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ABSTRACT

OSGi is a wrapper above the Java Virtual Machine that embraces two concepts: component
approach and service-oriented programming. The component approach enables a Java run-time
to host several concurrent applications, while the service-oriented programming paradigm allows
the decomposition of applications into independent units that are dynamically bound at run-time.
Combining component and service-oriented programming greatly simplifies the implementation
of highly adaptive, constantly evolving applications. This, in turn, is an ideal match to the
requirements and constraints of ambient intelligence computing, such as adaptation to changes
associated with context evolution. OSGi particularly fits ambient requirements and constraints by
absorbing and adapting to changes associated with context evolution. However, OSGi needs to be
finely tuned in order to integrate ambient specific issues. This paper focuses on Zero-configuration
architecture, Multi-provider framework, and Limited resource requirements. The authors studied
many OSGi improvements that should be taken into account when building OSGi-based gateways.
This paper summarizes the INRIA Amazones teamwork (http://amazones.gforge.inria.fr/) on
extending OSG1i specifications and implementations to cope with ambient concerns. This paper
references three main concerns: management, isolation, and security.

Keywords: Ambient Intelligence, Component-Based Software Engineering, OSGi Middleware,
Service-Oriented Programming

Introduction

Using OSGi technology in ambient environments requires focusing on specific problems
such as footprint of the run-time framework, zero configuration of the application and service
provisioning for multi-provider environments. Because ambient intelligence is, and will remain,
based on hardware with limited resources, the size and complexity of the framework have to
be kept under control. The kind of platform we address is that of middle-sized devices, like
smart phones, set-top boxes or automotive embedded systems. They have much more computing
resources than tiny embedded systems like micro-controllers, but much less then commodity
PCs or traditional servers. We call these platforms gateway devices, since most ofthe time they
act as intermediaries between a local network of services and the Internet. As an illustration,
the platforms we used in our experimentations were ARM-based devices as the LinkSys NSLU2
(266Mhz CPU, 32MB RAM, 8MB Flash) or sheeva PC plugs (1.2Ghz CPU, 521MB RAM, 512MB
flash).

Devices for ambient environment should work in an autonomic way without any user interac-
tion apart from network and electrical connections and hardware factory resets. They should
address many kinds of concurrent applications from many providers. Each of them shall have its
own running space, where he is able to manage its own local information and interact with local



equipments. This management model is similar to the Apple and Android store model where
the end-user has the ability to choose its hosted applications, and where each of them may have
its own autonomy. This implies a dynamic architecture where each service provider may have
an application life-cycle that is neither bounded nor constrained by the gateway system and
hardware life-cycle. Furthermore, various external constraints such as costs and environmental
issues distinguish gateway hardware from data-centers. The former has resource constrains
both in memory and processing power that are not compliant with full best-effort developed
applications.

In this article, we compiled most of our current OSGi-related proposals in order to have a
synthetic view of the investigated extensions. The paper is divided in three sections. First we
summarize the OSGi framework and focuses on our specific concerns. Next, we present each
provided extension as a walkthrough of our various publications. The last section synthesizes our
proposed extensions.

OSGi Context

OSGi (http://www.osgi.org/ Main/ HomePage) is a container framework built on top of the
Java platform. It hosts deployment units called bundles, which contain Java resources such as
compiled classes, properties files or dynamically linked native libraries. Each bundle features an
Activator class, which is the entry point to be notified when the bundle is started or stopped. A
descriptor, expressed as a regular Java manifest, details meta-data such as the Activator qualified
name, or the various requirements the bundle expects, such as the presence of another bundle
exposing a specific Java package.

The OSGi platform automatically checks dependencies between bundles and controls the
lifecycle of each bundle. One key feature of the OSGi framework is the seamless support of
application deployment: new applications can be installed, updated and uninstalled at runtime
without requiring a restart of the Java virtual machine itself, thanks to classloaders native
isolation. This streamlines administration enables multiple hosted applications installed as
independent deployment units.

Bundles are typically materialized as JAR archives that can even be fetched by the OSGi
framework from a remote HTTP server. Each bundle is associated with a dedicated Java class
loader that provides resource isolation with respect to the other bundles. Unlike the local, closed
classloader hierarchies found in standard Java applications, OSGi provides a dynamic hierarchy
of classloaders with a fine control of which classes and resources should be exposed or not. At
deployment time, the bundle manifest indicates which packages are made public and which
packages the bundle depends on.

The OSGi underlying programming model focuses on Service-Oriented Programming (SOP)
(http:// openwings.org/). The driving motivation for SOP is to minimize coupling among software
elements of an application. A service is an interface that describes what a software entity provides
in terms of API binding requirements. In turn, several implementations can be provided for the
same interface and their details remain hidden to the service requesters. Combining dynamic
bundle management and SOP awareness enables continuous application evolution at run-time
within the same virtual machine instance.

OSGi Extensions

Ambient architectures we studied so-far exposed three main concerns: gateway autonomy,
multi-provider application hosting and security. Also OSGi provides many ways to help develop
and enforce ambient application in a generic and standard way, it still presents limitations. Since
2004, we provided many extensions to the OSGi framework to cope with these limitations. Most
of them focus on the bundle management layer and aim at providing sound answers to the next
three questions:



1. How can we improve bundle management and deployment?
2. How can we optimize the run-time environment for bundles?

3. How can we enforce security for the deployed bundles?

Deployment and security concerns influence autonomic behavior. Deployment, Run-time
optimization and Security are of high consideration when building a multi-provider architecture.
Run-time optimization and Security enforcements directly impacts limited resource equipments
where resource control is a matter of importance. In the three next sections, we detail the various
OSGi extensions trying to answer those questions.

Bundle Management and Deployment

When dealing with ambient environments we consider that the gateway is remotely managed
by providers and end-user and that it performs as many autonomous activities as it can on low
cost, low energy, low noise electronic device. Although OSGi enables software management within
gateways, it initially has a very primitive way of handling service deployment and management.
An initial remote console to interact with bundle was the only provided management solution.
Service providers must be able to install new applications on remote gateways and be able to both
manage their behaviors and monitor their execution (Royon & Frénot, 2007). In this purpose
we provided two extensions: the first is a full implementation of OSGi remote management
specification and the second one focuses on an efficient bundle deployment layer.

MOSGi

Management was one of the OSGi specification concerns, which were not implemented in
the first place. We developed and donated to the Apache Felix community (http://feliz.apache.
org/ site/ index.html) the MOSGi framework that mainly consists in a wrapper around the JMX
management protocol (Fleury & Frénot, 2003). We provided an end-to-end management layer
that covers both the gateway and the client-side part of the architecture. One can find both a
run-time for the gateway handling local probes and a run-time manager for the client.

It is worth noting that the manager was also developed as an OSGi bundle and thus provides
a really interesting dynamic use-case. When a probe is started on the gateway side, it provides
two facets: (1) the MBean facets that provides the management API compliant with the JMX
protocol, (2) a specific MOSGi facet that is used by the client side to get a graphical user interface
interacting with the remote probe. The client is dynamic: when it connects to the gateway, it
requests for the list of installed probes that correspond to the JMX facet integration. Then, for
each probe it checks whether it complies with the specific MOSGi facet. If so, it asks the probe
for an URL that provides a bundle that brings the graphical user interface. This dynamically
discovered graphical bundle is plugged into the manager and starts interacting with the gateway.
As an example, the running use-case of the MUSE project (D’Haeseleer, 2008) was that of a
user buying a fridge. When the fridge is installed at the home environment, the set-top box
gateway downloads a fridge management probe. When the fridge vendor has to remotely access
the fridge, its local manager downloads a graphical user interface that can communicate with the
fridge probe and provides a dedicated management user interface.

When we developed the MOSGIi framework in a multi-provider environment, one issue
was to understand the management limits. If any provider can ask for probing information,
the management layer can overload the gateway. If the remote manager asks for the fridge
temperature every tenth of a second the gateway can fall in some kind of Denial of Service state
and not be able to do other things. We developed a monitoring scheduling process for gateway
devices (Frénot et al., 2008) through which we wondered if we could anticipate the increase in
CPU load when a new probe is inserted into the gateway. The provided approach is a specific
bench generator that measures every installed JMX probe and stores its response time. We



showed that the targeted gateway CPU loading curve was regular, and that the combination of
the various curves leads to good CPU load schedules. If the equipment provider indicates the
probe and the pace he wants to query, we can anticipate the CPU load increment. By way of
consequences, we can make a distinction between normal behavior and a probe failure since we
can observe and anticipate a homogeneous load activity.

POSGi

Traditionally, OSGi bundles are installed from a remote web server using an HTTP URL
such as start http://www.somehost.com/abundle.jar. But in ambient environment, simultaneous
deployment of the same software component onto a large number of devices may overwhelm
the server behind www.somehost.com. The server behind www.somehost.com may host many
bundles and can be overwhelmed by a peak in installation requests.

Our Peer-to-Peer (P2P) OSGi extension focuses on efficient and resilient deployment of OSGi
bundles. The goal of this system is to substitute the traditional centralized bundle repositories
with a P2P architecture. By using a P2P approach, we can avoid server failure during peak
installation request period since every gateway can be part of the global, distributed repository.
We used Freepastry (http://www.freepastry.org/) as a Distributed Hash Table (DHT) overlay
network where every gateway and every bundle obtains a specific Freepastry id. DHT yields
an efficient routing algorithm between two ids. When sending a new bundle to the network
of gateways, it is routed towards the gateway that has the nearest Freepastry id from its own
id. When one gateway needs to install a bundle, its request is routed hop-by-hop towards the
root gateway that handles the initial archive. On the way back, each gateway on the route can
locally store the initial archive. If) later, another gateway needs the same bundle, it can be
provided either by the root gateway or by any gateway that handles the bundle on the route.
POSGi (Frénot & Royon, 2005) enables URL installation schemes such as p2p://abundle.jar.
The implementation impacts the OSGi URL scheme handler, adds an alternate local cache where
bundles are stored from the Freepastry overlay and a bundle that offers the P2P management.

Discussion

Ambient environments are directly influenced by both deployment and management layers.
When dealing with multiple providers acting on the same equipment, each one must have their
own management vision of it. If for instance the home gateway manages a specific fridge and a
specific vacuum cleaner, each provider may remotely manage these equipments without interfering
with others. The MOSGI architecture is a first direction that enables this function. If one of
the providers must upgrade to a new version all its bundles a P2P approach such as POSGi
presents many advantages in regards to efficiency. For the end-user, an autonomic deployment
and management layers are very important, since the end-user equipment should be as simple
and standard as other legacy ones. For instance, in a home gateway, there should be no user
interface at all. MOSGi and POSGi frameworks bring autonomic and multi-provider support for
deploying and managing applications in ambient environments without any user interaction.

This section described the early phases of bundle life-cycle; the next section focuses on the
main execution phase through various run-time extensions.

Run-Time Extensions

Java virtual machines combined with the OSGi framework is the operating system solution
for handling multi-provider, multi-applications within a heterogeneous hardware environment.
Nevertheless Java was not designed with a multi-session philosophy in mind. OSGi is a direction
in providing component isolation, but it still has the best-effort scheme imposed by Java. Bundle
isolation is not as perfect world as we can imagine, if a bundle does not behave in the proper
manner it can stop the virtual machine. By specifications, OSGI, it’s all sweetness and light. In
a multi-provider and autonomic approach, unless a global manager holds everything, we need to



be much more on our guards. A stopped bundle may be effectively stopped, which implies that
al reserved resources during bundle execution should be released when stopped. As it is not the
case, Amazones observed this issue through many directions.

OSGi Sandboxing

OSGi sandboxing aims at isolating bundle execution and management one from each other.
The sandboxing issues we initially investigated were related to the MUSE multi-provider architec-
ture. Indeed, if we host many bundles from various providers on the same gateway, they should
be isolated one from each other as they could be in competition. One bundle should not interfere
with the one from the other providers. Sandboxing has many levels of granularity on virtual
machines: (1) bundle naming isolation, (2) coding design for proper isolation, and (3) low-level
resources isolation within a virtual machine. We investigated all these three level of isolation.

Virtual OSGi  VOSGi (Royon et al.,2006) is a rather naive implementation where we provide
OSGi itself as a service. The service provides a single start/stop interface that instantiates or
nullifies a brand new OSGi implementation within the first one. With this, we can assign a
specific provider to an OSGi gateway that virtually runs within another OSGi gateway. We
provide a start/stop gateway management shell command available from the main gateway,
which is in turn called the core gateway. When running multiple OSGi instance in the same
management shell, commands are not associated with a specific gateway. In order to interact
with each virtual gateway, we developed a specific MOSGi probe that enables to remotely manage
the virtual instances.

Although running new OSGi instance within one instance is rather straightforward, difficulties
raise when these instances need to communicate with each other. A virtual gateway may use
services provided by another gateway, either the core gateway or another virtual gateway. Our
current implementation only enables service exchanges from the core gateway to virtual gateways.
When starting a virtual gateway, it declares the service interfaces it wishes to access from the core
gateway. At virtual gateway bootstrap time, it receives references to the various corresponding
implementations and registers each transmitted implementation within its own registry. Hence,
each service exchanged between a core and a virtual gateway is declared in both registries and
points to the same implementation.

Nevertheless, one remaining problem in the VOSGi approach is that the OSGi “standard”
behavior does not enforce “true” bundle isolation: bundles can obtain as many system resources
as they want such as network connections, threads, and so on. There is no way to constrain a
bundle contract within the framework. Moreover, any class can stop the entire virtual machine
through a call to java.lang.System.exit(0). This is a serious issue when hosting multi-provider
bundles that may not be “honest”. We focused on two developments to improve bundle isolation.
The first one is based on development contract conformance enforcement, while the second one is
based on a dedicated virtual machine.

Suspend and Resume  (Dunklau & Frénot, 2009). This INRIA technical report raises one
simple problem linked to the bundle lifecycle. In the OSGi specifications, bundles can be in the
following states: Installed, Resolved and Active. Although this life cycle seems complete, we
believe that it lacks a Suspended state. Considering that ambient equipment may be paused
and resumed and not systematically rebooted, the Suspended state is a real ambient need as
bundle may be suspended in order to free its resource, in case of exhaustion. For instance, the
gateway manages run-time profiles, such as “high-priority”, “standard”, or “night supervision”.
It may have to pause bundles when switching to specific profiles. This suspend state necessity
arises each time we need to reconfigure partially the gateway. At present, the only way of doing
it is by managing an internal state when stopping and starting the bundle. It is impossible to
distinguish between rebooting and suspending a bundle. One problem raised by introducing the



Suspended state is that it impacts mostly the run-time model. The Suspended state needs to
suspend threads, network connections and all running activities.

When dealing with the programming model, accessing resources is restricted to some kind of
dispatcher. It allocates resources to requesters and maintains a whiteboard associating requesters
to resources. When suspension time occurs, the dispatcher knows exactly which resource i.e.
bundle is associated to each requester. In this approach, every direct call to a specific resource
allocation should be transferred to a dispatcher that manages identifications. Our implementation
adds a specific Apache Felix shell command that integrates the suspend #bundleid action and a
specific BundleSuspendableActivator Java interface that adds two hooked methods for suspending
and resuming a bundle. Our architecture currently focuses on the threading architecture and
only provides a dispatcher to allocate threads and suspend them automatically. A similar work
should be done for network connections.

Although this architecture is rather simple to put under operation, it is still dependent on
the good will of bundle developers: if they provide only standard OSGi bundle, these can still be
hosted on the gateway, but may present unmanageable behavior. The only workaround for this
issue is to constrain bundle behavior at the virtual machine level.

iJVM  The iJVM (Geoffray et al., 2009) project aims at designing a virtual machine for
constrained environments that enforces resource control mechanisms. Even though iJVM had
security issues in mind, its main goal is to provide an efficient isolation layer for bundle requesting
resources while preserving an efficient communication layer between isolated bundles. iJVM
provides three main features for OSGi bundles: (1) memory isolation, (2) resource accounting
and (3) isolates termination.

Discussion

VOSGi, Suspend and Resume, and iJVM projects target run-time isolation for bundle code.
The OSGi bundle paradigm offers the appropriate granularity level to enforce isolation. Depending
on the desired isolation guarantees, each approach offers different level ranging from simple
naming isolation, to a hard, resource constrained, environment. But the harder the constraints
are enforced, the lesser standard and generic the architecture is.

While trying to enforce isolation and since target hardware platforms have limited resources,
we also addressed run-time code optimization.

Run-Time Code Optimization

Most of the time bundle life-cycle is human driven either by the end-user or the remote
provider. In our run-time optimization investigations, we tried to find more automated ways for
handling those updates. Two directions were developed for tackling them: the ROCS architecture
and the AxSel framework.

ROCS  The Remotely Provisioned OSGi framework for Ambient Systems (Frénot et al., 2010)
project leverages a very simple standard Java principle, which is that of remote classes loading.
Before starting the activator of a bundle, the OSGi framework performs the following activities.
It downloads the bundle from a remote location, extracts the jar file on a local cache, extracts
the bundle descriptor to control bundle coherence with the current running environment and,
provided everything is right, it loads the activator class and invokes its start method. ROCS
proposes to manage all these activities through a remote approach. The gateway relies on a
remote server that hosts the bundles and responds to gateway remote queries. Exploiting the
Java remote class loading is straightforward with the OSGi framework. The usage scenario is the
following.

When installing a new bundle, it is downloaded from the repository to a remote server and the
gateway obtains a local proxy to interact with the remote server. It asks for the bundle manifest,



downloads the file from the remote Jar and controls the meta-data to see if every dependency is
satisfied. If so, it remotely loads into memory the corresponding BundleActivator byte-code and
starts the bundle. Then, all subsequent required classes are downloaded on-demand through the
RemoteClassLoader.

This remote architecture has also been applied to the standard Java runtime classes (i.e.,
java.* and javaz.* packages) such that it is considered as a plain bundle. We put the necessary
classes to bootstrap a minimal OSGi/Java stack into a local classpath classloader. Once started,
all remaining standard classes are downloaded from the remote location. Trough our approach,
we build an entire OSGi/Java run-time stack that can be hosted on small equipments, less
than 8MB of flash, since all loaded classes come from remote locations and are directly brought
into memory. ROCS demonstrates that, provided we are connected, we have the same kind of
response time as if, we locally cached all bundle classes.

AxzSel Whereas ROCS focuses on loading classes contained in remote bundles, AxSel (Ben
Hamida et al., 2008) aims at optimizing class loading at the service granularity level. The
Service-Oriented Programming feature of OSGi specifications enables the description of an
applications as a composition of services. One application can have implementation variations,
depending on the environment. For instance, when using a standard OSGi bundle repository, all
dependent bundles are automatically downloaded into the gateway, and then started. A local
service maintains a dependency graph from Package-Import and Package-Export statements
of the bundle manifest. We exploit the ImportService manifest property to also maintain a
dependency graph between parts of the application. The AxSel framework holds an internal
representation of the run-time and regularly polls remote repositories to find new or alternate
implementations. When the gateway is in idle mode, it triggers a reconfiguration process that
calculates for every dependent element, bundle or service, if it can find a better implementation.
If so, bundles are updated and services are automatically reconfigured.

Discussion

AxSel and ROCS are complementary approaches: the ROCS system enables a minimal
run-time where everything is downloaded on-demand within the main memory, and AxSel brings
automatic reconfiguration and optimization of the running environment.

Ambient environments need to cope with autonomy, multi-providers and some resource control
issues. The various sandboxing frameworks we studied so far aim at empowering application
autonomy and multi-provider integration within ambient environments. They enable providers
behave as if they were using the system alone. Achieving autonomy is much easier as you can do
whatever you want without disturbing your neighbors. Although sandboxing enable application
to feel isolated, the underlying system still has to cope with its limited resources. Axsel and
ROCS are a first proposal toward dynamic resource management in ambient environment. ROCS
focuses on getting the minimal quantity of execution code into memory, whereas Axsel aims
at continuously finding better configuration opportunities. They both influence autonomy and
resource awareness of ambient systems.

Most of the dynamic features of OSGi framework presented so far, load byte-code into
memory from remote locations or from downloaded bundles. We identified many security issues
when dealing with isolation. All these concerns led to consider security as specific and generic
concern that needs dedicated attention.

Security around OSGi

Most of the time security in ambient environment is a primary concern, and most of the
time security in constrained environment is disabled since it has a very high cost. OSGi mostly
extends Java security elements without considering their run-time cost. Amazones felt that OSGi



component and service paradigms bring new clues for improving application security while also
bringing new ways of disturbing an environment. We started a security activity around OSGi to
identify both new breakages and design new ways of handling security.

Security issues in the OSGi/Java stack are spanning across many points. They arise both at
low-level (e.g., bundle code signing) and high-level parts of the OSGi stack (e.g., deployment).
The overall OSGi picture reveals many points where security needs enforcements. Our overall
approach identified the following elements.

Deployment Bundles are downloaded from remote locations. Thus, we need some strong
guarantees from those locations regarding the origins and integrity of the bundles. The
OSGi specification proposes a signing process that identifies bundle sources and providers,
but when we started our study, no implementation was available.

Bundle Downloaded bundles can lead to two kinds of security breaches. Indeed, they can
contain code that directly harms the system, or they can contain code that weakens the
framework. We need to consider the two issues to decide whether a bundle is a threat
to the framework, and whether it opens security flaws that could be locally /remotely
exploited.

Framework The OSGi specification does not enforce security constraints, as they are mainly
implementation issues. Most of current framework implementations are subject to instability
if malevolent bundles are installed.

A preliminary work has been conducted to design a bundle signing architecture. This work
has been achieved in the context of the MUSE European project where we designed a tool-chain
to sign bundles and verify their validity at deployment time. The architecture is detailed in
Parrend and Frénot (2006, 2007b). An implementation is available with the SFelix project
(http:// sfelix.gforge.inria.fr/).

After having designed this tool-chain, we worked on a bundle threats catalog aimed at
identifying OSGi security weaknesses. The catalog elements and summary are detailed in Parrend
and Frénot (2007a, 2008a, 2008c¢).

We applied those catalogs to design a hardened OSGi/Java framework. The Parrend & Frénot
(2009) article stresses OSGi open-source framework vulnerabilities and expresses guidelines to
develop hardened implementations. Yet, some vulnerabilities cannot be controlled at the OSGi
framework layer and need to be addressed at the Java Virtual Machine layer. The iJVM (Geoffray
et al., 2009) virtual machine for isolating threads was mainly designed for this purpose.

The last track we followed when dealing with security concerns was to be able to statically
analyze the code of bundles. We developed an install-time analyzer that introspects bundles
compiled code to detect vulnerabilities. CBAC (Parrend & Frénot, 2008b) describes the proposal.
The CBAC control is triggered at the same time as the digital verification signature process, thus
only inducing an overhead at deployment time. Unlike the standard Java permissions built-in
framework, the CBAC security model does not have any runtime overhead.

Discussion

Security improvement within ambient environment is a primary concern. Autonomic comput-
ing, multi-provider and limited Resources concerns are all influenced by security issues. When
installing, managing, upgrading applications, one has to guarantee that the system still behaves
as before, that it does not consume much more resources and that it does not break provider
isolation by trying to transfer private data throughout the system. Limited resource architecture
influence security architecture since they all come with a non negligible cost and most of the
time they need to be disabled in order to have a viable system. Amazones proposals cover many
directions to easy security management. They all converge to some kind of benchmark tools
to control ambient system security conformity but both metrics and levels still need proper
definitions.



Synthesis

The OSGi extensions that we presented address issues such as management, run-time
optimization and security. We summarized our contributions in Table 1.

Extension Domain References
MOSGi Management | Royon & Frénot, 2007; Fleury & Frénot,
2003; Frénot et al., 2008
POSGi Management | Frénot & Royon, 2005
VOSGi Runtime Royon et al., 2006
Suspend & Resume Runtime Dunklau & Frénot, 2009
iJVM Runtime Geoffray et al., 2009
ROCS Runtime Frénot et al., 2010
AxSel Runtime Ben Hamida et al., 2008
SFelix Security Parrend & Frénot, 2006, 2007b
Unsecured Bundle Catalog Security Parrend & Frénot, 2007a, 2008a, 2008c
Hardened OSGi Security Parrend & Frénot, 2009; Geoffray et al.,
2009
CBAC Security Parrend & Frénot, 2008b

Table 1. Extensions to the OSGi space

All our extensions have been developed under the Apache Felix project. Some of them,
VOSGi, MOSGi, Unsecured Bundle Catalog have also been validated on Concierge (Rellermeyer
& Alonso, 2007). They all run on standard Intel-based architectures, but many of them, MOSGi,
VOSGi, ROCS, SFelix, have also been validated on a NSLU2 (http:// en.gentoo-wiki.com/ wiki/
Gentoo/ _on/ NSLUZ2) ARM board, with a dedicated JamVM/GNU Classpath execution stack.
All the code that we developed is available from the INRIA GForge project and can be obtained
by sending us an email. All code is provided under either the Apache Software License version
2.0 (http:// www.apache.org/licenses/), or one of the CeCill licenses (http://www.cecill.info/).

The provided extensions impact various elements of the OSGi specifications and implementa-
tions as summarized in Table 2.

Specification implementation MOSGi and SFelix propose implementation of OSGi specifi-
cations that are not included in the open-source implementations.

Framework patch VOSGi, Suspend & Resume, ROCS, Hardened OSGi need patching some
specific version of Apache Felix to operate. Most of the time, the patches correspond to
very few lines of code and some extended classes.

Bundle lifecycle modifications Some of our extensions point out the necessity of extending
the standard bundle lifecycle (Resolved, Installed, Active) through new status. Suspended
for Suspend & Resume, Invalid for SFelix.

Tool Tools are elements that do not interfere with the standard OSGi/Java stack. They provide
non-intrusive additional services to the framework.

Since iJVM impacts the underlying virtual machine it does not directly concern the OSGi
framework.

OSGi is a very interesting environment. Its simplicity and pragmatism are keys to build
efficient run-time systems. The INRIA Amazones team focuses on ambient environments and
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Extension Specification | Patch | Lifecycle | Tool
MOSGi X O O X
POSGi O O O X
VOSGi O X O O

Suspend & Resume O X X O
iJVM O O O O

ROCS O X O O

AxSel O O O X

SFelix X O X X
Unsecured Bundle Catalog O O O X
Hardened OSGi O O @) @)
CBAC O X X @)

Table 2. Impacted OSGi elements conclusion

provides extensions that cope with ambient constraints such as limited memory size, remote
access, dynamism, context awareness and energy efficiency. Our extensions depend on framework
implementations, and as such, they are rather difficult to keep up-to-date with upstream codebase
changes. Our current policy is to keep those extensions alive for specific upstream project versions,
and to provide upgrades when needed. At present, and due to limited resources within our team,
only the MOSGi framework has been donated to the main Apache Felix codebase, under the
mosgi submodule in the project Subversion repository.

We are still working on various extensions to the framework in different directions. We
integrate device mobility concerns in some of our projects and log management features to
enhance fault management. However, those projects are still under development and need further
validation before publication.
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