
Accurate Power Consumption Evaluation for
Peripherals in Ultra Low-Power embedded systems

Gautier Berthou, Kevin Marquet, Tanguy Risset, Guillaume Salagnac
Univ Lyon, INSA Lyon, Inria, CITI,

F-69621, Villeurbanne, France
Email: firstname.lastname@insa-lyon.fr

Abstract—We propose a methodology to measure, model and
simulate power consumption of peripheral devices of a low-
power embedded micro-controller, while keeping a reasonable
development cost. This methodology is experimented against
the low-power MSP-EXP430FR5739 platform that includes non-
volatile RAM for intermittent computing purposes and a handful
of peripherals. The experimental measurements enable the char-
acterization of the consumption of the peripherals, while many
existing comparable studies do not provide power consumption
for peripherals. These measurements are integrated into a simu-
lator that targets low-power peripheral-intensive applications, as
are most of IoT embedded programs. The accuracy of the power
consumption estimation is within a 5% error on intermittent
embedded computing using peripherals.

Index Terms—Embedded systems, Simulation and emulation,
Power estimation and optimization, Energy model, Energy mea-
surement

I. INTRODUCTION

In ultra low-power embedded systems, energy consumption
estimation is very important for battery lifetime analysis and
power management in general. The presence of increasingly
small and low-power communicating systems motivates the
need for an accurate estimation of their power consumption.

In these systems, peripheral devices such as light-emitting
diodes (LEDs), timers, analog-to-digital converters (ADCs),
serial buses, radio transceivers or various sensors often con-
sume more than computational parts, such as CPU and mem-
ory. This work addresses the issue of accurately modeling and
simulating the execution and energy consumption of a low-
power system.

In the field of embedded programming, software access to
peripherals is usually performed through a finite amount of
API commands, called driver calls. Rather than simulating
every single assembly instruction of these driver calls, we
choose to measure the energy consumption and the duration
of each of these calls. Indeed, a driver call usually consists of
several writes to peripheral control registers, which leads to
intermediate peripheral states that are out of the scope of this
paper. Then, during simulation, the driver calls are identified
and abstractly executed.

This paper includes the following contributions:
• A simplified power model of low-power embedded sys-

tems. This power model leverages an abstraction of pe-
ripherals which is built from the driver API and not from

the peripheral data sheet, unlike what is usually done.
This choice allows us to obtain precise simulations of
embedded software code using peripherals at a reasonable
development cost.

• A complete methodology for ultra-low power system
simulation, including a low-cost experimental platform
able to precisely measure the current consumption of
peripheral operations and the use of an existing CPU
simulator generator (ArchC [1]) to quickly obtain a cycle-
accurate simulation.

• The experimentation of the whole methodology: pre-
cise energy measurement of all peripheral devices rou-
tines, simulator generation and validation of the en-
ergy consumption simulation on the low-power MSP-
EXP430FR5739 1 platform that includes non-volatile
RAM for intermittent power purposes and a handful of
peripherals.

The paper is organized as follows: Section II presents the
state of the art on power modeling, simulation and energy
measurement for ultra-low power systems. Software and pe-
ripheral devices models are presented in Section III. Section IV
presents the power monitoring device and Section V presents
experimental results that validate the simulator accuracy.

II. CONTEXT AND STATE OF THE ART

a) Ultra-low power sensors: With the increasing deploy-
ment of IoT Sensors [2], [3], power consumption of the end de-
vices has become a crucial issue. Even though many research
trends focus on wireless network optimization [4], the use of
new technologies such as MEMS or embedded NVRAM is
increasingly studied for device power consumption optimiza-
tion as battery life is the main concern. The development of
harvesting technologies [5]–[8] enables to deploy low-power
sensors in transiently-powered environments while using a
capacitor to store energy instead of an actual battery [9], [10].
These systems propose, by inserting system snapshots in non-
volatile memory – or other remanent storage technology –, to
recover the system after a power outage [11]–[13]. But none
of these studies estimate peripheral power consumption.

b) Power modeling and simulation: Three main ap-
proaches can be used to evaluate the energy consumption
of embedded systems: theoretical analysis, simulation and

1http://www.ti.com/lit/ug/slau343b/slau343b.pdf978-1-7281-6728-2/20/$31.00 © 2020 IEEE

hardware measurement. To yield realistic results, simulation
must be calibrated with real measurements. One issue is to
establish a power model of all hardware components: CPU,
memory and peripheral devices.

Part of this problem is similar to power state tracking, that
has been successfully used in the past [14]–[16]. The power
state of each component is tracked by manually modifying
device drivers. Compared to these works, our power model
holds more information than just a power state. Indeed, power,
duration and energy consumption information is associated to
every kernel service, including driver primitives.

Profiling power consumption on real hardware has already
been studied, but either the peripheral devices were not stud-
ied [17] or the targeted platforms were high-end systems [18].

SysWCEC [19] proposes a model where the micro-
controller may have several power modes while the peripherals
may only have two states, on and off. It is focused on the worst
case through static analysis and exhaustive path enumeration
to handle all cases in a multi-task model. Another work [20]
is dedicated to the automation of power model extraction for
peripheral devices. It leverages only high current gaps, which
are observed with peripherals such as radio chips, but does not
target less consuming peripherals. However, its model provides
a sound baseline for simulators such as the one we built.

c) Energy consumption measurement: Energy consump-
tion measurement for low-power embedded devices is not
an easy task. The main issues are cost, design complexity,
dynamic range and accuracy. Various approaches exist to
measure power [21].

Energy consumption evaluation requires precise measure-
ments and a model of the platform. For ultra-low power
systems, allowing intermittent execution, a variety of models
has been proposed [22]–[24]. The EPIC modeling tool [25]
supports temperature variation and clock drifts in power
consumption estimation. These models do not address power
consumption of the peripherals.

One of the only methodologies that really addresses power
consumption measurement for peripherals is EMPIOT [26]. It
proposes an accurate, low-cost power measurement platform
and targets wireless IoT devices. The platform proposed in
Section IV is similar to EMPIOT, but is more suited to the
specific dynamic range and resolution needed on ultra-low
power devices. Indeed, EMPIOT is able to measure up to
400 mA with 100 µA resolution, while our measurement
platform measures up to 26 mA with 6 µA resolution.

Other works [18], [27] use acquisition methods that do not
allow measuring with a current range as wide as required by
transiently-powered platforms.

Like the works mentioned above, the general method used
here to compute the energy consumed is to record the current
drawn by the platform and integrate it over time. A completely
different approach consists in using a coulomb counter [28].
However, this work does not use a coulomb counter because of
the known imprecision in the measurement of the capacitance
of a capacitor.

Active
1.2 mA

LPM
0 mA

ON
1.2 mA

OFF
0 mA

Sleep
0.2 mA

RX
18 mA

CPU

LED

Radio

to_lpm()

irq()
led_on()

led_off()

receive()

sleep()

Active
OFF
Sleep

1.2 mA
Active

ON
Sleep

2.4 mA

led_on()

Active
ON
RX

20.4 mA

receive()

Active
OFF
RX

19.2 mA
Active
OFF
RX

19.2 mA

compute()

led_off()

Active
OFF
Sleep

1.2 mA

sleep()

LPM
OFF
Sleep

0.2 mA

to_lpm()

Fig. 1: Example showing how the platform’s power state
evolves with driver calls. On the left, the power state machines
of the CPU (LPM stands for Low-Power Mode), LED and
radio chip with arbitrary values. On the right, the evolution
of current consumption following a particular software trace.
The compute() call does not alter platform power state.

Another energy-related tool is PEEK [29]. It provides a
physical platform for energy measurements, however it solely
aims at proposing static software optimizations to improve
overall application energy consumption.

III. PLATFORM POWER MODEL

This paper relies on a platform model that takes all devices
into account: CPU, memory, on-chip and off-chip peripherals.

A. General model and assumptions

A software program is modeled as a control flow graph
where each node consists in a sequence of either regular
assembly instructions or calls to driver functions. Software
code that does not call any driver function may change the
application state but may not impact the platform power state.
On the contrary, only driver code is allowed to modify the
peripherals and thus, the platform power state. Device driver
routines are modeled as atomic function calls. Fig. 1 illustrates
this model, applied to a simplified example platform.

In this model, peripheral states are not expected to change
on their own. Strictly speaking, asynchronous calls may allow
peripherals to change without the explicit intervention of soft-
ware code. Timers are examples of such peripherals, since their
counter registers do not require any software intervention to
update their values, but the counter evolution does not modify
the timer power consumption. Our only strong assumption is
that an interrupt is always raised – and hence can be caught by
our model – when a peripheral gets into a state that changes
its power consumption on its own.

The software model described in this section imposes that
peripheral configuration and operations are clearly separated
from application code. This is the case today in most embed-
ded programs: peripherals are only accessed through a well
defined API referred to as driver calls. It is compatible with
both bare-metal and embedded system programming habits.

B. Power model for peripherals

The behavior of any peripheral can be modeled using a
finite state machine. It can be as simple as a two-state on/off

Idle,
1603µA

Sleep,
0µA

RX,
16.7mA

sleep()
0.27µJ, 24.5µs

wakeup()
4.71µJ, 399.1µs

rx_enter()
28.65µJ, 952µs

idle()
6.47µJ, 111.9µs

send(pkt)
∆E(pkt)µJ, ∆t(pkt)µs

sleep()
1.19µJ, 24.6µs

Fig. 2: Driver state machine of the driver for CC2500EMK
radio daughter board. State is idle after driver initialization.
The values were measured as shown in Section V.

machine, or it can be much more complex as, for instance,
a radio chip state machine. These state machines are usually
documented in the hardware datasheet. In general, it is not
necessary to model peripherals at a fine grain. Only the state
machine of the driver API itself, which is either a subset of
the actual device state machine or a higher-level finite state
machine, may be considered. The proposal of this work is to
use these driver state machines, such as the one represented
in Fig. 2, to model the power consumption of the peripheral
devices. In a driver state machine, each state is considered to
have its own power state, i.e., current consumption, assumed
to be constant until the peripheral state changes. This is a
simplifying assumption but, as discussed in Section IV, it is
sufficient to obtain a fair estimation of reality.

Each driver call, i.e., transition between driver states, has
a given cost in execution time and energy. The arguments
passed to the driver routines might have an influence on these
metrics. Sending a radio packet is a typical example of such
a parameterized driver routine because the duration and the
energy consumption of the call grow with the size of the
packet. However, from our experience, most of the durations
and energy values associated to transitions between states do
not depend on the driver call parameters, but this strongly
depends on the driver API comprehensiveness.

A typical example of such a power state machine is the
one of the radio chip used in this study. The hardware chip
is Texas Instruments’ CC2500EMK daughter board. Fig. 2
shows the power state machine of its driver. As one might
notice, there are fewer states than in the state machine specified
in its datasheet. The driver developer has exposed only a
subset of the actual hardware states of the radio chip. Fig. 2
depicts only three states: Idle, Sleep and RX. There is no
dedicated state for data transmission. Indeed, the driver call for
transmission starts from the Idle state, temporarily switches
to the hardware transmission state, then switches back to Idle
state when the radio packet is sent. Hence, from the driver
perspective, the state did not change.

The micro-controller itself also has a power state machine. It
has several operating modes: an active mode enabling software
to make progress, and the low-power modes disabling several
CPU components. The power state automaton of the micro-
controller is shown in Fig. 3.

Considering separate state machines instead of explicitly

LPM0,
278µA

LPM1,
233µA

LPM2,
66µA

LPM3,
< 8µA

LPM4,
< 8µA

Active mode,
1224µA

Fig. 3: Power state machine of the MSP430FR5739 micro-
controller. Initial state is Active mode. The values were
measured as shown in Section V.

enumerating all power state combinations at platform-level, in
addition to using a high-level driver API, makes this paper’s
proposal realistic and scalable to any embedded system.

C. Power supply model

This work focuses on two power supply models. The first
model consists in supplying the platform with continuous
supply. It corresponds to battery-powered scenarios where
the battery is able to supply steady power during years. The
second model consists in harvesting energy and storing it into a
capacitor. Power outages are likely to occur often. Hence, this
model requires a power manager in order to schedule charge
and discharge phases. Both these models also assume that the
platform is supplied with a constant, steady voltage supply.
This assumption is realistic since voltage regulators are used
in continuously-powered systems and in some power managers
for intermittent systems based on energy harvesting 2.

Next section presents the experimental platform built to
measure the elementary power consumption of both CPU
instructions and device driver calls.

IV. POWER MONITORING DEVICE

There is a plethora of ways to measure instantaneous
current. All of them have their advantages and drawbacks,
as well as their own performance profiles: supply voltage
perturbation, amount of noise, dynamic range, etc.. In the
particular case of this work, the measurement platform must
provide high sampling frequency because power consumption
may change every dozen of instructions; it must also provide
high dynamic range.

The measurement circuit relies on a simple design, similar
to that of EMPIOT [26]. The circuit, shown in Fig. 4, includes
a shunt resistor of 0.2 Ω in series on the high-end of the
supply voltage of the device under test (DUT). The voltage
across the shunt resistor is amplified using Texas Instruments’
INA212 operational amplifier with a gain of 1000 V/V. The
output of the operational amplifier is fed to Texas Instruments’

2https://e-peas.com/types/energy-harvesting/

DUT

×1000 ADC Controller0.2 Ω

3.3V
SPI

GPIO

Fig. 4: Measurement circuit schematics.

ADS8661 12-bit Analog-to-Digital Converter. The controller
circuit is a Raspberry Pi 3 Model B. Its regulated 3.3V power
rail powers the device under test, while the unregulated 5V
power rail powers both the operational amplifier and the ADC.
Before measuring, the monitoring device is calibrated using
a set of known resistors that emulate fixed, constant current
loads. The calibration is a linear regression.

The circuit actually measures the voltage across the shunt
resistor, which is linear to to the current i(t) drawn by the
device under test. As mentioned in Section III-C, the supply
voltage VCC is constant over time. The integral of the current
can be substituted by the integral average of the current,
multiplied by the elapsed time. In our case, the current data
is discretized so we used the discrete current average I as
an approximation of the integral average during the sampling
time interval [t0, t1]. ∆E, defined as the amount of energy
consumed between t0 and t1, is then:

∆E = VCC × I × (t1 − t0) (1)

The current i(t) is obtained from the ADC values: i(t) =
Istep × XADC(t) + Ioffset, where Istep is the current increment
for each ADC step, XADC the value returned by the ADC and
Ioffset the measurement offset due to the operational amplifier.
The average of the ADC data over [t0, t1] defines XADC. We
then obtain Equation (2), which links energy consumption and
ADC sampled values. After calibration, Istep = 6.4 µA/step
and Ioffset = −4.0 µA.

∆E = VCC × (Istep ×XADC + Ioffset) × (t1 − t0) (2)

The whole monitoring device achieves a dynamic range
between 8 µA and 26 mA, samples at 170 kHz and presents a
noise that corresponds to 6 LSB. High-frequency current noise
induce errors in energy measurement. But since integrated
high-frequency signals result in small quantities, the overall
error is expected to be small as well.

This power monitoring methodology has the advantages of
being simple, low-cost and compatible with any platform since
the only hardware requirements are basic: a power supply pin
on which to plug the shunt resistor, and a couple of GPIOs.
The value of the shunt resistor and the gain of the operational
amplifier are specific to the targeted platform though.

V. EXPERIMENTAL RESULTS

The platform depicted in Section IV enables to measure
the instantaneous current drawn by the device under test.
For instance, Fig. 5 shows the evolution of the platform
current during a radio emission of a 128-byte long packet
(rf_send_packet(pkt) driver call in Table I). In this
specific example, the behavior of the radio transmission is
simplified during simulation, but its simulated energy con-
sumption is still accurate, as shown in Table II.

A. Regular driver calls

Measurements of duration and energy consumption for
driver calls, as well as state transitions, are given in Table I.
Some driver calls appear to consume no energy, because their

0 2 4
0

10

20

Time (ms)

Pl
at

fo
rm

cu
rr

en
t

(m
A

)

Radio
Platform

Fig. 5: Instantaneous current consumption (black curve) for a
transmission of a 128-byte long radio packet. Hatched areas
depict the equivalent surface corresponding consumption of
the radio (blue) and the rest of the platform (red). These
averaged values are used when simulating such a transmission.

TABLE I: Examples of driver calls measurements for the radio,
temperature sensor and accelerometer, as well as the difference
in measured current levels between on and off states of the
memory protection unit, accelerometer and LED. ∆E(x) and
∆t(x) are represented on Fig 6.

Driver call ∆t ∆E from to
rf_init 451 µs 10.3 µJ uninit init
rf_config 575 µs 4.5 µJ init idle
rf_rx_to_idle 112 µs 6.0 µJ RX idle
rf_wakeup 399 µs 3.1 µJ sleep idle
rf_idle_to_sleep 25 µs 0.2 µJ idle sleep
rf_rx_to_sleep 25 µs 1.1 µJ RX sleep
rf_rx_enter 952 µs 28 µJ idle RX
rf_send_packet(x) ∆t(x) ∆E(x) idle idle
temp_init 159 µs 0 µJ uninit init
temp_sample 76 µs 0.2 µJ init init
accel_init 55 µs 0 µJ uninit off
accel_on 1025 µs 46 µJ off on
accel_off 10 µs 0 µJ on off
accel_sample 171 µs 0 µJ on on
Driver state ion − ioff
MPU 0.54 µA
Accelerometer 385 µA
Single LED 1230 µA

consumption is already accounted in the consumption of the
platform over the measured duration.

Some drivers might only present a simple, two-state ma-
chine. For instance, LEDs are based on GPIOs, but since
it only makes sense to use them as output, then the state
machine of each LED has two states: on and off. Table I also
shows current measurements for some peripherals modeled
as on/off drivers. Their power model could be more com-
plex, however in practice, their driver routines currently only
achieve transitions between two states. Current is computed
by averaging the platform current during some time.

B. Driver routines with parameters

A parameterized driver call is exemplified by the
rf_send_packet driver call of radio peripheral. The mea-
sured energy and duration of the packet-sending driver rou-
tine are shown in Fig. 6. For each packet length from 1
byte to 254 bytes, packet emission was measured 64 times.

Energy measurements have a standard deviation not higher
than 3.6% of the average value. Duration measurements have
a standard deviation of at most 11.4 µs in a few cases, and
1.8 µs in average. The relationship between energy and packet
length may be modeled as simply as a linear regression:
∆E(L) = 2.39×L+ 47.71 µJ, where L is the packet length.
The relationship between run-time and packet length is better
modeled as a two-part linear regression which parameters
change at 64 bytes, that is the size of the internal transmission
FIFO of the radio peripheral. For packets smaller than 64
bytes, ∆t(L) = 38.1 × L + 1263.3 µs. For larger packets,
∆t(L) = 32.0 × L+ 1646.3 µs.

The discrepancy between energy and time behaviors orig-
inates from the energy of populating the FIFO being a few
orders of magnitude lower than the energy of actually sending
the packet. Hence, the influence of the FIFO limitation is less
visible regarding energy in comparison to time.

C. Integration in System Simulation

The model described in Section III-B was implemented
on a simulator 3 built on top of ArchC [1]. ArchC is a
language for CPU architecture and Instruction Set Architecture
description. It aims at generating cycle-accurate SystemC code
for simulation purposes. We wrote an ArchC model of the
MSP430X instruction set, in order to run the binary images
compiled for MSP430FR5739 without any modification.

While the genuine software part is run in a cycle-accurate
fashion, the driver part is run symbolically: instead of actually
running every single instruction of a driver call, the whole rou-
tine is bypassed and only its functional effects are simulated.
The time duration and energy consumption are directly taken
from the measurements presented above.

The simulator comes with two power models: (i) continuous
supply and (ii) energy harvester with a power manager that
stores energy into a capacitor and powers the device under
test through a voltage regulator as mentioned in Section III-B.
In the second scenario, the voltage conversion is considered
conservative so far. When the capacitor voltage drops below a
certain threshold, the simulator generates an interrupt and calls
the software-defined interrupt handler of the kernel as it would
be done in a real scenario. Then, when the capacitor voltage
drops further to a lower threshold, the simulator virtually

3https://github.com/gberthou/archc-msp430x/tree/sytare-syscalls

0 100 200
0

200

400

600

Packet length (bytes)

∆
E

(µ
J)

0 100 200

2

4

6

8

10

Packet length (bytes)

∆
t

(m
s)

Fig. 6: Measured (a) energy consumption (∆E) and (b)
duration (∆t) of radio emission for different packet lengths.

switches the device off, refills the capacitor and restarts the
device by running the reset entry of the kernel interrupt vector.

Fig. 7 illustrates the simulation, under continuous supply, of
a specific application which repeatedly senses accelerometer
and temperature data and sends the data over radio. The
graph also shows actual current values measured on the same
application on real hardware.

D. Application benchmark

The simulation is tested against a benchmark made of the
following applications:

a) LEDs: counts from 0 to 255, displays the counter on
the LEDs and waits 1 ms before incrementing the counter.

b) Accelerometer: turns on the accelerometer, performs
10 measurements and turns off the accelerometer, waits 1 ms,
repeated 256 times.

c) Radio: puts the radio to sleep mode, waits 1 ms, puts
the radio to idle mode and sends a 128-byte long packet,
repeated 256 times.

d) Complete-WSN: uses accelerometer, temperature sen-
sor and radio. Senses acceleration and temperature N times
and sends this record over radio as a single packet, with N
varying from 1 to 31. The radio is sleeping while sensing
data and the accelerometer is always on. The beginning of the
simulation of this application is shown on Fig. 7.

The results of these simulations are shown in Table II.
Simulation achieves less than 1% time estimation error and
less than 5% energy estimation error 4 which makes this
methodology suitable for a precise estimation of ultra-low
power embedded systems with important peripheral usage.

VI. CONCLUSION

The main contribution of this work is a new simplified
power model that enables the accurate simulation of ultra low-
power embedded systems using peripherals. This is achieved
by modeling driver calls at coarse grain, in a parametric way,
while the rest of the code is simulated at instruction-level.

We validate the proposed model by implementing a simu-
lator that may be adapted to support any Instruction Set Ar-
chitecture and any peripheral. The simulator targets an MSP-
EXP430FR5739 platform with an accelerometer, a temperature
sensor and an external radio chip.

4The higher error in energy estimation is partly due to accumulated
rounding errors; we are currently working on this aspect.

0 0.02 0.04
0

10

20

Time (s)

To
ta

l
pl

at
fo

rm
cu

rr
en

t
(m

A
)

Fig. 7: Excerpt of simulation record (blue) and actual measure-
ment (red) for the Complete-WSN application, using radio,
accelerometer and temperature sensor.

TABLE II: Comparison, for execution time and energy consumption, between measurements and simulation of the benchmark
applications on the MSP-EXP430FR5739 platform.

Application Measured ∆t Simulated ∆t ∆t error Measured ∆E Simulated ∆E ∆E error
LEDs 274 ms 274 ms 0.0 % 5596 µJ 5595 µJ 0.0 %
Accelerometer 948 ms 959 ms 1.2 % 17113 µJ 16309 µJ 4.7 %
Radio 1815 ms 1836 ms 1.2 % 102706 µJ 107285 µJ 4.5 %
Complete-WSN 783 ms 781 ms 0.3 % 16114 µJ 16315 µJ 1.2 %

The energy consumption of the peripherals and driver calls
has been precisely obtained using a low cost measurement
platform, hence accessible to any embedded system designer.
For this platform, the simulator achieves good estimation:
less than 1% time estimation error and less than 5% energy
estimation error.

An important aspect of this work is that it is suited to
intermittent systems simulation as well. We are currently
investigating the use of this work to (i) statically estimate
viability of ultra-low power embedded applications with re-
spect to specific intermittent power sources and (ii) provide a
run-time decision helper for the application to choose between
several possible tasks to execute depending on the available
energy and task characteristics.

ACKNOWLEDGMENT

This work is partially supported by Inria (IPL ZEP).

REFERENCES

[1] S. Rigo, G. Araujo, M. Bartholomeu, and R. Azevedo, “Archc: a
systemc-based architecture description language,” in 16th Symposium
on Computer Architecture and High Performance Computing, 2004.

[2] C. Morais, D. Sadok, and J. Kelner, “An IoT sensor and scenario survey
for data researchers,” Journal of the Brazilian Computer Society, 2019.

[3] A. Kozłowski and J. Sosnowski, “Energy efficiency trade-off between
duty-cycling and wake-up radio techniques in IoT networks,” Wireless
Personal Communications, 2019.

[4] S. Popli, R. K. Jha, and S. Jain, “A survey on energy efficient narrowband
internet of things (NBIoT): Architecture, application and challenges,”
IEEE Access, 2019.

[5] J. Hester, K. Storer, and J. Sorber, “Timely execution on intermittently
powered batteryless sensors,” in Proceedings of the 15th ACM Confer-
ence on Embedded Network Sensor Systems. ACM, 2017.

[6] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R.
Smith, “Design of an RFID-based battery-free programmable sensing
platform,” IEEE Transactions on Instrumentation and Measurement,
2008.

[7] Y. Lee, S. Bang, I. Lee, Y. Kim, G. Kim, M. H. Ghaed, P. Pannuto,
P. Dutta, D. Sylvester, and D. Blaauw, “A Modular 1 mm3 Die-Stacked
Sensing Platform With Low Power I2C Inter-Die Communication and
Multi-Modal Energy Harvesting,” IEEE Journal of Solid-State Circuits,
2013.

[8] A. Colin, E. Ruppel, and B. Lucia, “A reconfigurable energy stor-
age architecture for energy-harvesting devices,” in Proceedings of the
Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, 2018.

[9] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi,
D. Brunelli, and L. Benini, “Hibernus: Sustaining Computation During
Intermittent Supply for Energy-Harvesting Systems,” IEEE Embedded
Systems Letters, 2015.

[10] K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent execution
without checkpoints,” Proc. ACM Program. Lang., 2017.

[11] G. Berthou, T. Delizy, K. Marquet, T. Risset, and G. Salagnac, “Pe-
ripheral state persistence for transiently-powered systems,” in Global
Internet of Things Summit (GIoTS). IEEE, 2017.

[12] G. Berthou, T. Delizy, K. Marquet, T. Risset, and G. Salagnac, “Sytare:
a lightweight kernel for NVRAM-based transiently-powered systems,”
IEEE Transactions on Computers, 2019.

[13] A. R. Arreola, D. Balsamo, G. Merrett, and A. Weddell, “Restop: retain-
ing external peripheral state in intermittently-powered sensor systems,”
Sensors, 2018.

[14] A. Dunkels, J. Eriksson, N. Finne, and N. Tsiftes, “Powertrace: Network-
level power profiling for low-power wireless networks,” SICS, Tech.
Rep. 2011:05, 2011.

[15] K. Klues, V. Handziski, C. Lu, A. Wolisz, D. Culler, D. Gay, and
P. Levis, “Integrating concurrency control and energy management in
device drivers,” in Proceedings of Twenty-first ACM SIGOPS Symposium
on Operating Systems Principles, 2007.

[16] R. Fonseca, P. Dutta, P. Levis, and I. Stoica, “Quanto: Tracking energy
in networked embedded systems,” in Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, 2008.

[17] A. Acquaviva, L. Benini, and B. Riccó, Energy Characterization of
Embedded Real-Time Operating Systems. Springer US, 2003.

[18] S. Schubert, D. Kostic, W. Zwaenepoel, and K. G. Shin, “Profiling soft-
ware for energy consumption,” in 2012 IEEE International Conference
on Green Computing and Communications, 2012.

[19] P. Wägemann, C. Dietrich, T. Distler, P. Ulbrich, and W. Schröder-
Preikschat, “Whole-System Worst-Case Energy-Consumption Analysis
for Energy-Constrained Real-Time Systems,” in 30th Euromicro Con-
ference on Real-Time Systems (ECRTS 2018), 2018.

[20] N. Cherifi, T. Vantroys, A. Boe, C. Herault, and G. Grimaud, “Automatic
inference of energy models for peripheral components in embedded
systems,” in 2017 IEEE 5th International Conference on Future Internet
of Things and Cloud (FiCloud), 2017.

[21] A. Di Nisio, T. Di Noia, C. G. C. Carducci, and M. Spadavecchia, “High
dynamic range power consumption measurement in microcontroller-
based applications,” IEEE Transactions on Instrumentation and Mea-
surement, 2016.

[22] J. San Miguel, K. Ganesan, M. Badr, and N. E. Jerger, “The EH
model: Analytical exploration of energy-harvesting architectures,” IEEE
Computer Architecture Letters, 2018.

[23] V. Shnayder, M. Hempstead, B.-r. Chen, G. Werner-Allen, and M. Welsh,
“Simulating the power consumption of large-scale sensor network ap-
plications,” in SenSys’04 - Proceedings of the Second International
Conference on Embedded Networked Sensor Systems, 2004.

[24] T. Bouhadiba, M. Moy, F. Maraninchi, J. Cornet, L. Maillet-Contoz,
and I. Materic, “Co-simulation of functional systemc tlm models with
power/thermal solvers,” in 2013 IEEE International Symposium on
Parallel Distributed Processing, Workshops and Phd Forum, 2013.

[25] S. Ahmed, A. Bakar, N. A. Bhatti, M. H. Alizai, J. H. Siddiqui,
and L. Mottola, “The betrayal of constant power × time: Finding the
missing joules of transiently-powered computers,” in Proceedings of the
20th ACM SIGPLAN/SIGBED International Conference on Languages,
Compilers, and Tools for Embedded Systems, 2019.

[26] B. Dezfouli, I. Amirtharaj, and C.-C. C. Li, “EMPIOT: An energy
measurement platform for wireless IoT devices,” Journal of Network
and Computer Applications, 2018.

[27] F. Fummi, G. Perbellini, D. Quaglia, and A. Acquaviva, “Flexible
energy-aware simulation of heterogenous wireless sensor networks,” in
2009 Design, Automation Test in Europe Conference Exhibition, 2009.

[28] O. Hahm and S. Adler, “Profiling energy consumption of wireless sensor
nodes with almost zero effort,” in 2012 IEEE International Conference
on Communications (ICC), 2012.

[29] T. Hönig, H. Janker, C. Eibel, W. Schröder-Preikschat, O. Mihelic,
and R. Kapitza, “Proactive energy-aware programming with peek,” in
Proceedings of the 2014 International Conference on Timely Results in
Operating Systems. USENIX Association, 2014.

