption with respect to the RAM size for different values
for Nreg (results are similar for α = 0.3). Our intuition is
confirmed: when α is small, our mechanism is better than a
copy of the entire used RAM. This is normal as our mechanism
avoids the copy of all not-dirty regions. Another intuition is
confirmed, for the same reason: the larger the amount of RAM
used is, the better our mechanism is.

The third observation we make from these curves is that
our mechanism is not always more efficient with an increase
of the number of regions. We detail this phenomenon in the
next section. The energy curves have many similarities when
making parameters vary. Hence, we can define Smin such that
∀Swords > Smin, Einc(Swords) < Ecopy(Swords). In other
terms, Smin is the minimal amount of RAM words to make
the incremental checkpointing worth using in comparison to
the classical full copy. Note that Smin actually depends on
the other parameters as listed in Table II. The values of Smin

are fairly low, which implies that the MPU-based approach
consumes less energy than the traditional copy for the needs
of realistic applications. However, it is necessary to mitigate
these results by taking into account the influence of other
parameters; this is done in paragraph c) below.

b) Impact of the number of regions: If Nreg is too high,
the platform will spend a lot of time handling MPU interrupts.
But if Nreg is too small, the checkpointing is less incremental
and resembles more the classical full copy with detrimental
overhead. This is illustrated by Fig. 4: for the considered
amounts of RAM, the optimal number of regions is under
10.

c) Impact of other parameters: It is not possible, in
figures presented above, to see the influence of two important
parameters. The results presented above were based on the
typical values mentioned in Table II. But Fig. 5 illustrates the
influence of other parameters.

A high α decreases the efficiency of incremental check-
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Fig. 4: Energy consumption of checkpointing mechanism with
respect to the number of MPU regions for different RAM sizes.
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Fig. 5: Impact of (a) α, (b) Pplat, (c) tint and (d) PMPU on
the minimal amount of RAM words to make the incremental
checkpointing worthwhile (Smin).

pointing (see Fig. 5a). Indeed, when α grows towards 1, the
system has to copy an amount of data that becomes closer
to the amount of data required by the classical full copy. In
that case, the overhead due to MPU interrupt handling makes
it a challenge, for the incremental checkpointing, to keep
being beneficial. However, even with stable energy harvesters
that are able to run the platform longer and thus to achieve
a greater α such as solar-based harvesters, the incremental
checkpointing requires only a few thousands of words to show
better performance.

The lesser Pplat is, the less efficient the incremental check-
pointing is (see Fig. 5b).

The execution time of the MPU interrupt handler is crucial
(see Fig. 5c). A longer execution time means a higher energy
budget allocated for checkpointing, since the micro-controller



and the peripherals are consuming energy in the meantime.
The electronic properties of the MPU can differ from a

micro-controller to another and its configuration may have an
impact on its consumption. This motivates the need to study
the influence of PMPU on the performance of the incremental
checkpointing. Fig. 5d shows that, if the MPU consumes
more, Smin increases accordingly, meaning that there must
be a greater amount of memory to be checkpointed in order
to keep the incremental checkpointing beneficial. However,
Smin values are still low, even when PMPU is high. Thus,
even a complex, power-consuming MPU would not hinder the
benefits of the incremental checkpointing.

Some extreme values were shown on purpose in Fig. 5, in
order to show the low yet realistic requirements that make
this proposal efficient. For instance, tint is not expected to be
greater than a few microseconds, however Fig. 5c shows that
greater values would require a greater Smin but still realistic
from the application’s perspective. Another example is when
α is very high in Fig. 5a. In practice, the application is not
expected to modify most of the memory contents before a
power outage occurs, yet greater values of α would require
a realistic value of Smin. In any case, Smin is always low,
making the incremental checkpointing often worth using over
a classical full copy.

V. CYCLE-ACCURATE SIMULATION OF MPU-BASED
INCREMENTAL CHECKPOINTING

In this section, we validate our analytical results thanks to a
simulation platform. One limitation of the analytical approach
is that α is always the same whereas it can change from one
life-cycle to another. In cycle-accurate simulation, as in reality,
α changes every life-cycle.

A. Simulation Platform

We implemented a simulator [32] of an MSP430FR5739
board on top of ArchC [33] but the MPU is modified to handle
up to 16 regions instead of 3, as well as to cover volatile RAM
address range instead of solely the non-volatile RAM address
range. The memory capacity of the platform was also virtually
modified in order to propose 20 kB volatile RAM and 40 kB
non-volatile RAM.

ArchC is a language for CPU architecture and Instruction
Set Architecture description. It aims at generating cycle-
accurate SystemC code for simulation purposes. We wrote an
ArchC model of the MSP430X instruction set, in order to run
the binary images compiled for MSP430FR5739 without any
modification.

While the genuine software part is run in a cycle-accurate
fashion, the driver part is run symbolically. Instead of actually
running every single instruction of a driver call, the whole
routine is bypassed and only its functional effects are simu-
lated: time advances, some amount of energy is taken from
the energy budget and the peripherals states are updated. The
time duration and energy consumption are directly taken from
measurements on a real platform.

The simulator is able to simulate continuous supply as well
as energy harvester with a power manager that stores energy
into a capacitor and powers the device under test through a
voltage regulator. In the latter case, when the capacitor voltage
drops below a certain threshold, the simulator generates an
interrupt and calls the software-defined interrupt handler as it
would be done on the real platform. Then, when the capacitor
voltage drops further to a lower threshold, the simulator
virtually switches the device off, refills the capacitor and
restarts the device by running the reset entry of the kernel
interrupt vector.

The MPU of the MSP430FR5739 is not suited for dirtiness
detection for several reasons: only the non-volatile RAM is
managed by the MPU and the interrupt system is not capable
of returning to the faulting instruction (which is needed for
our method, as explained in the scenario, p. 3). However, we
chose to benefit from the simulation environment to implement
a very simple, realistic MPU, with up to 16 regions, able to
cover the whole memory (volatile and non-volatile as well),
and able to re-execute a faulting instruction. Such an MPU
does not correspond to the actual one that is proposed by the
MSP430FR5739 micro-controller, but it resembles the ones
that can be found on ARM micro-controllers.

B. Benchmark Applications

The simulation is tested against home-made benchmarks
because no TPS benchmark using peripherals exists yet. Our
benchmark consists in the following applications:

• Quicksort initializes and sorts an array of pseudo-random
data. The array size is statically defined.

• RSA initializes and performs an RSA encryption onto an
array of data. The array size is statically defined.

• Complete-WSN uses accelerometer, temperature sensor
and radio. It senses acceleration and temperature several
times and sends the data over radio as small packets. The
radio is sleeping while sensing data and the accelerometer
is always on. The packet size is statically defined.

All applications are declined into several instances, one
instance per combination of Swords and Nreg values if the
MPU is enabled, one instance per value of Swords for the
full copy version without MPU. Each instance has its own
memory access signature, that impacts α. However, α is also
impacted by the available energy within a single life-cycle,
i.e., the weaker the life-cycle, the lower is expected to be α.
In all the results presented here, the available life-cycle energy
is 120 µJ.

C. Checkpointing Mechanism and System Layer

The aforementioned applications run on top of Sytare [20].
Sytare grants application and peripheral state persistence
across power losses. Within the context of this work, we
only changed the mechanism that makes the volatile RAM
persist in NVRAM, by integrating MPU information and
selectively copying from volatile RAM to NVRAM based
on that information. The results shown for the full copy
correspond to the original version of Sytare.
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Fig. 6: Energy consumption of checkpointing with respect to
size of RAM for different applications, when the energy budget
is 120 µJ.

D. Validation of Analytical Results

We now validate our analytical model against our simulation
platform. The α values are computed as the average α of the
first 32 life-cycles for all executions involved in a given graph.

a) Impact of RAM size: Fig. 6 shows how the needs
in RAM impact the energy required for checkpointing, for
the applications defined above. The results are similar to the
anticipated values given by the model.

The major discrepancy is the fact that, in practice, α is
not a constant. Indeed, depending on where the application
resumes and on the energy budget of the next life-cycle, the
application does not require the same regions, nor the same
amount of regions, to be checkpointed for the next life-cycle.
The results show that, when the application uses more than a
hundred RAM words (Smin is around 100), it is always better
to use the incremental checkpointing rather than full RAM
copy.

b) Impact of the number of regions: Fig. 7 shows how
the amount of MPU regions impacts the energy required for
checkpointing, for the applications defined above. Analytical
results showed that incremental checkpointing is always better
than a full RAM copy. To this extent, simulation results are
alike. The visible steps of Fig. 4 do not appear in Fig. 7 as
we made the amount of regions vary at fine grain in Fig. 4,
whereas we made it vary along powers of two in Fig. 7.
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Fig. 7: Energy consumption of checkpointing with respect to
the amount of MPU regions for different applications, when
the energy budget is 120 µJ.

E. Discussion

Our proposal is inspired from incremental checkpointing
mechanism [3], but it uses hardware support rather than
computations to detect used regions. Even with hardware
support, we only benefit from incremental checkpointing if
the size of RAM is big enough. We showed in this paper that
the conditions under which incremental checkpointing is better
than an unselective copy are realistic today, and they will be
even more realistic in the future as the amount of embedded
RAM is likely to increase.

We have performed analytical exploration (Section IV) and
more precise validation by cycle-accurate simulation. Our
simulations validate our analytical analysis, even though there
are some small discrepancies with the results, due to the
simplifications made in the analytical model.

One slight difference between the analytical model and our
simulation should be precised here. In our analytical model, we
only consider the amount of RAM used, whereas in simulation,
the total amount of RAM and the amount of RAM used are
two distinct quantities. However, we chose not to complicate
the analytical model.

Also, it may be noticed that the duration of a life-cycle,
which depends on the energy available in the capacitor of the
TPS, is not important to appreciate the benefits of incremental
checkpointing. It only has an impact on the value of α: with



shorter life-cycles, α will be lower as fewer write instructions
will be executed. With our proposal, we rather target small
systems, that cannot be powered by solar panels, nor embed
a big capacitor, which is the case for many applications. It
would be interesting to study extensively the value of α with
regard to the power source, the size of the capacitor and the
application needs, but it is outside the scope of this paper.

VI. CONCLUSION

We have explained how incremental checkpointing can be
made extremely efficient by using an MPU, which is a very
common hardware component in recent ultra-low power de-
vices. We have analytically explored the conditions to achieve
this efficiency and we have validated, in simulation, the ana-
lytical results. Under reasonable assumptions, our mechanism
is more efficient than merely copying the RAM used by an
application, even when using a DMA. Our perspectives are to
compare our approach to a hardware component that would
be specifically designed to optimize checkpointing, to tackle
the software overheads.
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